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EXISTENCE FOR A CAUCHY–DIRICHLET PROBLEM
FOR EVOLUTIONAL p-LAPLACIAN SYSTEMS

Abstract. We study the existence of a weak solution to a Cauchy–Dirich-
let problem for evolutional p-Laplacian systems with constant coefficients
and principal term only. The initial-boundary data is assumed to be a
bounded weak solution of an evolutional p-Laplacian system with an L1-
function as external force. The key ingredient is the maximum principle for
weak solutions.

1. Introduction. Let Ω be a bounded domain in Rm, m ≥ 2, with
smooth boundary ∂Ω, T ′ be a positive number and put ΩT ′ = (0, T ′)× Ω.
Let 1 < p < ∞. For a map u : ΩT ′ → Rn, z = (t, x) = (t, x1, . . . , xm),
u = u(z) = (u1(z), . . . , un(z)), we consider the evolutional p-Laplacian sys-
tem

∂tu
i −

m∑

α,β=1

Dα(|Du|p−2
g gαβDβu

i) = f i, i = 1, . . . , n,(1.1)

where Dα = ∂/∂xα, α = 1, . . . ,m, Du is the spatial gradient of a map u,
Du = (Dαu

i), |Du|2g =
∑n

i=1
∑m

α,β=1 g
αβDαu

iDβu
i, f is an L1-function

defined on ΩT ′ with values in Rn and (gαβ) is a symmetric positive def-
inite constant matrix. In particular, we assume that there exist positive
constants γ, Γ such that

γ|ξ|2 ≤ gαβξαξβ ≤ Γ |ξ|2 for all ξ = (ξα) ∈ Rm.(1.2)

Here and in what follows, the notation |ξ|2 = ξ ·ξ = ξiαξ
i
α and |ξ|2g = gαβξiαξ

i
β

is used for ξ = (ξiα) and the summation convention over repeated indices is
adopted.

As a typical example of an evolution system (1.1), we think of the neg-
ative gradient flow for the p-energy functional, defined for functions u be-
longing to the Sobolev space W 1,p(Ω,Rn) by
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Ep(u) =
�

Ω

1
p

(gαβ(x, u)Dαu ·Dβu)p/2 dx,(1.3)

where g = (gαβ(x, u)) is a symmetric matrix with C1 entries gαβ(x, u) de-
fined on Ω × Rn and satisfies the uniform ellipticity condition like (1.2) for
every x ∈ Ω and all u ∈ Rn. Then the equation which describes the nega-
tive gradient flow for (1.3) is (1.1) with constant coefficients replaced by the
variable coefficients gαβ(x, u) and the lower order term

f(z) = −1
2
|Du|p−2

g

dgαβ

du
(x, u)Dαu ·Dβu.(1.4)

Note that (1.4) is of pth power order growth in the gradient: for a positive
constant a depending only on g,

|f | ≤ a|Du|p.(1.5)

It is also natural to study such systems in the class L∞(ΩT ′ ,Rn) ∩
Lp(0, T ′;W 1,p(Ω,Rn)) (see [8, Chapter II, Section 3, pp. 54–63]). For weak
solutions in this class, the term (1.4) is exactly an L1-function. We call such
systems with lower order term as in (1.5) evolutional p-Laplacian systems
with critical (or natural) growth.

Let p ≥ 2m/(m+ 2). Let u ∈ L∞(ΩT ′ ,Rn)) ∩ Lp(0, T ′;W 1,p(Ω,Rn)) be
a bounded weak solution of (1.1) with supΩT ′ |u| = M < ∞. Let B ⊂ Rm
be a domain compactly contained in Ω and t0 < t0 + T < T ′ be positive
numbers. Put Q = (t0, t0 + T )×B and note that Q is compactly contained
in ΩT ′ . For simplicity, we assume that Q = (0, T )×B. When one studies the
regularity of bounded weak solutions of evolutional p-Laplacian systems with
critical growth, one needs to invoke a regularity estimate for a weak solution
v ∈ L∞(0, T ;L2(B,Rn)) ∩ Lp(0, T ;W 1,p(B,Rn)) to the Cauchy–Dirichlet
problem for the evolutional p-Laplacian system with constant coefficients
and with principal term only,

∂tv = Dα(|Dv|p−2
g gαβDβv) in Q,

v = u on ∂pQ.
(1.6)

Note that weak solutions of (1.6) satisfy interior Hölder and gradient Hölder
estimates in Q. The proof of these estimates is based on Moser’s and De
Giorgi’s iteration method and the so-called Campanato type estimates (we
refer to [7, 5] and [2, 6, 8, 10] for p = 2); this argument is recognized to be
fundamental in the regularity theory for evolutional p-Laplacian systems.
On the other hand, Gehring’s reverse Hölder inequality, which implies the
higher integrability of the gradient, holds for “small” weak solutions of evo-
lutional p-Laplacian systems with critical growth (see [12, 16]), where the
smallness is defined, with a being the positive constant in (1.5), by
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sup
ΩT ′
|u| < γp/2

2a
.(1.7)

Combining Hölder regularity estimates for (1.6) with Gehring’s reverse
Hölder inequality, we can follow the scheme of the Campanato estimates (see
[3, 15]) to establish a partial regularity of small weak solutions of evolutional
p-Laplacian systems with critical growth ([16]). The equation (1.1) with (1.4)
also concerns the negative gradient flow for p-harmonic maps between smooth,
compact Riemannian manifolds (cf. [4, 17, 14] and, for p = 2, see [8, 10, 19]),
and the smallness condition (1.7) implies a geometric relation between the
curvature of the target manifold and the image of a solution (see [9]).

