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GENERAL METHOD OF REGULARIZATION.
III: THE UNILATERAL CONTACT PROBLEM

Abstract. The aim of this paper is to prove that the relaxation of the
elastic-perfectly plastic energy (of a solid made of a Hencky material with
the Signorini constraints on the boundary) is the weak∗ lower semicontinu-
ous regularization of the plastic energy. We consider an elastic-plastic solid
endowed with the von Mises (or Tresca) yield condition. Moreover, we show
that the set of solutions of the relaxed problem is equal to the set of solutions
of the relaxed problem proposed by Suquet. We deduce that the relaxation
of the energy of plastic soil (with the Signorini condition on the boundary)
is the weak∗ lower semicontinuous regularization of the energy.

1. Introduction. In this paper we investigate the convex functional

BD ×Mb 3 (u,µ) 7→ S(ε(u),µ) =
�

Ω

h(x, ε(u),µ)(1.1)

with constraints on the boundary of Ω, where ε(u) is the symmetrized gra-
dient of u, BD(Ω) is the space of bounded deformations and µ is a regu-
lar measure on Γ1, µ ∈ Mb(Γ1,Rn). Moreover we assume that S(ε(u),µ)
= ∞ if ε(u) 6∈ L1. In [6] we find the lower semicontinuous (l.s.c.) relax-
ation of S, and we show that the relaxation is a l.s.c. function (in the weak∗

BD×Mb topology), not greater than S. Now we prove that the above men-
tioned relaxation is the largest l.s.c. minorant less than S, in the case of a
material with the von Mises (or Tresca) plastic yield condition (i.e. the l.s.c.
regularization of S, in this case). Moreover, we consider the Signorini prob-
lem in soil mechanics (i.e. a unilateral contact condition on the boundary of
a piece of soil).

2000 Mathematics Subject Classification: Primary 49K27; Secondary 49J45, 47N10,
46A20, 26B30, 74C05, 74E05.

Key words and phrases: Hencky plasticity, Signorini problem, soil mechanics, the
largest l.s.c. minorant less than the original functional.

Supported by Committee for Scientific Research (Poland) grant No. 2P03A00518.

[473]



474 J. L. Bojarski

The l.s.c. regularization (in L1
loc topology) of functionals defined on the

space BV (Ω) was investigated in many papers ([1]–[3], [18]), but their au-
thors did not consider problems with constraints on the boundary of Ω.

In [12], the global method of relaxation (cf. [11]) is applied to l.s.c. regu-
larization of quasiconvex functionals with constraints (Dirichlet condition).
These functionals are defined on BV (Ω). The revelant constraints do not
describe the relaxation proposed by Suquet (see [22] and [9]) or unilateral
contact conditions (cf. condition (H4) from [12]). In [12] the essential as-
sumption of the method is the local coercivity of the density of elastic-plastic
energy.

Kohn and Temam [20] solved the existence problem for an elastic-perfect-
ly plastic solid made of a homogeneous Hencky material. To prove that the
functional of the total potential energy is weak∗ l.s.c. in the space BD(Ω),
they used the method of relaxation of the kinematic boundary condition.
They did not show that the relaxed problem was the l.s.c. regularization of
the original problem.

Unilateral problems in plasticity were considered by Baiocchi, Buttazzo,
Gastaldi and Tomarelli [4]. In [4] they solved the Signorini-like Problem,
but they were not able to solve the classical Signorini Problem (see [15]) in
Hencky plasticity. Tomarelli [25] solved the Signorini problem in the space

U(Ω) ≡ {u ∈ BD(Ω) | div u ∈ L2(Ω)}, Ω ⊂ R3,(1.2)

for an isotropic and homogeneous body made of a Hencky material.
A l.s.c. relaxation of the Signorini problem for an anisotropic and non-

homogeneous Hencky material has been found in [6]. Now we prove that the
relaxation (of [6]) is the l.s.c. regularization in the case of a material with the
von Mises (or Tresca) plastic yield condition. This generalizes Tomarelli’s
[25] result to the case of a non-homogeneous Hencky material with non-linear
elastic law. Moreover, we show that an analogous result holds in soil me-
chanics (where the set of admissible stresses is a convex cone; see Remark 2).

2. Some basic definitions and theorems. Let Ω be a bounded, open,
connected set of class C1 in Rn. The space of continuous functions with
compact support is denoted by Cc. Let C∞(Ω,Rm) be the space of Rm-
valued, infinitely differentiable functions. Moreover, the space of infinitely
differentiable functions equal to 0 at the boundary FrΩ of Ω is denoted
by C∞0 (Ω). Finally, Mb(Ω,Rm) is the space of Rm-valued, Radon, bounded,
regular measures on Ω, with the norm ‖ · ‖Mb(Ω,Rm) .

We will use the duality pairs (Mr, Cc) or (Mb, C0), where Mr is the space
of regular measures. Duality pairings will be denoted by 〈·; ·〉, and the scalar
product of z, z∗ ∈ Rn by z · z∗ or zz∗. The scalar product of w,w∗ ∈ Rn×n
is denoted by w : w∗ = wijw∗ij . Let g = (g1, . . . , gm) ∈ C(Ω,Rm) and
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µ = (µ1, . . . , µm) ∈ Mb(Ω,Rm). Then � Ω g · µ = � Ω gµ ≡ ∑m
i=1 � Ω giµi.

If F : Y → R ∪ {∞}, then F ∗ denotes its polar function F ∗(y∗) =
sup{〈y∗; y〉 − F (y) | y ∈ Y }, and domF = {y ∈ Y | F (y) < ∞} (see [16]).
If Q is a subset of Y , then IQ(·) is its indicator function (taking the value 0
in Q and ∞ outside), and I∗Q(·) stands for its support function.

