
APPLICATIONES MATHEMATICAE
31,4 (2004), pp. 443–456

Adam Kubica (Warszawa)

THE REGULARITY OF WEAK AND VERY
WEAK SOLUTIONS OF THE POISSON EQUATION

ON POLYGONAL DOMAINS WITH MIXED
BOUNDARY CONDITIONS (PART I)

Abstract. We examine the regularity of weak and very weak solutions of
the Poisson equation on polygonal domains with data in L2. We consider
mixed Dirichlet, Neumann and Robin boundary conditions. We also describe
the singular part of weak and very weak solutions.

1. Introduction. In this series of two papers we describe the regular-
ity of weak and very weak solutions of the Poisson equation on polygonal
domains. We consider mixed boundary conditions of the following types:
Dirichlet, Neumann and Robin. We also characterize the singular part of
weak and very weak solutions. By a very weak solution we mean a function
from the maximal domain of the Laplace operator in L2 which satisfies the
Poisson equation. In our investigations of the regularity of solutions we fol-
low Grisvard [5]. Our theorems generalize some results of [4] and [5]. Our
main contribution is in the case of Robin boundary conditions with constant
coefficients.

Let us recall that if we consider the Poisson equation on a smooth domain
with data from L2, then the solution is in H2. However, if the domain is
not smooth or if we admit mixed boundary conditions, then we may obtain
singular solutions, i.e. not in H2. In this case, it is important to characterize
the asymptotic behaviour of the solution in a neighbourhood of a singular
point. A powerful tool to study this is Kondrat’ev’s theory [6]. It allows us
to describe the asymptotic behaviour of solutions of the Poisson equation
with data from a weight space, where the weight is a power of the distance
from the conical point. The regularity of weak solutions of mixed Dirichlet
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(D), Neumann (N) and Robin (R) boundary value problems may be de-
duced from [7, Theorem 6.4.1], for example, provided that the angles are
different from the exceptional values. However, Grisvard’s approach (see [4],
[5]) covers those exceptional cases and also allows us to characterize the
singular behaviour of very weak solutions. This cannot be obtained from
Kondrat’ev’s theory. We want to stress that the regularity of weak solutions
of mixed D, N, R boundary value problems may be deduced from [5, The-
orems 1.4.6 and 2.4.3], but we have not been able to obtain the analogous
result for very weak solutions using [5]. In order to attain it we have to
adjust Grisvard’s approach to the Robin condition.

There is a vast body of literature devoted to the smoothness of solu-
tions of elliptic boundary value problems on nonsmooth domains. Let us
only mention some monographs: [4], [13], [5], [11], [2], [7]. However, most
of these monographs deal with D, N or mixed D-N boundary conditions.
Mixed D-R, N-R boundary conditions are studied to a lesser extent. They
may be found e.g. in [10] and [1]. However, in the latter article the author
assumes that the coefficient in the Robin condition vanishes at a vertex. This
assumption excludes the Robin condition with a constant coefficient. On the
other hand, very weak solutions were studied in [3], but their definition in
that paper is different from ours. Our notion of very weak solution is based
on the terminology of [4]. The results presented in this paper come from [8]
and the details which are omitted here may be found in [8].

This series of two papers is organized as follows. In the present one we
investigate the properties of the Laplace operator restricted to the subspace
of H2(Ω) defined by homogeneous boundary conditions. We prove that this
operator is injective and has a closed range. Then we characterize the an-
nihilator of its range as a subspace of the space of very weak solutions of
the homogeneous problem, defined by some orthogonality conditions. At
the beginning of the second paper we examine the very weak solutions of
the homogeneous problem. We prove some results on their smoothness and
then we obtain their series expansion of a special form. This allows us to
calculate the dimension of the space of very weak solutions of the homoge-
neous problem. Next, we prove a result on the regularity of weak and very
weak solutions of the Poisson equation with homogenous boundary condi-
tions. In the last part of the second paper we formulate analogous results
for nonhomogeneous boundary conditions.