In a forthcoming paper, we will study the existence of a small weak so-
lution to the Cauchy–Dirichlet problem for the negative gradient flow of
p-harmonic maps with variational data of “small” image.

With the above motivation, and since the existence of a solution for (1.6)
does not seem to be stated in the literature, we want to prove the existence
of a weak solution v ∈ L∞(0, T ;L2(B,Rn)) ∩ Lp(0, T ;W 1,p(B,Rn)) to the
Cauchy–Dirichlet problem (1.6). Our main theorem is the following:

Theorem 1. Let u ∈ L∞(ΩT ′ ,Rn)∩Lp(0, T ′;W 1,p(Ω,Rn)) be a bounded
weak solution of (1.1) with supΩT ′ |u| = M < ∞. Then there exists a weak
solution v ∈ C([0, T ];L2(B,Rn)) ∩Lp(0, T ;W 1,p(B,Rn)) of (1.6) satisfying

sup
Q
|v| ≤ sup

Q
|u|(1.8)

and the energy inequality

(1.9) sup
0≤t≤T

�

{t}×B
|v|2 dx+

�

Q

|Dv|p dz

≤ C
(

sup
0≤t≤T

�

{t}×B
|u|2 dx+

�

Q

(|f |+ |Du|p) dz
)
,

where the positive constant C depends only on m, p and the L∞-norm of u.

Remark. It can be shown that a bounded weak solution u∈L∞(ΩT ′ ,Rn)
∩ Lp(0, T ′;W 1,p(Ω,Rn)) of (1.1) belongs to C([0, T ];L2(B,Rn)) (see Ap-
pendix).

First of all, note the following. Set w = v − u. Then we see from (1.1)
that w ∈ L∞(0, T ;L2(Ω,Rn)) ∩ Lp(0, T ;W 1,p(Ω,Rn)) is a weak solution of
the Cauchy–Dirichlet problem

∂tw = Dα(|Dw +Du|p−2
g gαβ(Dβw +Dβu))

−Dα(|Du|p−2
g gαβDβu

i)− f i in Q,

w = 0 on ∂pQ.

(1.10)

By (1.1), the problem (1.10) is equivalent to (1.6).
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2. Approximation. We consider an approximate problem for (1.6)
by using the usual approximation of the initial-boundary data with the
approximation parameter ε > 0 tending to 0. Let % = %(z) be a smooth
function in Rm+1 such that supp % ⊂ (−1, 1)×B1(0) and � Rm+1 %(z) dz = 1.
Let 0 < ε < min{t0, T ′ − T − t0,dist(B, ∂Ω)}. Set, for any η ∈ L1(ΩT ′),

%ε ∗ η(z) =
�

Rm+1

%

(
z − z′
ε

)
η(z′) dz′

=
1

εm+1

t+ε�

t−ε

�

Bε(x)

%

(
t− t′
ε

,
x− x′
ε

)
η(t′, x′) dx′ dt′, z ∈ Q.

Since Q is compactly contained in ΩT ′ , we know that %ε ∗ η is smooth in Q
and that %ε ∗η strongly converges to η in L1(Q) as ε↘ 0. Then we consider
the problem

∂tvε = Dα(|Dvε|p−2
g gαβDβvε) in Q,

vε = %ε ∗ u on ∂pQ,
(2.1)

which we call the approximate problem for (1.6). Put wε = vε−%ε ∗u. Then
(2.1) is seen to be equivalent to the problem

∂twε = Dα(|Dwε +D%ε ∗ u|p−2
g gαβ(Dβwε +Dβ%ε ∗ u))

− ∂t%ε ∗ u in Q,

wε = 0 on ∂pQ.