Finally, we need the following notations. BV (Ξ, r) is the closed ball in a
metric space V with center Ξ and radius r. Furthermore, clV (Z) stands for
the closure of Z ⊂ V in the topology of the space V ; analogously, cl‖·‖(Z)
is the closure of the set Z in the norm ‖ · ‖. Similarly, intZ denotes the
interior of Z. L0(Ω,Rm)µ is the set of µ-measurable functions from Ω into
Rm. We denote by En

s the space of symmetric real n × n matrices. We set
‖[eij]‖En

s
≡∑n

i,j=1 |eij|. We denote by ⊗ (resp. ⊗s) the tensor product (resp.
symmetric tensor product). If τ ⊂ 2X is a linear topology in a vector space
X, then [X, τ ] denotes the topological space and [X, τ ]∗ its dual. We define
the following Banach spaces (see [20], [23]):

(2.1) LD(Ω) ≡
{

u ∈ L1(Ω,Rn)
∣∣∣∣

εij(u) ≡ 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
∈ L1(Ω), i, j = 1, . . . , n

}
,

(2.2) BD(Ω) ≡ {u ∈ L1(Ω,Rn) | εij(u) ∈Mb(Ω), i, j = 1, . . . , n},
with the natural norms

‖u‖LD(Ω) = ‖u‖L1 +
n∑

i,j

‖εij(u)‖L1 ,

‖u‖BD(Ω) = ‖u‖L1 +
n∑

i,j

‖εij(u)‖Mb .
(2.3)

Moreover,R0 ≡ {u ∈ BD(Ω) | ε(u) = 0} denotes the space of rigid motions
in Rn.

There exists a continuous surjective linear trace γB : [BD(Ω), ‖·‖BD]→
[L1(FrΩ,Rn), ‖·‖L1] such that γB(u) = u|FrΩ for all u ∈ BD(Ω)∩C(Ω,Rn)
(see [23]). We endow the spaces

X ≡ Cc(Ω,Rn)× Cc(Ω,En
s ), X0 ≡ {(g,h) ∈ X | g = div h},(2.4)

with the natural norm

(2.5) ‖g‖C(Ω,Rn) + ‖h‖C(Ω,En
s )

≡ sup{‖g(x)‖Rn | x ∈ Ω}+ sup{‖h(x)‖En
s
| x ∈ Ω}

for g ∈ C(Ω,Rn) and h ∈ C(Ω,En
s ). Then BD(Ω) is isomorphic to the dual

of [(X/X0), ‖·‖C(Ω,Rn) +‖·‖C(Ω,En
s )] (see [24]). The topology σ((X/X0)∗,X)

= σ(BD(Ω), Cc(Ω,Rn)×Cc(Ω,En
s )) is called the weak∗ BD topology. A net
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{uδ}δ∈D ⊂ BD(Ω) is convergent to u0 ∈ BD(Ω) in this topology if and
only if �

Ω

g · (u0 − uδ) dx+
�

Ω

h : ε(u0 − uδ)→ 0(2.6)

for all (g,h) ∈ X (see [17, pp. 73–81]). For every ϕ ∈ L1(FrΩ,Rn), the set
{u ∈ BD(Ω) | γB(u) = ϕ} is dense in [BD(Ω), weak∗ topology] (see [6,
Proposition 2.5]). Then the trace operator γB is not continuous on [BD(Ω),
weak∗ topology] if the space L1(FrΩ,Rn) is endowed with a Hausdorff topo-
logy.

A net {uδ}δ∈D converges to u0 (in the topology (2.7)–(2.8)) if

(2.7) uδ → u0 in ‖ · ‖Lp(Ω,Rn) ∀p such that 1 ≤ p < q = n/(n− 1)

and weakly in Lq(Ω,Rn) (q =∞ if n = 1),

(2.8) ε(uδ)→ ε(u0) weak∗ in Mb(Ω,En
s ).

The weak∗ BD(Ω) topology and the topology (2.7)–(2.8) are equivalent
on bounded subsets of BD(Ω) (cf. Proposition 2 of [8]). Therefore the in-
jection of [BD(Ω), weak∗] into [Lp(Ω,Rn), weak topology] is continuous on
bounded subsets of BD(Ω), where 1 ≤ p ≤ q = n/(n− 1) (q =∞ if n = 1).

We define the Banach space of measurable functions

Wn(Ω,div) ≡ {σ ∈ L∞(Ω,En
s ) | divσ ∈ Ln(Ω,Rn)}(2.9)

endowed with the natural norm ‖σ‖Wn(Ω,div) =‖σ‖L∞(Ω,En
s )+‖divσ‖Ln(Ω,Rn)

(cf. [23, Chap. 2, Sec. 7] and [6]). The distribution σ : ε(u), where σ ∈
Wn(Ω,div),u ∈ BD(Ω), defined (for ϕ1 ∈ C∞0 (Ω)) by

〈σ : ε(u);ϕ1〉D′×D = −
�

Ω

(divσ) · uϕ1 dx−
�

Ω

σ : (u⊗∇ ϕ1) dx,(2.10)

is a bounded measure on Ω, absolutely continuous with respect to |ε(u)|
(see [23]).

Assumption 1. Ω and Ω1 are bounded open connected sets of class C1

in Rn with Ω ⊂⊂ Ω1.

Theorem 1 (cf. [23]). There exists a continuous, linear , surjective, open
map βB from [Wn(Ω,div), ‖ · ‖Wn(Ω,div)] onto [L∞(FrΩ,Rn), ‖ · ‖L∞ ] such
that βB(σ) = σ|FrΩ ·ν for every σ ∈ C(Ω,En

s ), where ν denotes the exterior
unit vector normal to FrΩ. Furthermore, for all u ∈ BD(Ω) and all σ ∈
Wn(Ω,div), the following Green formula holds:

�

Ω

σ : ε(u) +
�

Ω

(divσ) · u dx =
�

FrΩ

βB(σ) · γB(u) ds.(2.11)

3. Auxiliary theorems and spaces. In this paper, the Lebesgue and
Hausdorff measures on Ω and FrΩ are denoted by dx and ds, respectively.
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Assumption 2 (cf. [8] and [6]). K : Ω → 2En
s is a multifunction such

that K(x) is a convex closed subset of En
s for all x ∈ Ω, there exists z0 ∈

C1(Ω,En
s ) such that z0(x) ∈ K(x) for every x ∈ Ω, and the following

conditions hold:

(i) if z(x) ∈ K(x) for dx-almost every (dx-a.e.) x ∈ Ω, z ∈ C(Ω,En
s )

and z|intΩ ∈Wn(Ω,div), then z(y) ∈ K(y) for every y ∈ Ω;
(ii) for every y ∈ Ω and every w ∈ K(y) there exists z ∈ C(Ω,En

s ) such
that z|intΩ∈Wn(Ω,div), z(y)=w and z(x)∈K(x) for every x∈Ω.