2. Assumptions and the main results. We consider a polygonal
domain Ω in R2. Its boundary is composed of segments Γ j , j = 1, . . . , N ,
where Γj is an open segment with endpoints Sj and Sj+1. We assume that
Γ k∩Γ j = ∅ for k 6= j−1, j, j+1 and Γ j−1∩Γ j = {Sj} for j = 1, . . . , N . We
denote by ωj the angle between Γj−1 and Γj and we assume that ωj ∈ (0, 2π).
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The segments are numbered in such a way that Γj−1 follows Γj in the
positive orientation of the plane. We denote by τj the unit tangent vector to
Γj and by νj the unit outward normal vector to Γj such that the orientation
of the pair (τj , νj) is positive. Furthermore, we attach to each vertex Sj , j =
1, . . . , N , the polar (resp. cartesian) coordinates (rj , θj) (resp. (xj , yj)) such
that Γj−1 ⊆ {(rj, θj); rj > 0, θj = 0} and Γj ⊆ {(rj, θj); rj > 0, θj = ωj}
(resp. Γj−1 ⊆ {(xj, yj); xj > 0, yj = 0} and Γj ⊆ {(xj, yj); xj sinωj =
yj cosωj}).

For |σ| ≤ minj=1,...,N |Γj | we denote by xj(−σ) (resp. xj(σ)) the point
of Γ j−1 (resp. Γ j) which is at distance σ from Sj . We fix a partition of
{1, . . . , N} into three subsets D, N, R. We consider the following mixed
boundary value problem:





∆u = f in Ω for f ∈ L2(Ω),

γju = 0 on Γj for j ∈ D,

γj
∂u

∂νj
= 0 on Γj for j ∈ N,

γj
∂u

∂νj
+ αjγju = 0 on Γj for j ∈ R,

(2.1)

where γj is the trace operator on Γj . We assume that αj > 0 for j ∈ R and
we are not dealing with the pure Neumann problem, i.e. D∪R 6= ∅, because
the regularity of solutions of the Neumann problem is well known (see [5]).
The former assumption guarantees the uniqueness of variational solutions
of problem (2.1). Furthermore, we assume that if j − 1, j ∈ N ∪ R, then
ωj 6= π.

We recall the standard definitions of the Sobolev spaces. We follow
Grisvard [4]. For m ∈ N, p ≥ 1 and U an open subset of Rn with Lip-
schitz boundary we denote by Wm,p(U) the space of distributions u on
U such that Dαu(x) ∈ Lp(U) for |α| ≤ m with the norm ‖u‖Wm,p(U) :=
{∑|α|≤m

�
U |Dαu(x)|p dx}1/p. For each s ∈ R+ \ N there exist m ∈ N and

σ ∈ (0, 1) such that s = m + σ and then the space W s,p(U) is defined to
consist of those functions from Wm,p(U) which satisfy

�

U

�

U

|Dαu(x)−Dαu(y)|p
|x− y|n+σp dx dy <∞ for |α| = m.

The norm in W s,p(U) is defined by

‖u‖W s,p(U) =
{
‖u‖pWm,p(U) +

∑

|α|=m

�

U

�

U

|Dαu(x)−Dαu(y)|p
|x− y|n+σp dx dy

}1/p

.

In the case p = 2, the space W s,2(U) is also denoted by Hs(U). In addi-
tion, we need another Sobolev space, H̃s(U) := {u ∈ Hs(U); ũ ∈ Hs(Rn)},
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where ũ is the extension of u by zero outside U . In H̃s(U) we have the
norm ‖u‖H̃s(U) = ‖ũ‖Hs(Rn). We investigate the maximal domain of the

Laplace operator in L2(U), i.e. D(∆,L2(U)) := {u ∈ L2(U); ∆u ∈ L2(U)},
equipped with the graph norm ‖u‖D(∆,L2(U)) = {‖u‖2L2(U) + ‖∆u‖2L2(U)}1/2.

By E(∆,L2(U)) we denote the subspace of H1(U), consisting of the func-
tions such that ∆u ∈ L2(U). This space is also equipped with the graph
norm ‖u‖E(∆,L2(U)) = {‖u‖2H1(U) + ‖∆u‖2L2(U)}1/2.

We use the standard symbol D(U) for the space of smooth functions
with compact support in U . We write D(U) for the set of restrictions to U
of smooth functions with compact support on Rn. The closures of D(U) in
the norms of W s,p(U) and Hs(U) will be denoted by W s,p

0 (U) and Hs
0(U)

respectively. For p ≥ 1 and α ∈ R we denote by Lp,α(R+) the space of
measurable functions on R+ such that

� ∞
0 |u(t)tα|p dt is finite.