(2.2)

By (1.1),

∂t%ε ∗ ui −Dα%ε ∗ (|Du|p−2
g gαβDβu

i) = %ε ∗ f i, i = 1, . . . , n.(2.3)

Substituting (2.3) into (2.2) shows that (2.2) is equivalent to

∂twε = Dα(|Dwε +D%ε ∗ u|p−2
g gαβ(Dβwε +Dβ%ε ∗ u))

−Dα%ε ∗ (|Du|p−2
g gαβDβu)− %ε ∗ f in Q,

wε = 0 on ∂pQ,

(2.4)

which we call the approximate problem for (1.10). We apply the Galerkin
approximation to construct a solution of (2.2). We follow the argument
in the proof of [13, Theorem 6.7, pp. 466–475] (see also [11, Sec. 2–4,
pp. 499–505]). Let {φi}, i = 1, 2, . . . , be a system of smooth maps with com-
pact supports in B, which is a fundamental system, dense in W 1,p

0 (B,Rn).
Since p ≥ 2m/(m+ 2), we may assume that {φi} is orthonormal in
L2(B,Rn). For any positive integer l, we seek the Galerkin approximation
for (2.2),

wε,l = wε,l(t, x) =
l∑

i=1

ail(t)φi(x),
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such that the unknown real-valued functions ail = ail(t), i = 1, . . . , l, are
determined from a system of nonlinear ordinary differential equations

dajl
dt

= (∂twε,l, φj)

= − (|Dwε,l +D%ε ∗ u|p−2
g gαβ(Dβwε,l +Dβ%ε ∗ u),Dαφj)p∗,p

− (∂t%ε ∗ u, φj),
ajl(0) = (wε,l(0), φj) = 0, j = 1, . . . , l,

(2.5)

where p∗ is the dual exponent of p and (·, ·)p∗,p denotes the dual product in
Lp(B,Rn), which is abbreviated to (·, ·) if p = 2. Note that the right hand
side in (2.5) is continuous with respect to the variable Dwε,l, and that %ε ∗u
is a smooth map in Q. Thus the well known Peano theorem guarantees
that there exists at least one time-local solution of (2.5). To extend it to
a time-global one, we need an energy inequality for wε,l. Multiply the jth
equation of (2.5) by ajl(t), sum the resulting equalities over j from 1 to l
and then integrate the result over (0, s) for any positive s ≤ T to obtain
s�

0

d

dt

l∑

j=1

1
2
|ajl(t)|2 dt =

1
2

l∑

j=1

|ajl(s)|2 =
�

B

1
2
|wε,l(s)|2 dx

=
�

(0,s)×B
(−|Dwε,l +D%ε ∗ u|p−2

g gαβ(Dβwε,l +Dβ%ε ∗ u) ·Dαwε,l

− ∂t%ε ∗ u ·wε,l) dz.
Note that the external force ∂t%ε∗u is a smooth map in Q, and thus the usual
estimation with Hölder’s and Young’s inequalities yields, for all 0 < s ≤ T ,

l∑

j=1

|ajl(s)|2 ≤
�

B

|wε,l(s)|2 dx+
�

(0,s)×B
|Dwε,l +D%ε ∗ u|p dz(2.6)

≤ C
�

(0,s)×B
(|∂t%ε ∗ u|p/(p−1) + |D%ε ∗ u|p) dz,

where to estimate the integral term containing ∂t%ε ∗ u we use the Poincaré
inequality for functions in W 1,p

0 (B,Rn). By (2.6), we have the bounded-
ness of

∑l
j=1 |ajl(T )|2. Then we can solve (2.5) with initial value ajl(T )

to have a solution of (2.5) in [0, T + δ] for some positive number δ. Re-
peat the argument by the continuity method to get a time-global solution
wε,l of (2.5) (for the details, see [11, Sec. 3, 501–503]). From (2.6), we
also obtain the boundedness of {wε,l} in the space L∞(0, T ;L2(B,Rn)) ∩
Lp(0, T ;W 1,p(B,Rn)) and of {|Dwε,l +D%ε ∗u|p−2

g gαβ(Dβwε,l +Dβ%ε ∗u)}
in Lp

∗
(Q,Rmn). Thus, there is a subsequence {wε,l}, a limit map w ∈

L∞(0, T ;L2(B,Rn))∩Lp(0, T ; W 1,p(B,Rn)) and σε = ((σε)iα)∈Lp∗(Q,Rmn)
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such that

(2.7) wε,l → wε weak∗ in L∞(0, T ;L2(B,Rn))

and weakly in Lp(0, T ;W 1,p(B,Rn)),

(2.8) |Dwε,l +D%ε ∗ u|p−2
g gαβ(Dβwε,l +Dβ%ε ∗ u)→ σε

weakly in Lp
∗
(Q,Rmn).

Now we find that�

Q

(wε · ∂tφ+ σε ·Dφ+ ∂t%ε ∗ u · φ) dz = 0(2.9)

for any smooth map φ with values in Rn and compact support in Q. In
fact letting l ↗ ∞ in (2.5) and using (2.8) yields (2.9). For the details, we
refer to Appendix (see also [13, p. 470]). We note that wε,l satisfies the zero
initial and boundary conditions and use the strong convergence result in
[1, Lemma 4.2, pp. 591–592] with [18, Corollary 4, Section 8, pp. 84–86] to
apply the “monotonicity trick” of [4, Lemma 1.1, Corollary 1.3, pp. 27–28].
For the details, see the arguments below ([13, pp. 471–472]). Thus we obtain
the existence result for (2.2).