Conditions (i) and (ii) are equivalent to the condition that for every
y ∈ Ω,

(3.1) K(y) = {z(y) | z ∈ C(Ω,En
s ), z|intΩ ∈Wn(Ω,div),

z(x) ∈ K(x) for dx-a.e. x ∈ Ω}.
Definition 1. Let j∗ : Ω×En

s → R∪{∞} be a convex normal integrand
(cf. [16, Chapter 8, p. 232] and [8, Definition 2]) such that

{w∗ ∈ En
s | j∗(x,w∗) <∞} = K(x) for dx-a.e. x ∈ Ω.(3.2)

Assumpion 3. For every r̂ > 0 there exists cr̂ such that

(3.3) sup
{ �

Ω

j∗(x, z∗) dx
∣∣∣ z∗ ∈ L∞(Ω,En

s ), ‖z∗‖L∞ < r̂

and z∗(x) ∈ K(x) for dx-a.e. x ∈ Ω
}
< cr̂ <∞.

Assumption 4. There exist ue ∈ LD(Ω) and q ∈ L1(Ω,R) such that
j∗(x,w∗) ≥ ε(ue)(x) : w∗ + q(x) for dx-a.e. x ∈ Ω, for every w∗ ∈ En

s and
γB(ue) = 0 on FrΩ.

The set K(x) denotes the elasticity convex domain at the point x. Define

j(x,w) ≡ j∗∗(x,w) ≡ sup{w : w∗ − j∗(x,w∗) | w∗ ∈ En
s }(3.4)

for dx-a.e. x ∈ Ω and all w ∈ En
s . Then j is a convex normal integrand.

Define j∞ : Ω ×En
s → R ∪ {∞} by

j∞(x,w) ≡ sup{w : w∗ − IK(x)(w
∗) | w∗ ∈ En

s }(3.5)

for x ∈ Ω and w ∈ En
s .

Assumption 5. Γ0, Γ1 and Γs are Borel subsets of FrΩ such that Γ0 ∩
Γ1 = ∅, Γ0 ∩ Γs = ∅, Γs ∩ Γ1 = ∅, Γ1 = Γ 1, ds(intΓs) = ds(Γ s) and
ds(FrΩ−(Γ0∪Γ1∪Γs)) = 0.Moreover, Γ1 = FrΩ∩C, where C = cl int C ⊂ Ω1
is a closed Caccioppoli set and ds(FrΩ∩Fr C) = 0 (see [19], [8, Definition 3]).
Furthermore, γB(u)|Γ0 = 0 on Γ0 and an (n− 1)-dimensional density force
g ∈ L∞(Γ1,Rn) is prescribed on Γ1. Moreover, γB(u)(x)·ν(x) ≤ 0 for ds-a.e.
x ∈ Γs. This means that we have a potential function hs : Γs×En

s → R∪{∞},
defined by
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hs(x,y) =
{∞ if

∑n
i=1 yii < 0,

0 otherwise,
(3.6)

where y = −γB(u)⊗s ν.
The displacement formulation of the equilibrium problem for the elastic-

perfectly plastic body made of a Hencky material with the Signorini contact
condition, reads (see [6]):

(SNλ,j) Find inf{λF1(u) +Gj(ε(u)) | u ∈ LD(Ω)},(3.7)

where

(3.8) λF1(u) ≡ −λ
( �

Ω

f · u dx+
�

Γ1

g · γB(u) ds
)

+
�

Γ0

I{ � B(u)(x)=0}(−γB(u)⊗s ν) ds+
�

Γs

hs(x,−γB(u)⊗s ν) ds

for u ∈ BD(Ω), and the functional Gj(ε(·)) : BD(Ω) → R ∪ {∞} is given
by

Gj(ε(u)) ≡
{ � Ω j(x, ε(u)) dx if u ∈ LD(Ω),

∞ if u ∈ BD(Ω)− LD(Ω).
(3.9)

The quantity in (3.7) describes the total elastic-perfectly plastic energy of a
body occupying the given subset Ω of Rn. This body is subjected to volume
forces f ∈ Ln(Ω,Rn) and boundary forces g ∈ L∞(Γ1,Rn). The constant
λ ≥ 0, λ <∞, is the load multiplier (see [23, Chap. 1, Sec. 4]). The body is
clamped on Γ0. We assume the Signorini contact condition on Γs.

Similarly, we define the Suquet unilateral contact problem (cf. [22]):

(3.10) (SSλ,j) Find inf{λF2(u,µ) +Gj(ε(u)) |
(u,µ) ∈ LD(Ω)×Mb(Γ1,Rn)},

where

(3.11) λF2(u,µ) ≡ −λ
( �

Ω

f · u dx+
�

Γ1

g · µ
)

+
�

Γ0

I{ � B(u)(x)=0}(−γB(u)⊗s ν) ds+
�

Γs

hs(x,−γB(u)⊗s ν) ds

if u ∈ LD(Ω),µ = γB(u) ds for |µ − γB(u) ds|-a.e. x ∈ Γ1, and λF2(u,µ)
≡ ∞ otherwise. Unfortunately, (SNλ,j) and (SSλ,j) are not l.s.c. in the
weak∗ BD(Ω) and weak∗ BD(Ω)×Mb(Γ1,Rn) topologies, respectively (cf.
[9]). Below we obtain explicitly the relaxed form of (SSλ,j) and show the
relaxed form of (SNλ,j).