We recall some standard notation of functional analysis. For a Hilbert
space H we will denote by H∗ its dual, i.e. the space of linear, continuous
functionals on H. If f ∈ H∗, then its evaluation at g ∈ H will be denoted by
〈g, f〉. In the case of Sobolev spaces, the dual of Hs

0(U) will also be denoted
by H−s(U). For m ≥ 2 we define

Tm(Ω) := {u ∈ Hm(Ω); u satisfies the boundary conditions of (2.1)}.
Finally, we set

M := {v ∈ D(∆,L2(Ω)); ∆v = 0 and

v satisfies the boundary conditions of (2.1)}.
The traces of elements of M are well defined because for v ∈ D(∆,L2(Ω))
we have γjv ∈ H̃1/2(Γj)∗ and γj

∂
∂νj

v ∈ H̃3/2(Γj)∗ (see [5, Theorem 1.5.2]).
Now we are in a position to state the main results of the present pa-

per. Let us formulate a theorem on the regularity of weak (i.e. variational)
solutions of the mixed boundary value problem (2.1).

Theorem 1. There exists a constant C, an integer K and family of
functions {Sk}Kk=1 ⊆ H1(Ω) \H2(Ω) with the following property. For every
f ∈ L2(Ω) there exists a unique u ∈ H1(Ω) and numbers ak ∈ R, k =
1, . . . ,K, such that u is a variational solution of problem (2.1) and

u−
K∑

k=1

akSk ∈ H2(Ω),(2.2)

∥∥∥u−
K∑

k=1

akSk

∥∥∥
H2(Ω)

+
K∑

k=1

|ak| ≤ C‖f‖L2(Ω).(2.3)

Concerning very weak solutions we will prove the following theorem.
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Theorem 2. There exists an integer K and a family of harmonic func-
tions {Fk}Kk=1 ⊆ D(∆,L2(Ω)) \ H1(Ω) with the following property. For
each solution v ∈ D(∆,L2(Ω)) of problem (2.1) there exist unique num-
bers ck ∈ R, k = 1, . . . ,K, and a function u ∈ H1(Ω) such that u satisfies
(2.1) and

v = u+
K∑

k=1

ckFk.(2.4)

Remark 1. The numbers K, K and the asymptotic behaviour of the
functions Sk, Fk will be described in Remarks 5 and 6 of [9].

Since the proof of Theorem 1 is the principal part of this series of pa-
pers, we shall briefly comment on its structure. The proof will be given
in four steps. First, we prove that the Laplace operator transforms T 2(Ω)
onto a closed subspace of L2(Ω). Subsequently, we describe N := ∆T 2(Ω)⊥

as a subspace of M, defined by some orthogonality conditions. These re-
sults are established in this paper. In [9] we will calculate dimN=:K and
dimM=:K. Finally, we will define the linearly independent family {Sk}Kk=1
⊆ H1(Ω) \H2(Ω) such that N = span {∆Sk; k = 1, . . . ,K}. These results
lead to Theorem 1. Theorem 2 will be deduced from the proof of the former.

3. The semi-Fredholm property. The main purpose of this section
is to show that the Laplace operator transforms T 2(Ω), which is a sub-
space of H2(Ω), onto a closed subset of L2(Ω). We also prove that there
exists a unique variational solution of problem (2.1); this guarantees that
the Laplace operator restricted to T 2(Ω) is injective. Thus, we shall prove
that the operator ∆: T 2(Ω)→ L2(Ω) has the semi-Fredholm property. Fur-
thermore, we shall show that the subspace of smooth functions in T 2(Ω) is
dense in T 2(Ω). This will be useful later.

Now we demonstrate the following theorem.

Theorem 3. The operator ∆:T 2(Ω) → L2(Ω) is injective and has a
closed range.