Lemma 2. For any sufficiently small positive number ε, there exists a
weak solution wε ∈ L∞(0, T ;L2(B,Rn)) ∩ Lp(0, T ;W 1,p

0 (B,Rn)) of (2.2)
such that

|wε(t)|L2(B) → 0 as t↘ 0.(2.10)

Let vε = wε+%ε ∗u. Then vε ∈ L∞(0, T ;L2(B,Rn))∩Lp(0, T ;W 1,p(B,Rn))
is a weak solution of (2.1) such that vε(t) = %ε∗u(t) on ∂B in the trace sense
in W 1,p(B,Rn) for almost every t ∈ (0, T ) and |vε(t)− %ε ∗ u(t)|L2(B) → 0
as t↘ 0.

Now we state a maximum principle for weak solutions of (2.1), which
plays a fundamental role in the limiting process.

Lemma 3. Let vε ∈ L∞(0, T ;L2(B,Rn)) ∩ Lp(0, T ;W 1,p(B,Rn)) be a
weak solution of (2.1) as in Lemma 2. Then

sup
Q
|vε| ≤ sup

Q
|%ε ∗ u| ≤ sup

Q
|u|,(2.11)

and so for wε = vε − %ε ∗ u we have

sup
Q
|wε| ≤ 2 sup

Q
|u|.(2.12)

Proof. Let k0 = supQ |%ε ∗ u|2 and v = vε, for brevity. Fix t ∈ (0, T ]
and let 0 < h < min{2−1t, T − t}. Let σh be a real-valued Lipschitz function
defined on (−∞,∞) such that σh = 1 in [2h, t] and suppσh = [h, t+h]. Then
the usual regularization argument (using the Steklov averages on the time
variable; for the details, see the proof of Lemma 2.15 below) shows that
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σhv((|v|2)L − k0)+ is an admissible test function in (1.6), where L > k0,
(f)L = min{f, L} and (f)+ = max{f, 0}. Use this test function in (2.1) to
obtain �

Q

{ − ((|v|2)L − k0)+(2
(
|v|2 − k0

)+ − ((|v|2)L − k0)+)∂tσh(2.13)

+ σh|Dv|p−2
g (4((|v|2)L − k0)+gαβDβv ·Dαv

+ 2gαβDβ((|v|2)L − k0)+Dα((|v|2)L − k0)+)} dz = 0.

Let h↘ 0 and L↗∞ in (2.13) to get
�

{t}×BR
((|v|2 − k0)+)2 dx = 0 for almost all t ∈ (0, T ).(2.14)

The assertion (2.11) follows from (2.14) immediately.
We state an energy inequality for weak solutions wε, which also plays a

crucial role in the limiting process.

Lemma 4. Let wε ∈ L∞(0, T ;L2(B,Rn)) ∩ Lp(0, T ;W 1,p
0 (B,Rn)) be a

weak solution of (2.4) satisfying (2.12). Then there exists a positive constant
C depending only on m, p and the L∞-norm of u such that

(2.15)
�

{s}×B
|wε|2 dx+

�

Q

|Dwε +D%ε ∗ u|p dz

≤ C
�

(0,s)×B
(|%ε ∗ f |+ |D%ε ∗ u|p) dz ≤ C

�

ΩT ′

(|f |+ |Du|p) dz

for almost every s ∈ (0, T ).

Proof. For an integrable function η in (0, T ), denote its Steklov average
by

(η)δ(s) =
1
δ

s+δ�

s

η(t) dt for s ∈ (0, T ) and 0 < δ < min{s, T − s}.

Let s′, s ∈ [0, T ], s′ < s. Let 0 < h < 2−1 min{s′, T − s}. Let σh be a real-
valued Lipschitz function defined on (−∞,∞) such that σh = 1 in [s′, s] and
suppσh = [s′ − h, s + h]. Also, let 0 < δ < min{h, T − s − h}. For brevity,
we put w = wε. Note that supQ |w| ≤ 2 supQ |u|, and use the test function
(σh(w)δ)−δ in (2.4) to obtain

(2.16)
1
h

( s+h�

s

−
s′+h�

s′

) �

B

|(w)δ(t)|2 dx dt

+
�

Q

2σh((|Dw +D%ε ∗ u|p−2
g gαβ(Dβw +Dβ%ε ∗ u))δ ·Dα(w)δ

− (%ε ∗ (|Du|p−2
g gαβDβu))δ ·Dα(w)δ +(%ε ∗f)δ · (w)δ) dz = 0;
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note that supp(σh(w)δ)−δ ⊂ (0, T ). First let δ ↘ 0 in (2.16). Use the strong
convergence of (w)δ and of its derivatives in Lploc(0, T ;Lp(B,Rn)), and again
the boundedness (2.12), to obtain

(2.17)
1
h

( s+h�

s

−
s′+h�

s′

) �

B

|w(t)|2 dx dt

+ 2
�

Q

σh(|Dw +D%ε ∗ u|p−2
g gαβ(Dβw +Dβ%ε ∗ u) ·Dαw

− %ε ∗ (|Du|p−2
g gαβDβu) ·Dαw + %ε ∗ f · w) dz = 0.