Let µ ∈ Mb(Ω,En
s ). We recall that |µ| is the total variation measure

associated with µ. The density of µ with respect to |µ| will be denoted by
dµ/d|µ|. Let µ = µa(x) dx + µs be the Lebesgue decomposition of µ into
the absolutely continuous and singular parts with respect to dx.
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We consider the spaces Y1(Ω) and Cdiv(Ω,En
s ), given by

(3.12) Y1(Ω) ≡ {M ∈Mb(Ω,En
s ) | ∃u1 ∈ BD(Ω1),

ε(u1)|Ω = M, u1|Ω1−Ω = 0},
(3.13) Cdiv(Ω,En

s ) ≡ {σ ∈ C(Ω,En
s ) | σ|Ω ∈Wn(Ω,div)}.

These are topological vector spaces placed in duality by the bilinear pairing

〈M;σ〉Y1×C(Ω,En
s ) =

�

Ω

σ : M =
n∑

i,j=1

�

Ω

σijM
ij .(3.14)

We say that a sequence {Mm}m∈N ⊂ Y1(Ω) converges to M0 in the topology
σ(Y1(Ω), Cdiv(Ω,En

s )) if 〈(Mm −M0);σ〉Y1×C(Ω,En
s ) → 0 for every σ ∈

Cdiv(Ω,En
s ) as m→∞. By [14, Theorem V.3.9] we have [Y1(Ω), σ(Y1(Ω),

Cdiv(Ω,En
s ))]∗ = Cdiv(Ω,En

s ).

Assumption 6. There exists σ0 ∈ Cdiv(Ω,En
s ) for which βB(σ0) = λg

on Γ1 and σ0(x) ∈ K(x) for dx-a.e. x ∈ Ω.

The space BD(Ω) is isomorphic to ABD ≡ {u ∈ BD(Ω1) | u|Ω1−Ω = 0}
(cf. Assumption 1). Moreover, ABD is isomorphic to Y1(Ω), and the iso-
morphism is given by ABD 3 u 7→ ε(u)|Ω ∈ Y1(Ω). The Banach spaces

[BD(Ω), ‖ · ‖BD] and [Y1(Ω), ‖ · ‖Mb(Ω)] are isomorphic (cf. [6, Proposi-
tion 4.24]). Each closed ball cl‖·‖(B(0, r)) (in Y1) is compact in the topol-
ogy σ(Y1(Ω), Cdiv(Ω,En

s )), where cl‖·‖ denotes the closure in the norm
of BD(Ω) (see [6, Proposition 4.23]). The space [cl‖·‖BD(BBD(0, r)),
weak∗ BD(Ω) topology] is isomorphic to [cl‖·‖BD(BBD(0, r)), σ(Y1(Ω),
Cdiv(Ω,En

s ))] (cf. [6, Proposition 4.25]). Let

M1(Γ1) ≡ {µ⊗s ν ∈Mb(Γ1,En
s ) | µ ∈Mb(Γ1,Rn)}.(3.15)

Consider the vector spaces

[C(Γ1,En
s ), σ(C(Γ1,En

s ),M1(Γ1))],

[M1(Γ1), σ(M1(Γ1), C(Γ1,En
s ))]

(3.16)

(the latter being equivalent to [M1(Γ1),weak∗M1(Γ1)]).
The inside (resp. outside) trace of BD(Ω) into L1(FrΩ,Rn) (resp.

BD(Ω1 −Ω) into L1(FrΩ,Rn)) is denoted by γIB (resp. γOB) (see [23]).
The functional Sjλ : Y1(Ω)×M1(Γ1)→ R ∪ {∞} is defined by

(3.17) Sjλ(ε(u)|Ω,µ⊗s ν) ≡ −
�

Γ1

λg · µ+
�

Ω

j(x, ε(u)a) dx

+
�

Γ0

I{( � IB(u)⊗s � )(x)=0}(γ
I
B(u)⊗s ν) ds+

�

Γs

hs(x,−γIB(u)⊗s ν) ds
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if u|Ω ∈ LD(Ω) and µ = γIB(u) ds for |µ − γIB(u) ds|-a.e. x ∈ Γ1, and
Sjλ(ε(u)|Ω ,µ⊗s ν)≡∞ otherwise, where ε(u)|Ω∈Y1(Ω) and µ∈Mb(Γ1,Rn)
(cf. [6]). We assume that there exist ũ ∈ BD(Ω1) and µ̃ ∈Mb(Γ1,Rn) such
that ũ|Ω ∈ LD(Ω) and Sjλ(ε(ũ)|Ω, µ̃⊗s ν) <∞.

4. Lower semicontinuous regularization. In this section the l.s.c.
regularization of the functional Sjλ is found, where the spaces BD(Ω) and
M1(Γ1) are endowed with the weak∗BD topology and σ(M1(Γ1), C(Γ1,En

s ))
topology, respectively. We apply this result to the problem of relaxation in
Hencky plasticity.