Proof. We shall show that there exists a unique variational solution of
problem (2.1). First, we introduce some notation. For ε > 0 we set Ωε :=
Ω \ ⋃N

j=1B(Sj , ε), where B(Sj , ε) stands for the ball with center Sj and
radius ε. Furthermore, we define DS := Vs ∩ D(Ω), where

(3.1)
V := {u ∈ H1(Ω); γju = 0 for j ∈ D},
Vs := {u ∈ V ; suppu ⊆ Ωε for some ε > 0}.
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We define a bilinear form on V by

(u, v)V :=
�

Ω

∇u · ∇v dx dy +
∑

j∈R
αj

�

Γj

γjuγjv dσ.(3.2)

Applying [12, Theorem 1.9] we can show that ‖·‖V :=
√

(·, ·)V is a norm on
V and (V, (·, ·)V ) is a Hilbert space. From the Riesz theorem we have:

Proposition 1. For each f ∈ V ∗ there exists a unique uf ∈ V such that

(uf , w)V = 〈w, f〉 for w ∈ V.(3.3)

Using the density of Vs in V ([5, Lemma 2.1.2]) and the Green formula
([5, Theorem 1.5.4]) we can show that if f ∈ L2(Ω), then uf is a solution of
(2.1). The boundary conditions are well defined, because uf ∈ E(∆,L2(Ω))
(see [5, Theorem 1.5.4]). Hence Proposition 1 implies that ∆:T 2(Ω) →
L2(Ω) is injective.

In order to prove that ∆T 2(Ω) is a closed subspace of L2(Ω), we apply
Peetre’s lemma (see [4, Lemma 4.4.1.1]) to the Banach spaces T 2(Ω) and
L2(Ω) and the Laplace operator. Thus we have to show that there exists a
constant C such that

‖u‖H2(Ω) ≤ C{‖∆u‖L2(Ω) + ‖u‖L2(Ω)} for u ∈ T 2(Ω).(3.4)

The proof of (3.4) consists of two steps. First, we show that (3.4) holds for
smooth functions. Next, we prove that the smooth functions are dense in
T 2(Ω). More precisely, we establish the following lemmas.

Lemma 1. There exists a constant C such that for all m ≥ 3 and for all
u ∈ Tm(Ω) we have the estimate

‖u‖H2(Ω) ≤ C{‖∆u‖L2(Ω) + ‖u‖H1(Ω)}.(3.5)

Lemma 2. For every m ≥ 3 the subset Tm(Ω) is dense in T 2(Ω), i.e.

Tm(Ω)
H2(Ω)

= T 2(Ω).

Applying interpolation inequalities to (3.5), and then using Lemma 2,
we obtain (3.4). Hence, the proof of Theorem 3 will be finished if we prove
Lemmas 1 and 2. This will be done in Subsections 3.1 and 3.2, respectively.

3.1. Proof of Lemma 1. We only have to show that there exists a con-
stant C such that for m ≥ 3 we have

∑

|α|=2

‖Dαu‖2L2(Ω) ≤ C{‖∆u‖2L2(Ω) + ‖u‖2H1(Ω)}(3.6)

for all u ∈ Tm(Ω). Integrating by parts we obtain
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‖D2
xu‖2L2(Ω) + 2‖DxDyu‖2L2(Ω) + ‖D2

yu‖2L2(Ω)

= ‖∆u‖2L2(Ω) + 2
N∑

j=1

�

Γj

(γjDxu)
(
γj

∂

∂τj
Dyu

)
dσ.

Hence we will get (3.6) if we prove that there exists a constant C such that
for all u ∈ Tm(Ω) and ε ∈ (0, 1),

∣∣∣∣
N∑

j=1

�

Γj

(γjDxu)
(
γj

∂

∂τj
Dyu

)
dσ

∣∣∣∣ ≤ C{ε‖u‖2H2(Ω) + ε−1‖u‖2H1(Ω)}.(3.7)

Remark 2. The inequality (3.7) depends essentially on the boundary
conditions, because its left hand side contains the traces of the second deriva-
tives and it may be estimated by the norm of u in Hs for s > 5/2. If there is
no Robin boundary condition, then (3.7) holds with C = 0 (see [4, Lemma
2.2.1]).

We only check (3.7) in a special case, because in the remaining cases
we can proceed in the same way. Assume that j ∈ N, j + 1 ∈ R and that
νxj , νxj+1 6= 0, where νj = (νxj , ν

y
j ). We shall estimate the quantities

�

Γj

(γjDxu)
(
γj

∂

∂τj
Dyu

)
dσ +

�

Γj+1

(γj+1Dxu)
(
γj+1

∂

∂τj+1
Dyu

)
dσ.(3.8)

The boundary conditions on Γj and Γj+1 are

(3.9)

{
νxj γj(Dxu) + νyj γj(Dyu) = 0,

νxj+1γj+1(Dxu) + νyj+1γj+1(Dyu) = −αj+1u.