Using the pointwise convergence of the Steklov averages in t almost every-
where in (0, T ) in the first term of (2.17), let h↘ 0 in (2.17) to obtain

(2.18)
�

B

|w(s)|2 dx−
�

B

|w(s′)|2 dx

+ 2
�

(s′,s)×B
(|Dw +D%ε ∗ u|p−2

g gαβ(Dβw +Dβ%ε ∗ u) ·Dαw

− %ε ∗ (|Du|p−2
g gαβDβu) ·Dαw + %ε ∗ f · w) dz = 0.

Applying (2.10), let s′ ↘ 0 in (2.18). Use (2.12) and make a routine estima-
tion with Hölder’s and Young’s inequalities to arrive at (2.15).

3. Passage to the limit. In this section, we study the convergence
of the solutions wε of (2.4) to construct a weak solution of (1.10). The
energy inequality (2.15) gives the boundedness of {wε} in L∞(Q) ∩
Lp(0, T ;W 1,p(B,Rn)) and of {|Dwε + D%ε ∗ u|p−2

g gαβ(Dβwε + Dβ%ε ∗ u)}
in Lp

∗
(Q,Rmn). Thus, there are a subsequence {wε} and limit maps w ∈

L∞(0, T ;L2(B,Rn)) ∩ Lp(0, T ;W 1,p(B,Rn)) and χ = (χiα) ∈ Lp∗(Q,Rmn)
such that, as ε↘ 0,

(3.1) wε → w weak∗ in L∞(0, T ;L2(B,Rn)

and weakly in Lp(0, T ;W 1,p(B,Rn)),

(3.2) |Dwε+D%ε∗u|p−2
g gαβ(Dβwε+Dβ%ε∗u)→ χ weakly in Lp

∗
(Q,Rmn).

For any φ ∈ Lp(0, T ;W 1,p(B,Rn)), define Aφ ∈ Lp∗(0, T ;W−1,p∗(B,Rn)) by

Aφ = −Dα(|Dφ|p−2
g gαβDβφ),(3.3)

〈Aφ, η〉 =
�

Q

|Dφ|p−2
g gαβDβφ ·Dαη dz(3.4)

for all η ∈ Lp(0, T ;W 1,p(B,Rn)).

For any T ∈ Lp
∗
(0, T ;W−1,p∗(B,Rn)), write 〈T , η〉 for all η ∈

Lp(0, T ;W 1,p(B,Rn)).
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Now we find that
�

Q

(−w · ∂tφ+ χ ·Dφ− |Du|p−2
g gαβDβu ·Dαφ+ f · φ) dz = 0(3.5)

for any smooth map φ with values in Rn and compact support in Q. In fact,
we use a test function φ in the weak form of (2.2) and the weak convergence
in (3.1) and (3.2) in the resulting equality to deduce (3.5).

To pass to the limit in the weak form of the p-Laplace term in (2.2), we
use the monotonicity trick of [4, Lemma 1.1, Corollary 1.3, pp. 27–28]. For
that purpose, we need more compactness of weak solutions {wε} to (2.2).

Lemma 5. There exists a subsequence {wε} such that , as ε↘ 0,

wε → w strongly in Lq(Q,Rn) for any q ≥ 1,(3.6)

wε → w almost everywhere in Q,(3.7)

sup
Q
|w| ≤ 2 sup

Q
|u|.(3.8)

Proof. Since f ∈ L1(ΩT ′) and Q ⊂ ΩT ′ , the family {%ε ∗f} is a bounded
sequence in L1(Q), and thus bounded in the space of Radon measures, which
is the dual to the space of continuous functions with compact support in Q.
Here we use the strong convergence result of [1, Lemma 4.2, pp. 591–592],
which is an extension of Rellich’s theorem to the evolution case. Now note
that wε = 0 on ∂pQ. In the proof of [1, Lemma 4.2, pp. 591–592], without
the cut-off functions ψ = ψ(x) and η = η(t), replace the approximation
parameters n, vn, αn and βn by ε, wε, the family of the p-Laplace opera-
tors in (2.2) and the maps %ε ∗ f , respectively, and argue similarly to [1,
Lemma 4.2, pp. 591–592]. Note the compact embedding of W 1,p

0 (B,Rn) into
Lp(B,Rn) to apply the compactness result of [18, Corollary 4, Section 8, pp.
84–86]. Thus, we have (3.6). Then, in the usual way, we have a subsequence
satisfying (3.7), which satisfies (3.8) by (2.11).

Now we can state the following convergence:

Lemma 6.

(3.9) A(wε + %ε ∗ u)→ −D · χ = A(w + u)

weakly in Lp
∗
(0, T ;W−1,p∗(B,Rn)).