The bilinear form between Y1(Ω)×M1(Γ1) and Cdiv(Ω,En
s )×C(Γ1,En

s )
is given by

(4.1) 〈(ε(u)|Ω ,µ⊗s ν); (σ,κ)〉2 ≡
�

Ω

σ : ε(u)|Ω

+
�

FrΩ

σ : (−γIB(u)⊗s ν) ds+
�

Γ1

κ : [µ⊗s ν]

for ε(u)|Ω = (ε(u)|Ω, (−γIB(u) ds ⊗s ν)) ∈ Y1(Ω), µ ⊗s ν ∈ M1(Γ1), σ ∈
Cdiv(Ω,En

s ) and κ ∈ C(Γ1,En
s ) (cf. Proposition 6 of [7]). Because of the

duality between Y1(Ω)×M1(Γ1) and Cdiv(Ω,En
s )×C(Γ1,En

s ) we define a
functional (Sjλ)∗ : Cdiv(Ω,En

s )× C(Γ1,En
s )→ R ∪ {∞} by

(4.2) (Sjλ)∗(σ,κ) ≡ sup{〈(ε(u)|Ω,µ⊗s ν); (σ,κ)〉2
− Sjλ(ε(u)|Ω ,µ⊗s ν) | ε(u)|Ω ∈ Y1(Ω), µ⊗s ν ∈M1(Γ1)}

for σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ). The bidual functional (Sjλ)∗∗ :
Y1(Ω)×M1(Γ1)→ R ∪ {∞} is defined by

(4.3) (Sjλ)∗∗(ε(u)|Ω ,µ⊗s ν) = sup{〈(ε(u)|Ω,µ⊗s ν); (σ,κ)〉2− (Sjλ)∗(σ,κ) |
σ ∈ Cdiv(Ω,En

s ), κ ∈ C(Γ1,En
s )}

for ε(u)|Ω ∈ Y1(Ω) and µ ∈Mb(Γ1,Rn).

The bilinear form between Mb(Ω,En
s ) × Y1(Ω)|FrΩ × M1(Γ1) and

Cdiv(Ω,En
s )× C(Γ1,En

s ) is

(4.4) 〈(w,−γIB(u)⊗s ν,µ⊗s ν); (σ,κ)〉3 ≡
�

Ω

σ : w

+
�

FrΩ

σ : (−γIB(u)⊗s ν) ds+
�

Γ1

κ : [u⊗s ν]

for w ∈ Mb(Ω,En
s ), γIB(u)ds ⊗s ν ∈ Y1(Ω)|FrΩ, µ ⊗s ν ∈ M1(Γ1), σ ∈

Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ). The extension of Sjλ onto Mb(Ω,En
s ) ×

Y1(Ω)|FrΩ ×M1(Γ1) (denoted by S̃jλ) is given by
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(4.5) S̃jλ(w,−γIB(u) ds⊗s ν,µ⊗s ν) ≡ −
�

Γ1

λg · µ+
�

Ω

j(x,w) dx

+
�

Γ0

I{ � IB(u)⊗s � =0}(γ
I
B(u)⊗s ν) ds+

�

Γs

hs(x,−γIB(u)⊗s ν) ds

if w ∈ L1(Ω,En
s ) and µ = γIB(u) ds for |µ − γIB(u) ds|-a.e. x ∈ Γ1, and

S̃jλ(w,−γIB(u) ds⊗s ν,µ⊗s ν) ≡ ∞ otherwise.
By duality between Mb(Ω,En

s )×Y1(Ω)|FrΩ ×M1(Γ1) and Cdiv(Ω,En
s )

× C(Γ1,En
s ), we define the functional (S̃jλ)∗ : Cdiv(Ω,En

s ) × C(Γ1,En
s ) →

R ∪ {∞}. It is given by

(4.6) (S̃jλ)∗(σ,κ) ≡ sup{〈(w,−γIB(u)⊗s ν,µ⊗s ν); (σ,κ)〉3
− S̃jλ(w,−γIB(u)ds⊗s ν,µ⊗s ν) | w ∈ L1(Ω,En

s ), u ∈ BD(Ω)

and µ⊗s ν ∈M1(Γ1)}
for σ ∈ Cdiv(Ω,En

s ) and κ ∈ C(Γ1,En
s ). The bidual functional (S̃jλ)∗∗ :

Y1(Ω)×M1(Γ1)→ R ∪ {∞} is defined by

(4.7) (S̃jλ)∗∗(w,−γIB(u) ds⊗s ν,µ⊗s ν)

≡ sup{〈(w,−γIB(u)⊗s ν,µ⊗s ν); (σ,κ)〉3 − (S̃jλ)∗(σ,κ) |
σ ∈ Cdiv(Ω,En

s ), κ ∈ C(Γ1,En
s )}

for (w,−γIB(u) ds⊗s ν) ∈ Y1(Ω) and µ⊗s ν ∈M1(Γ1).

Lemma 2 (see [6] and [8, Lemma 6]). For every σ ∈ Cdiv(Ω,En
s ) and

κ ∈ C(Γ1,En
s ) we have (S̃jλ)∗(σ,κ) ≥ (Sjλ)∗(σ,κ). Moreover , (S̃jλ)∗∗(M,

µ⊗s ν) ≤ (Sjλ)∗∗(M,µ⊗s ν) for every M ∈ Y1(Ω) and µ ∈Mb(Γ1,Rn).

Definition 2 (cf. [13]). A subset H0 of L0(Ω,Rm)µ is said to be PCU-
stable if for any continuous partition of unity (α0, . . . , αd) with α0, . . . , αd ∈
C∞(Ω,R), and any z0, . . . , zd ∈ H0, the sum

∑d
i=0 αizi is in H0.

Proposition 3. The functional (S̃jλ)∗∗ defined by (4.5)–(4.7) satisfies

(4.8) (S̃jλ)∗∗(ε(u)|Ω,−γIB(u) ds⊗s ν,µ⊗s ν) = −
�

Γ1

λg · µ

+
�

Γ0

j∞(x,−γIB(u)⊗s ν)) ds+
�

Γs

(h∗s + IK)∗(x,−γIB(u)⊗s ν) ds

+
�

Γ1

j∞

(
x,
d((µ− γIB(u) ds)⊗s ν)
d|(µ− γIB(u) ds)⊗s ν|

)
d|(µ− γIB(u) ds)⊗s ν|

+
�

Ω

j(x, ε(u)a) dx+
�

Ω

j∞(x, dε(u)s/d|ε(u)s|) d|ε(u)s|
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for every (ε(u)|Ω,−γIB(u) ds⊗s ν) ∈ Y1(Ω) and µ⊗s ν ∈M1(Γ1), where

h∗s(x,σ) =
{

0 if σ(x) ∈ A(x),

∞ otherwise,
(4.9)

and

(4.10) A(x) =
{
σ ∈ En

s

∣∣∣
n∑

i,j=1

σij(γIB(u)⊗s ν)ij ≥ 0 for all u such that

n∑

i=1

(γIB(u)⊗s ν)ii = γIB(u) · ν ≤ 0
}

for ds-a.e. x ∈ Γs.