Substituting (3.9) in (3.8) we obtain

−
νyj
νxj

�

Γj

(γjDyu)
(
γj

∂

∂τj
Dyu

)
dσ−

νyj+1

νxj+1

�

Γj+1

(γj+1Dyu)
(
γj+1

∂

∂τj+1
Dyu

)
dσ

− αj+1

νxj+1

�

Γj+1

γj+1u · γj+1

(
∂

∂τj+1
Dyu

)
dσ.

Integrating the first two expressions, and integrating the last one by parts,
we get

(3.10)
1
2

[
νyj+1

νxj+1
−
νyj
νxj

]
Dyu(Sj+1)− αj+1

νxj+1
u(Sj+1)Dyu(Sj+1)

+
αj+1

νxj+1

�

Γj+1

γj+1

(
∂

∂τj+1
u

)
γj+1(Dyu) dσ +R,

where R involves the vertices Sj and Sj+2. Applying [4, Theorem 1.5.1.10]
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we can estimate the integral in (3.10) by the right hand side of (3.7).
If νyj+1/ν

x
j+1 − νyj /ν

x
j 6= 0, then det(νj, νj+1) 6= 0, hence from (3.9) we

get Dyu(Sj+1) = c0u(Sj+1), where the constant c0 depends only on the
boundary conditions. Therefore, the first two terms in (3.10) are equal to
c1u

2(Sj+1) for a constant c1. Now, using the Sobolev embedding theorem
and an interpolation inequality, we obtain the estimate in the form (3.7).

If νyj+1/ν
x
j+1 − νyj /ν

x
j = 0, then the left hand sides of (3.9) are equal

at Sj+1 ([4, Theorem 1.6.1.5]), hence so are the right hand sides, and thus
u(Sj+1) = 0. This means that the first two terms in (3.10) vanish in this case.
Clearly, the terms involving Sj and Sj+2 will be cancelled by appropriate
terms coming from the integrals on Γj−1 and Γj+2.

Remark 3. We have chosen the special case j ∈ N, j + 1 ∈ R and
νxj , ν

x
j+1 6= 0 in order to show the idea of the proof of (3.7). In all other cases

we proceed in the same way. The details are omitted.

3.2. Proof of Lemma 2. First we reduce the density of Tm(Ω) in T 2(Ω)
to the appropriate density on ∂Ω. Set

γ :=
(
γj , γj

∂

∂νj

)N

j=1
, Zm := γ(Hm(Ω) ∩ T 2(Ω)).

Thus, Z2(Ω) is a subspace of
∏N
j=1H

3/2(Γj) × H1/2(Γj) (Z2(Ω) being
equipped with its natural image topology). Hence the operator (Π, γ), where
Π is the projection of T 2(Ω) onto H2

0 (Ω), is an isomorphism from T 2(Ω)
onto H2

0 (Ω)× Z2(Ω), i.e.

T 2(Ω) ∼= H2
0 (Ω)× Z2(Ω).

Thus, the density of Tm(Ω) for m ≥ 3 in T 2(Ω) reduces to the density of
Zm for m ≥ 3 in Z2(Ω). Without loss of generality we may assume that
m ≥ 4.

In order to prove the desired density, first we have to describe the spaces
of traces Z2(Ω) and Zm for m ≥ 4. We will need the following notations. If
f ∈ H1/2(Γj−1), g ∈ H1/2(Γj), then we write

(3.11)

f ≡Sj g ⇔ f(xj(−σ))− g(xj(σ)) ∈ H̃1/2(R+),

(f, g)Rδ
:=

δ�

0

|f(xj(−σ))− g(xj(σ))|2
σ

dσ.

[5, Lemma 1.6.3] gives the following description of Z2(Ω): 〈fj, gj〉Nj=1 ∈
Z2(Ω) if and only if 〈fj, gj〉Nj=1 ∈

∏N
j=1H

3/2(Γj) × H1/2(Γj) and for j ∈
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{1, . . . , N} we have

(3.12)





fj = 0 if j ∈ D,

gj = 0 if j ∈ N,

gj + αjfj = 0 if j ∈ R,

(a) fj−1(Sj) = fj(Sj),

(b1)
∂

∂τj−1
fj−1 ≡Sj − cosωj

∂

∂τj
fj + sinωj gj ,

(b2) gj−1 ≡Sj − cosωj gj − sinωj
∂

∂τj
fj .