Proof. Recall that the following algebraic inequalities hold for any
P = (P iα), Q = (Qiα) ∈ Rmn with a positive constant C depending only
on p, γ and Γ (see [17, 14]): for p ≥ 2,

gαβ(|P |p−2
g Pα − |Q|p−2

g Qα) · (Pβ −Qβ) ≥ C|P −Q|p,(3.10)

|(|P |p−2
g gαβPβ − |Q|p−2

g gαβQβ)| ≤ C|P −Q|2(|P |+ |Q|)p−2,(3.11)
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and for 1 < p < 2,

gαβ(|P |p−2
g Pα−|Q|p−2

g Qα) · (Pβ−Qβ) ≥ C|P −Q|2(|P |+ |Q|)p−2,(3.12)

|(|P |p−2
g gαβPβ − |Q|p−2

g gαβQβ)| ≤ C|P −Q|p−1.(3.13)

It follows from (3.10) and (3.12) that A is a monotone operator, that is,

〈Aη −Aζ, η − ζ〉 ≥ 0 for all η, ζ ∈ Lp(0, T ;W 1,p(B,Rn)).

By (3.10) and (3.12), we find that the operator A is hemicontinuous, that
is, the function s 7→ 〈A(η+sζ), φ〉 is continuous on s ∈ [0, T ] for all η, ζ, φ ∈
Lp(0, T ;W 1,p(B,Rn)). Now we prove that

lim sup
ε↘0

〈A(wε + %ε ∗ u), wε + %ε ∗ u〉 ≤ 〈−D · χ,w + u〉.(3.14)

For this purpose, we first claim that, as ε↘ 0,

wε(T )→ w(T ) weakly in L2(B,Rn).(3.15)

For the proof of (3.15), see Appendix. Use (2.4), (3.5), (3.15), (2.10) and
(2.12) to find subsequences {wε}, {%ε ∗ u} and {%ε ∗ f} such that

(3.16) lim sup
ε↘0

〈A(wε + %ε ∗ u), wε〉

= lim sup
ε↘0

�

Q

|Dwε +D%ε ∗ u|p−2
g gαβ(Dβwε +Dβ%ε ∗ u) ·Dαwε dz

= lim sup
ε↘0

( �

B

(−|wε(T )|2 + |wε(0)|2) dx

+
�

Q

(%ε ∗ (|Du|p−2
g gαβDβu

i) ·Dαwε − %ε ∗ f · wε) dz
)

≤ − lim inf
ε↘0

�

B

|wε(T )|2 dx

+ lim
ε↘0

�

Q

(%ε ∗ (|Du|p−2
g gαβDβu

i) ·Dαwε − %ε ∗ f · wε) dz

≤ −
�

B

|w(T )|2 dx+
�

Q

(|Du|p−2
g gαβDβu

i ·Dαw − f · w) dz

= 〈−D · χ,w〉.
Note the following fact: If ζε → ζ strongly in Lp(Q,Rn) and ηε → η weakly
in Lp

∗
(Q,Rn) as ε↘ 0, then

�

Q

ηε · ζε dz →
�

Q

η · ζ dz as ε↘ 0.(3.17)
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Also, we use (2.12), (3.7) and the strong convergence of %ε ∗ f to f in
L1(Q,Rn) as ε ↘ 0 and then apply the Lebesgue convergence theorem to
choose a subsequence {wε} such that

�

Q

f ·wε dz →
�

Q

f · w dz as ε↘ 0.(3.18)

Then we have, by (3.6) and (3.18),
�

Q

%ε ∗ f · wε dz =
�

Q

(%ε ∗ f − f) · wε dz +
�

Q

f · wε dz(3.19)

→
�

Q

f ·w dz as ε↘ 0.

Again, from (3.17) with (3.2), we obtain

(3.20) lim
ε↘0

�

Q

|Dwε +D%ε ∗ u|p−2
g gαβ(Dβwε +Dβ%ε ∗ u) ·Dα%ε ∗ u dz

=
�

Q

χ ·Dαu dz.

Combine (3.20) with (3.16) to obtain

(3.21) lim sup
ε↘0

〈A(wε + %ε ∗ u), wε + %ε ∗ u〉

≤ lim sup
ε↘0

〈A(wε + %ε ∗ u), wε〉+ lim sup
ε↘0

〈A(wε + %ε ∗ u), %ε ∗ u〉

≤ 〈−D · χ,w + u〉,
which actually gives (3.14).

From the monotonicity and hemicontinuity of the operator A and (3.14),
we can apply the monotonicity trick of [4, Lemma 1.1, Corollary 1.3,
pp. 27–28] to arrive at the assertion (3.9).

Finally, we show that w ∈ L∞(Q,Rn)∩Lp(0, T ;W 1,p(B,Rn)) is actually
a weak solution of (1.10). Let φ be a smooth map defined on B with values
in Rn and compact support in Q. Use a test function φ in (2.4) to obtain

�

Q

(wε · ∂tφ+ |Dwε +D%ε ∗ u|p−2
g gαβ(Dβwε +Dβ%ε ∗ u) ·Dαφ) dz

=
�

Q

(%ε ∗ (|Du|p−2
g gαβDβu) ·Dαφ− %ε ∗ f · φ) dz.