Proof. Let p ≡ µ−γIB(u) ds on Γ1. By Assumption 6 we have βB(σ0) =
λg on Γ1. Hence � Γ1

λg ·µ = � Γ1
σ0 : (µ⊗sν) for every µ ∈Mb(Γ1,Rn). Note

that γB(LD(Ω)) = L1(FrΩ,Rn) (cf. [23, Chapter 2, Theorem 1.1]). By [21,
Theorem 3A], for every σ ∈ Cdiv(Ω,En

s ) and κ ∈ C(Γ1,En
s ) we get

(4.11) (S̃jλ)∗(σ,κ) ≡ sup
{ �

Γ1

(κ− σ) : (µ⊗s ν) +
�

Γ1

σ : (p⊗s ν)

+
�

Γ1

σ0 : (µ⊗s ν)−
�

Γ1

I{ d(p⊗s � )
d|p⊗s � | (x)=0}

(
d(p⊗s ν)
d|p⊗s ν|

)
d|p⊗s ν|

+
�

Γ0

σ : (−γIB(u)⊗s ν) ds−
�

Γ0

I{ � IB(u)(x)=0}(−γIB(u)⊗s ν) ds

+
�

Γs

σ : (−γIB(u)⊗s ν) ds−
�

Γs

hs(x,−γIB(u)⊗s ν) ds

+
�

Ω

σ : w dx−
�

Ω

j(x,w) dx

∣∣∣∣ u ∈ BD(Ω1) such that u|Ω ∈ LD(Ω),

u|Ω1−Ω = 0, w ∈ L1(Ω,En
s ) and µ ∈Mb(Γ1,Rn)

}

=
�

Ω

j∗(x,σ) dx+ sup
{ �

Γ1

((κ− σ) · ν) · µ+
�

Γ1

(σ0 · ν) · µ

+
�

Γ1

σ : (p⊗s ν)
∣∣∣ µ ∈Mb(Γ1,Rn) and p⊗s ν = 0

}
+

�

Γs

h∗s(x,σ) ds

=
�

Ω

j∗(x,σ) dx+
�

Γ1

I{(κ−σ)·ν(x)=−λg(x)}(κ− σ) ds+
�

Γs

h∗s(x,σ) ds,

because σ0 · ν = λg on Γ1 (see also [8, (4.9)] and [7, (3.18)]).
By the duality between Y1(Ω) ×M1(Γ1) and Cdiv(Ω,En

s ) × C(Γ1,En
s )

we obtain the functional (S̃jλ)∗∗. The spaces Cdiv(Ω,En
s ) and C(Γ1,En

s ) are
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PCU-stable, so by [13, Theorem 1] and the proof of Theorem 4 of [13] we
get

(4.12) (S̃jλ)∗∗(ε(u)|Ω ,µ⊗s ν) = sup
{ �

Ω

σ : ε(u)|Ω −
�

Ω

j∗(x,σ) dx

+
�

Γ1

((κ− σ) · ν) · µ−
�

Γ1

I{(( � − � )· � )(x)=−λg(x)}((κ− σ) · ν) ds

+
�

Γ1

σ : [(µ− γIB(u) ds)⊗s ν]−
�

Γ1

j∗∞(x,σ) d|(µ− γIB(u) ds)⊗s ν|

+
�

Γ0

σ : (−γIB(u)⊗s ν) ds−
�

Γ0

j∗∞(x,σ) ds

+
�

Γs

σ : (−γIB(u)⊗s ν) ds−
�

Γs

(h∗s + j∗∞)(x,σ) ds
∣∣∣

σ ∈ Cdiv(Ω,En
s ), κ ∈ C(Γ1,En

s )}

= sup
{ �

Ω

[σ : (ε(u)a)− j∗(x,σ)] dx

+
�

Ω

[σ : (dε(u)s/d|ε(u)s|)− j∗∞(x,σ)] d|ε(u)s|

−
�

Γ1

λg · µ+
�

Γ1

[σ : (d(p⊗s ν)/d|p⊗s ν|)− j∗∞(x,σ)] d|p⊗s ν|

+
�

Γs

[σ : (−γIB(u)⊗s ν)− (h∗s + j∗∞)(x,σ)] ds

+
�

Γ0

[σ : (−γIB(u)⊗s ν)− j∗∞(x,σ)] ds
∣∣∣ σ ∈ Cdiv(Ω,En

s )
}

for every ε(u)|Ω = (ε(u)|Ω,−γIB(u) ds⊗sν) ∈ Y1(Ω) and (µ⊗sν) ∈M1(Γ1)
(where p ≡ µ − γIB(u)ds on Γ1), which is (4.8). In the above calculations
we use the equality j∗∞(x,σ) = IK(x)(σ) = IK(x,σ), which holds for every
σ ∈ En

s and x ∈ Ω. Moreover, by (3.2) we can assume that σ(x) ∈ K(x) for
every x ∈ Ω. Thus the proof is complete.

Let w ∈ En
s . Then wDij ≡ wij − n−1δij tr w, where δij is the Kronecker

delta and wD denotes the matrix [wDij ].

Assumption 7 (cf. [10]). There exist functionals jD : Ω × (En
s )D →

R∪{∞} and jtr :Ω×R→ R∪{∞} such that there exist k0 > 0 and k1 > 0
such that for every z ∈ R and dx-a.e. x ∈ Ω, jtr(x, z) ≥ k1z

2 − k0, and the
normal integrand j∗ (given by Definition 1 and Assumption 3) satisfies
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(j∗)∗(x, ε) = j(x, ε) = jD(x, εD) + jtr(x, tr ε)(4.13)

for every ε ∈ En
s and dx-a.e. x ∈ Ω.