The space Zm for m ≥ 4 is described by conditions (3.12) and in addition
each 〈fj , gj〉Nj=1 ∈ Zm satisfies 〈fj , gj〉Nj=1 ∈

∏N
j=1H

m−1/2(Γj)×Hm−3/2(Γj)
and for j = 1, . . . , N we have

(3.13) cosωj
∂2

∂τ2
j−1

fj−1(Sj) + sinωj
∂

∂τj−1
gj−1(Sj)

= cosωj
∂2

∂τ2
j

fj(Sj)− sinωj
∂

∂τj
gj(Sj).

It can be easily verified that the topology on Z2(Ω) is induced by the norm

‖〈fj , gj〉Nj=1‖γ :=
{ N∑

j=1

‖〈fj , gj〉Nj=1‖2H3/2(Γj)×H1/2(Γj)
(3.14)

+
(

∂

∂τj−1
fj−1,− cosωj

∂

∂τj
fj + sinωj gj

)

Rδ

+
(
gj−1,− cosωj gj − sinωj

∂

∂τj
fj

)

Rδ

}1/2

.

Here 0 < δ < minj |Γj| and (·, ·)Rδ
was defined in (3.11). Thus we have to

prove the density of Zm in Z2(Ω) with respect to the norm ‖·‖γ . Using a
partition of unity the problem can be reduced to the appropriate density
in some neighbourhoods of the vertices Sj , j = 1, . . . , N . We will show it
only in the special case: j − 1, j ∈ R. In the remaining cases we proceed in
the same way. First we formulate an obvious property of the Sobolev space
H3/2(R+):

Proposition 2. If f ∈ H3/2(R+) and f ′ ∈ H̃1/2(R+), then for every
a ∈ R there exists a sequence {fn} ⊆ D(R+) such that fn − f → 0 in
H̃3/2(R+) as n→∞ and for all n ∈ N we have fn(0) = f(0), f ′n(0) = 0 and
f ′′n(0) = a.



452 A. Kubica

We introduce the following notations: ω := ωj , p0(σ) := fj(xj(−σ)),
q0(σ) := fj+1(xj(−σ)), p1(σ) := gj(xj(−σ)), q1(σ) := gj+1(xj(−σ)). Then
the problem of the density in a neighbourhood of Sj for j − 1, j ∈ R
has the following form: we need to approximate functions (pk, qk)k=0,1 ∈∏1
k=0H

3/2−k(R+)×H3/2−k(R+) satisfying

(3.15)

(a) p0(0) = q0(0),

(b1) p′0 − cosω q′0 − α2 sinω q0 ∈ H̃1/2(R+),

(b2) −α1p0 − α2 cosω q0 + sinω q′0 ∈ H̃1/2(R+),

(d1) p1 + α1p0 = 0,

(d2) q1 + α2q0 = 0,

by functions (pnk , q
n
k )k=0,1 ∈

∏1
k=0H

3/2−k+m(R+) ×H3/2−k+m(R+) satisfy-
ing (3.15) and in addition

− cosω pn0
′′(0) + sinω pn1

′(0) = − cosω qn0
′′(0) + sinω qn1

′(0).(3.16)

The approximation should be with respect to the norm of
∏N
j=1H

3/2(Γj)×
H1/2(Γj) and such that

(p′0 − cosω q′0 + sinω q1, p
n
0
′ − cosω qn0

′ + sinω qn1 )R −−−→
n→∞

0,

(p1 + cosω q1 + sinω q0
′, pn1 + cosω qn1 + sinω qn0

′)R −−−→
n→∞

0.

Here (f, g)R =
�
R+

|f(t)−g(t)|2
t dt. From (a) and (b2) of (3.15) we have

(α1 + α2 cosω)q0 − sinω q0
′ ∈ H̃1/2(R+).(3.17)

To get (3.16), we assume that
cosω
sinω

(c1 − c2) = ((α2
1 + α2

2) cosω + 2α1α2)q0(0)(3.18)

for some c1, c2 ∈ R. Let h(t) := (α1 +α2 cosω)q0(0)tψ(t)− sinωq0(t), where
ψ is a smooth function such that ψ ≡ 1 on B(0, ε) and ψ ≡ 0 outside B(0, 2ε)
for some ε > 0. Then from (3.17) we have h′ ∈ H̃1/2(R+), and hence from
Proposition 2 we get a sequence {hn}n∈N ⊆ D(R+) such that

(3.19)
hn − h −−−→

n→∞
0 in H̃3/2(R+),

hn(0) = − sinω q0(0), h′n(0) = 0, h′′n(0) = c1.