Now we use the convergence results (3.1) and (3.9) and let ε↘ 0 to conclude
that

(3.22)
�

Q

(w · ∂tφ+ |Dw +Du|p−2
g gαβ(Dβw +Dβu) ·Dαφ) dz

=
�

Q

(|Du|p−2
g gαβDβu ·Dαφ− f · φ) dz.
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Appendix. Here we prove (2.10) and (3.15). Fix s ∈ (0, T ]. Since {wε,l}
is bounded in L∞(0, T ;L2(B,Rn)) by the energy inequality (2.6), there are
a subsequence {wε,l} and a limit function ω ∈ L2(B,Rn) such that

wε,l(s)→ ω weakly in L2(B,Rn) as l↗∞.(3.23)

We have to show that ω = wε(T ) almost everywhere in B.
First, we prove that

�

B

ω · φ(s) dx =
�

(0,s)×B
(wε · ∂tφ− χ ·Dφ− ∂t%ε ∗ u · φ) dz(3.24)

for any φ ∈ C∞([0, s];C∞0 (B,Rn)). Consider the expansion

φ(t, x) =
∞∑

j=1

cj(t)φj(x), cj(t) = (φ(t), φj)L2(B,Rn),

strongly convergent in Lp(0, T ;W 1,p
0 (B,Rn)), where {φj} is a fundamental

system dense in Lp(0, T ;W 1,p
0 (B,Rn)) (see [13, Lemma 4.12, p. 89; p. 156;

p. 470]). Denote the partial sum up to k by ψk =
∑k

j=1 cjφj . Let k ≤ l
be a positive integer. Now, multiply (2.5) by cj , j = 1, 2, . . ., sum resulting
equalities over j from 1 to k and integrate in t over (0, s) to obtain, for l ≥ k,

(3.25)
�

B

ω · ψk(s) dx−
�

B

wε,l(0) · ψk(0) dx

=
�

(0,s)×B
(wε,l · ∂tψk − |Dwε,l +D%ε ∗ u|p−2

g gαβ(Dβwε,l +Dβ%ε ∗ u) ·Dβψk

− ∂t%ε ∗ u · ψk) dz.
Note that wε,l = 0 on ∂pQ and use (3.23) and (2.7) to let l ↗ ∞ and then
k ↗∞ in (3.25) to arrive at the assertion (3.24). In particular, by choosing
s = T and φ(T ) = 0 in (3.24), we obtain (2.9).

Next, we claim that

(3.26)
�

B

wε(s) · φ(s) dx−
�

B

wε(0) · φ(0) dx

=
�

(0,s)×B
(wε · ∂tφ− σε ·Dφ− ∂t%ε ∗ u · φ) dz

for any φ ∈ C∞([0, T ];C∞0 (B,Rn)). Let 0 < h < 4−1 min{s, T − s}. Let σh
be a real-valued Lipschitz function defined on (−∞,∞) such that σh = 1 in
[2h, s] and suppσh = [h, s+ h]. Use the test function σh φ in (2.9) to obtain

�

(0,s)×B
{−wε · φ∂tσh + σh(wε · ∂tφ+ σε ·Dφ+ ∂t%ε ∗ u · φ)} dz = 0.(3.27)

Similarly to the proof of Lemma 4, let h↘ 0 in (3.27) to arrive at (3.26).
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Combine (3.26) with (3.24) to find that
�

B

wε(s) · φ(s) dx−
�

B

wε(0) · φ(0) dx =
�

B

ω · φ(s) dx(3.28)

for any φ ∈ C∞([0, T ];C∞0 (B,Rn)). For any η = η(t) ∈ C∞([0, T ]) and
ψ = ψ(x) ∈ C∞0 (B,Rn), choose φ = η(t)ψ(x) in (3.28). Set η(0) = 0 to
obtain

wε,l(s)→ wε(s) weakly in L2(B,Rn) as l↗∞.(3.29)

Put η = 0 in [s, T ] to conclude that wε(0) = 0 almost everywhere in B.
Choose φ = ψ(x) ∈ C∞0 (B,Rn) in (3.26) with wε(0) = 0 to get

∣∣∣
�

B

wε(s) · ψ dx
∣∣∣ =

�

(0,s)×B
|σε ·Dψ − ∂t%ε ∗ u · ψ| dz.(3.30)

Taking into account (2.7), (2.8), let s↘ 0 in (3.30) to find that

lim
s↘0

(wε(s), φ)L2(B,Rn) → 0 as s↘ 0.(3.31)

On the other hand, use (3.29) and the weak lower semicontinuity in
L2(B,Rn) to let l↗∞ in (2.6) and conclude that, for almost every s∈ (0, T ),

�

B

|wε(s)|2 dx ≤ C
�

(0,s)×B
(|∂t%ε ∗ u|p/(p−1) + |D%ε ∗ u|p) dz.(3.32)