We say that a net {(ut,µt)}t∈T ⊂ BD(Ω) × Mb(Γ1,Rn) converges to
(u0,µ0) in the weak∗ BD(Ω) × Mb(Γ1,Rn) topology if ut ⇀ u0 in the
weak∗ BD(Ω) topology and µt ⇀ µ0 in the weak∗ Mb(Γ1,Rn) topology.

Now we prove that (S̃jλ)∗∗ is the l.s.c. regularization of Sjλ in the weak∗

BD(Ω) ×Mb(Γ1,Rn) topology, for the elastic-perfectly plastic potential j
given by (4.13). Recall that the space U(Ω) is given by

U(Ω) ≡ {u ∈ BD(Ω) | div u ∈ L2(Ω)}.(4.14)

Proposition 4 (cf. [10]). The functionals Sjλ, S̃
j
λ and (S̃jλ)∗∗ are equal

to ∞ for every (ε(u)|Ω,−γIB(u) ds ⊗s ν) ∈ Y1(Ω) and µ ⊗s ν ∈ M1(Γ1)
such that u|Ω ∈ BD(Ω)− U(Ω).

Proof. By (4.13) we get

j∗(x,w∗) = sup{w : w∗ − jD(x,wD)− jtr(x, tr w) | w ∈ En
s }(4.15)

= sup{wD : (w∗)D + n−1(tr w)(tr w∗)

− jD(x,wD)− jtr(x, tr w) | w ∈ En
s }

= sup{wD : (w∗)D − jD(x,wD) | w ∈ En
s }

+ sup{z(tr w∗)n−1 − jtr(x, z) | z ∈ R}
= (jD)∗(x, (w∗)D) + (jtr)∗(x, tr(w∗)n−1).

Then by Assumption 7 there exist k2 > 0 and k3 > 0 such that for every
z ∈ R and for dx-a.e. x ∈ Ω, (jtr)∗(x, z) ≤ k2z

2 + k3. Thus by (3.2) there
exists a multifunction KD such that

K(x) = KD(x)⊕ {zI ∈ En
s | Iij = δij and z ∈ R},(4.16)

where KD : Ω → 2(En
s )D is defined for every x ∈ Ω (see (3.1)). By (3.5), we

have j∞(x,w) = ∞ for every x ∈ Ω and w ∈ En
s such that tr w 6= 0. By

(3.17), (4.5) and (4.8) we get Sjλ(ε(u)|Ω ,µ ⊗s ν) = S̃jλ(ε(u)|Ω,−γIB(u) ds

⊗s ν,µ ⊗s ν) = (S̃jλ)∗∗(ε(u)|Ω,−γIB(u) ds ⊗s ν,µ ⊗s ν) = ∞ for every
(ε(u)|Ω,µ ⊗s ν) = (ε(u)|Ω,−γIB(u) ds ⊗s ν, µ ⊗s ν) ∈ Y1(Ω) ×M1(Γ1)
such that tr ε(u|Ω) = div(u|Ω) ∈Mb(Ω,R)− L1(Ω,R).

From (3.1), (3.5) and (4.16) we obtain

Corollary 5. For every u ∈ U(Ω) and for ds-a.e. x ∈ FrΩ,

j∞(x, (−γB(u)⊗s ν)) =∞ if − γB(u) · ν 6= 0(4.17)

on Γ0, and
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(h∗s + IK)∗(x,−γB(u)⊗s ν) = h∗∗s (x,−γB(u)⊗s ν)(4.18)

= hs(x,−γB(u)⊗s ν)

on Γs (cf. Remark 2).

Now we turn to the direct method of regularization. The study of the
difference between (Sjλ)∗ and (S̃jλ)∗ plays an essential role in this section.

Lemma 6. For every u ∈ BD(Ω1) and µ ∈ Mb(Γ1,Rn) such that u|Ω ∈
LD(Ω),u|Ω1−Ω = 0,γIB(u) = 0 on Γ0 and γIB(u)ds = µ on Γ we have

(4.19) (S̃jλ)∗∗(ε(u)|Ω,−γIB(u) ds⊗s ν,µ⊗s ν)

= (Sjλ)∗∗(ε(u)|Ω ,µ⊗s ν) = Sjλ(ε(u)|Ω,µ⊗s ν).

Proof. By Proposition 3 and by (4.18), we obtain (4.19) as in [8, Lem-
ma 8] (see also [9, Lemma 1]).

Lemma 7. Let κs ∈ C(Γ1,En
s ), σs ∈ Cdiv(Ω,En

s ), where divσs = 0 on
Ω and � Γ1

κs : [t⊗s ν] ds = 0 for every t ∈ L1(Γ1,Rn). Then

(4.20) (Sjλ)∗(σ,κ) = (Sjλ)∗(σ+ σs,κ+ κs)

for every σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ).

Proof. By (4.2) and the Green formula (2.11) we have

(4.21) (Sjλ)∗(σ,κ)

= sup
{
−

�

Ω

(divσ) · u dx+
�

Γ1

κ : (µ⊗s ν)− Sjλ(ε(u)|Ω ,µ⊗s ν)
∣∣∣

u|Ω ∈ LD(Ω),u|Ω1−Ω = 0 and µ ∈Mb(Γ1,Rn)
}

= sup
{
−

�

Ω

[div(σ+ σs)] · u dx+
�

Γ1

(κ+ κs) : (γB(u)⊗s ν) ds

− Sjλ(ε(u)|Ω ,γB(u) ds⊗s ν)
∣∣∣

u|Ω ∈ LD(Ω),u|Ω1−Ω = 0
}

= (Sjλ)∗(σ+ σs,κ+ κs)

(cf. [7, Lemma 18] and (3.17)). Moreover, the trace γB is a surjection from
LD(Ω) onto L1(FrΩ,Rn) (see Theorem 1.1 of [23, Chapter 2]).