From (a), (b1) and (b2) we obtain

(α1 cosω + α2)p0 − sinω p′0 ∈ H̃1/2(R+).(3.20)

Set w(t) := (α1 cosω + α2)p0(0)tψ(t) − sinω p0(t). Then from (3.20) we
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have w′ ∈ H̃1/2(R+) and applying again Proposition 2 we find a sequence
{wn}n∈N ⊆ D(R+) such that

(3.21)
wn −−−→

n→∞
w in H̃3/2(R+),

wn(0) = − sinω p0(0), w′n(0) = 0, w′′n(0) = c2.

We have assumed that ω 6= π, hence we can define

pn0 :=
1

sinω
((α1 cosω + α2)q0(0)tψ − wn), pn1 := − α1p

n
0 ,

qn0 :=
1

sinω
((α2 cosω + α1)q0(0)tψ − hn), qn1 := − α2q

n
0 .

It is clear (pnk , q
n
k )k=0,1 ∈

∏1
k=0H

3/2−k+m(R+) × H3/2−k+m(R+) and from
the definition of pn0 , qn0 , hn and wn we get

‖p0 − pn0‖H̃3/2(R+) =

∣∣∣∣
1

sinω

∣∣∣∣‖w − wn‖H̃3/2(R+) −−−→n→∞
0,

‖q0 − qn0 ‖H̃3/2(R+) =

∣∣∣∣
1

sinω

∣∣∣∣‖h− hn‖H̃3/2(R+) −−−→n→∞
0.

Thus, we have the desired convergence. It can be easily verified that con-
ditions (a), (b1), (b2) of (3.15) are satisfied and the equality (3.16) holds,
because c1 and c2 were defined by (3.18). Clearly, the boundary conditions
are also satisfied, hence the sequence (pnk , q

n
k )k=0,1 is the desired approxima-

tion of (pk, qk)k=0,1.
In the remaining cases of the boundary conditions we proceed similarly.

The details are omitted.

Remark 4. For other boundary conditions we also apply the following
property of Sobolev spaces:

Proposition 3. If f ∈ H3/2(R+), then there exists a sequence {fn} ⊆
D(R+) such that fn → f in H3/2(R+) as n→∞ and for all n ∈ N we have
fn(0) = f(0), f ′n(0) = a1, f ′′n(0) = a2, where a1, a2 ∈ R are arbitrary given
numbers. Furthermore, the imbedding H3/2

0 (R+) ↪→ H̃1/2(R+) is continuous.

Thus, we have proved inequality (3.4), therefore the proof of Theorem 3
is complete.

4. Description of the annihilator N . The goal of this section is to
describe the annihilator of ∆T 2(Ω), denoted by N and defined by

v ∈ N ⇔ v ∈ L2(Ω) and
�

Ω

v∆udx dy = 0 for all u ∈ T 2(Ω).(4.1)
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For each j = 1, . . . , N define

(4.2) ψ̃j :=





exp(Ajxj+Bjyj) for j − 1, j ∈ N ∪R,

yj exp(Ajxj) for j−1∈D, j∈N ∪R, ωj =π/2, 3π/2,

xj exp(Bjyj) for j −1∈N ∪R, j∈D, ωj =π/2, 3π/2,

0 in the other cases,

where Aj and Bj are so chosen that ψ̃j satisfies the boundary conditions
on Γj−1 and Γj . Furthermore, let ηj = η(rj) be smooth functions such
that ηj ≡ 1 on B(Sj , ε) and ηj ≡ 0 outside B(Sj , 2ε), for some positive
ε < minj |Γj|/4. Then we define

ψj := ηjψ̃j .(4.3)

It is clear that the functions ψj for j = 1, . . . , N are smooth on Ω and
satisfy the boundary conditions of (2.1). Hence ψj ∈ T 2(Ω) for j = 1, . . . , N .
Moreover, the functions ψj have the following property: if u ∈ T 3(Ω), then
the function

wu := u−
∑

j∈J1

u(Sj)ψj −
∑

j∈J2

∂u

∂yj
(Sj)ψj −

∑

j∈J3

∂u

∂xj
(Sj)ψj(4.4)

satisfies

wu(Sj) = 0, ∇wu(Sj) = 0 for j = 1, . . . , N,(4.5)

where
J1 := {j; j − 1, j ∈ N ∪R},
J2 := {j; j − 1 ∈ D, j ∈ N ∪R, ωj = π/2, 3π/2},
J3 := {j; j − 1 ∈ N ∪R, j ∈ D, ωj = π/2, 3π/2}.