This yields

lim
s↘0

�

B

|wε(s)|2 dx ≤ 0,(3.33)

which is exactly (2.10).
Now we verify (3.15): We can choose a subsequence {wε} such that

wε(s)→ w(s) weakly in L2(B,Rn) as ε↘ 0(3.34)

for almost every s ∈ (0, T ). By the energy inequality (2.15) and the bound-
edness of {wε} in L∞(0, T ;L2(B,Rn)), there are a subsequence {wε} and a
limit function ω ∈ L2(B,Rn) such that

wε(s)→ ω weakly in L2(B,Rn) as ε↘ 0.(3.35)

Using the same cut-off function σh as above and the test function σhφ in
(2.4), we have

(3.36)
�

(0,s)×B
{−wε · φ∂tσh

+ σh(wε · ∂tφ+ |Dwε +D%ε ∗ u|p−2
g gαβ(Dβwε +Dβ%ε ∗ u) ·Dφ

−%ε ∗ (|Du|p−2
g gαβDβu) ·Dαφ+ %ε ∗ f · φ)} dz = 0.
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From (3.33), (3.35) and (3.1), we let h↘ 0 and ε↘ 0 in (3.36) to obtain

(3.37)
�

B

ω · φ(s) dx

=
�

(0,s)×B
(w · ∂tφ− χ ·Dφ+ |Du|p−2

g gαβDβu ·Dαφ− f · φ) dz

for any φ ∈ C∞([0, T ];C∞0 (B,Rn)).
We also prove that

(3.38)
�

B

w(s) · φ(s) dx−
�

B

w(0) · φ(0) dx

=
�

(0,s)×B
(w · ∂tφ− χ ·Dφ+ |Du|p−2

g gαβDβu ·Dαφ− f · φ) dz

for any φ ∈ C∞([0, T ];C∞0 (B,Rn)). As in (3.36), use a test function σhφ in
(3.5) to deduce that

(3.39)
�

(0,s)×B
{−w · φ∂tσh

+ σh(w · ∂tφ+ χ ·Dφ− |Du|p−2
g gαβDβu ·Dαφ+ f · φ)} dz = 0.

Apply (3.35) and let h↘ 0 in (3.39) to arrive at (3.38).
Combine (3.38) with (3.37) to find that

�

B

w(s) · φ(s) dx−
�

B

w(0) · φ(0) dx =
�

B

ω · φ(s) dx(3.40)

for any φ ∈ C∞([0, T ];C∞0 (B,Rn)). As in (3.29)–(3.31), we use (3.36), (3.39)
and (3.40) to find that

lim
s↘0

(w(s), φ)L2(B,Rn) → 0 as s↘ 0.(3.41)

Taking into account (3.41), let ε↘ 0 in (2.15) to verify that
�

B

|w(s)|2 dx+
�

(0,s)×B
|Dw +Du|p dz ≤ C

�

(0,s)×B
(|f |+ |Du|p) dz(3.42)

for almost every s ∈ (0, T ). From (3.42), we immediately obtain (1.9). By
letting s↘ 0 in (3.42), we also have

lim
s↘0

�

B

|w(s)|2 dx = 0.(3.43)

Let s′, s ∈ [0, T ], s′ < s. Let σh be the same cut-off function as in the
proof of Lemma 4. Use a test function σh φ in (3.5) as in that proof to show
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that

(3.44)
�

B

w(s) · φ(s) dx−
�

B

w(s′) · φ(0) dx

=
�

(s′,s)×B
(w · ∂tφ− χ ·Dφ+ |Du|p−2

g gαβDβu ·Dαφ− f · φ) dz

for any φ ∈ C∞([0, T ];C∞0 (B,Rn)). From (3.44) and the density of
C∞0 (B,Rn)) in L2(B,Rn), we find that w(s) is a weakly continuous function
of s ∈ (0, T ) with values in L2(B,Rn).

By substitution of the test function (σh(w)δ)−δ into (3.5), we make the
same estimation as in the proof of Lemma 4 to obtain

(3.45)
�

B

|w(s)|2 dx−
�

B

|w(s′)|2 dx

+ 2
�

(s′,s)×B
(|Dw +Du|p−2

g gαβ(Dβw +Dβu) ·Dαw

− |Du|p−2
g gαβDβu ·Dαw + f · w) dz = 0.

Use (2.12) and make a routine estimation with Hölder’s and Young’s
inequalities in (3.45) to find that |w(s)|L2(B,Rn) is continuous in s ∈ [0, T ],
in view of (3.43). Finally, from (3.44) and (3.45), we see that w ∈
C([0, T ];L2(B,Rn)).

Remark. The argument of the proof that w ∈ C([0, T ];L2(B,Rn)) can
be applied to find that the approximations wε,l, wε and a weak solution u
of (1.1) also belong to C([0, T ];L2(B,Rn)).
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[5] H. J. Choe, Hölder continuity for solutions of certain degenerate parabolic systems,
Nonlinear Anal. 18 (1992), 235–243.

[6] G. Da Prato, Spazi L(p,θ)(Ω, δ) e loro proprietà, Ann. Mat. Pura Appl. 69 (1965),
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