By straightforward calculation we also have

∂i

∂θij
ψj = rjψjWi,j(cosωj , sinωj , rj) on Γj for j ∈ N ∪R,(4.6)

where Wi,j are some polynomials in cosωj , sinωj , rj , and i = 1, 2. Using
the above notations we now characterize the annihilator N .

Theorem 4. The elements of the annihilator N are the very weak solu-
tions of the homogeneous problem (2.1) which are orthogonal to the Laplacian
of ψj , i.e.

v ∈ N ⇔ v ∈ M and
�

Ω

v∆ψj dx dy = 0 for j = 1, . . . , N.

Remark 5. It is worth stressing that the above orthogonality conditions
are essential. As will be shown in Theorems 2 and 3 of [9], the annihilator
N is a proper subspace of M if j − 1, j ∈ N ∪R for some j.
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Proof of Theorem 4. Assume that v ∈ N ; then by (4.1) we have�
Ω v∆ψj dx dy = 0 and ∆v = 0 in the sense of distibutions, because ψj ∈
T 2(Ω) and D(Ω) ⊆ T 2(Ω). Now we check that v satisfies the boundary con-
ditions of (2.1). From the trace theorem 1.4.6 of [5] we know that for any
ϕj , φj , ξj ∈ D(Γj) there exists a function u ∈ H2(Ω) such that

γju = 0, γj
∂

∂νj
u = ϕj for j ∈ D,

γju = φj , γj
∂

∂νj
u = 0 for j ∈ N,

γju = −ξj, γj
∂

∂νj
u = αjξj for j ∈ R.

Hence u ∈ T 2(Ω) and we can use the Green formula ([4, Theorem 1.5.3])
for u and v, which by the assumption reduces to

−
∑

j∈D
〈γjv, ϕj〉+

∑

j∈N

〈
γj

∂

∂νj
v, φj

〉
+
∑

j∈R

{〈
γj

∂

∂νj
v,−ξj

〉
−〈γjv, αjξj〉

}
= 0.

The functions ϕj , φj , ξj ∈ D(Γj) can be chosen independently. Thus from
the density of D(Γj) in both H̃1/2(R+) and H̃3/2(R+) (see [4, Theorem
1.4.2.1]) we conclude that v satisfies the boundary conditions in (2.1), there-
fore v∈M.

Conversely, assume that v ∈ M and
�
Ω v∆ψj dx dy = 0 for j = 1, . . . , N .

We will show that
�

Ω

v∆udx dy = 0 for u ∈ T 3(Ω).(4.7)

Hence applying the density of T 3(Ω) in T 2(Ω) (Lemma 2) we obtain v ∈ N .
To prove (4.7) take an arbitrary u ∈ T 3(Ω) and let wu be as in (4.4). From
the assumptions we have

�

Ω

v∆udx dy =
�

Ω

v∆wu dx dy.(4.8)

Now (4.5) allows us to apply the Green formula ([5, Theorem 1.5.3]) for v
and wu, which reduces to the equality

�
Ω v∆wu dx dy = 0, because ∆v = 0

and both v and wu satisfy the boundary conditions (2.1). Hence, from (4.8)
we obtain (4.7), thus v ∈ N and the proof is finished.

Remark 6. From the proof of Theorem 4 we see that the orthogonality
conditions were necessary, because we would be unable to apply the Green
formula ([5, Theorem 1.5.3]) for v ∈ D(∆,L2(Ω)) and u ∈ H2(Ω) if u does
not vanish in some neighbourhood of the vertices Sj , j = 1, . . . , N . For some
boundary conditions the Green formula can be generalized (see [1]). Then
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the traces can be defined in such a way that the annihilator N is exactly
the space of solutions of the homogeneous formal adjoint problem.

In the second part [9] we will examine the space of very weak solutions of
the homogeneous problem. This will allow us to finish the proof of Theorems
1 and 2. Furthermore, we will formulate an analogous result for nonhomo-
geneous boundary conditions.
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