We say that a net {(σt,κt)}t∈T ⊂ Cdiv(Ω,En
s )×C(Γ1,En

s ) converges to
(σ̂, κ̂) in the topology

(4.22) σ(Cdiv(Ω,En
s )× C(Γ1,En

s ), L1(Ω,En
s ))

× {(ϕ,µ⊗s ν) ∈ Y1(Ω)|FrΩ ×M1(Γ1) | ϕ|Γ0
= 0, ϕ|Γ1

ds = µ⊗s ν})
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if 〈(w dx, p̃⊗s ν, p̃ ds⊗s ν); ((σt,κt)− (σ̂, κ̂))〉3 → 0 for all w ∈ L1(Ω,En
s )

and p̃ ∈ L1(Γ1,Rn).

Lemma 8 (see [9, Lemma 3]). Let

f̃ : Cdiv(Ω,En
s )× C(Γ1,En

s )→ R(4.23)

be a linear functional , continuous in the topology (4.22), such that for some
κ0 ∈ C(Γ1,En

s ) and σ̃1 ∈ Cdiv(Ω,En
s ), and every σs ∈ Cdiv(Ω,En

s ) with
divσs = 0 (in Ln(Ω,Rn)), we have

f̃(σ̃1 + σs,κ0) = f̃(σ̃1,κ0).(4.24)

Moreover , assume that for every σ ∈ Cdiv(Ω,En
s ) and κ,κs ∈ C(Γ1,En

s )
such that � Γ1

κs : [t⊗s ν] ds = 0 for every t ∈ L1(Γ1,Rn), we have f̃(σ,κ) =

f̃(σ,κ + κs). Then there exists ũ1 ∈ LD(Ω) such that γB(ũ1) = 0 on Γ0
and for every (σ,κ) ∈ Cdiv(Ω,En

s )× C(Γ1,En
s ) we have

f̃(σ,κ) =
�

Ω

σ : ε(ũ1) dx−
�

FrΩ

σ : (γB(ũ1)⊗s ν) ds(4.25)

+
�

Γ1

κ : (γB(ũ1)⊗s ν) ds.

Let Q1 : Cdiv(Ω,En
s )× C(Γ1,En

s )→ R ∪ {∞} be defined by

Q1(σ,κ) = inf
� s
{(S̃jλ)∗(σ+σs,κ) | σs ∈ C(Ω,En

s ) with divσs = 0}(4.26)

for σ ∈ Cdiv(Ω,En
s ) and κ ∈ C(Γ1,En

s ).

Proposition 9 (see [9, Proposition 4]). For every σ ∈ Cdiv(Ω,En
s ) and

κ ∈ C(Γ1,En
s ) we have

(Sjλ)∗(σ,κ) = cl(4.22)Q1(σ,κ),(4.27)

where cl(4.22)Q1 denotes the largest minorant which is less than Q1 and
l.s.c. in the topology (4.22) (i.e. cl(4.22)Q1 the l.s.c. regularization of Q1 in
(4.22)).

We say that a net {(σt,κt)}t∈T ⊂ Cdiv(Ω,En
s )×C(Γ1,En

s ) converges to
(σ,κ) in the topology

σ(Cdiv(Ω,En
s )× C(Γ1,En

s ),Y1(Ω)× (L1(Γ1,Rn)⊗s ν)(4.28)

if
〈(ε(u)|Ω, z ds⊗s ν); ((σt,κt)− (σ,κ))〉2 → 0(4.29)

for every ε(u)|Ω ∈ Y1(Ω) and z ∈ L1(Γ1,Rn).

Proposition 10. Let Ak≡{(σ,κ)∈Cdiv(Ω,En
s )×C(Γ1,En

s ) | ‖divσ‖Ln
≤ k, ‖κ‖C(Γ1,En

s ) ≤ k}. For every σ̂ ∈ Cdiv(Ω,En
s ) and κ̂ ∈ C(Γ1,En

s ) there
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exists k(̂� ,̂� ) > 0 such that for every k ≥ k(̂� ,̂� ),

(Sjλ)∗(σ̂, κ̂) = clAk Q1(σ̂, κ̂),(4.30)

where clAk Q1(·, ·) is the l.s.c. regularization of the function (σ,κ) 7→
Q1(σ,κ) + IAk(σ,κ) in the topology (4.22) and IAk(·) is the indicator func-
tion of Ak.

Proof. The proof is similar to that of [8, Proposition 13] (see also [9,
Proposition 6]).

Theorem 11. For every ε(u)|Ω ∈ Y1(Ω) and µ ∈Mb(Γ1,Rn) we have

(S̃jλ)∗∗(ε(u)|Ω,µ⊗s ν) = (Sjλ)∗∗(ε(u)|Ω ,µ⊗s ν).(4.31)

Proof. The proof is similar to that of [9, Theorem 7] (see also [8, Theo-
rem 14]).

The displacement formulation (SNλ,j) of the equilibrium problem for the
elastic-plastic body made of a Hencky material with the Signorini contact
condition is given by (3.7). The Suquet unilateral contact problem (SSλ,j)
is defined by (3.10). Moreover, in [6] we studied the bidual relaxed Signorini
problem

(4.32) (OP ∗∗λ,j) Find inf{(λFs)∗∗(u,µ) +G∗∗j (ε(u)) |
u ∈ BD(Ω), µ ∈Mb(Γ1,Rn)},

where for every u ∈ BD(Ω) and µ ∈Mb(Γ1,Rn),

(4.33) (λFs)∗∗(u,µ) ≡ −λ
[ �

Ω

f · u dx+
�

Γ1

g · µ
]

+
�

Γ0

j∞(x,−γB(u)⊗s ν) ds+
�

Γs

(h∗s + IK)∗(x,−γB(u)⊗s ν) ds

+
�

Γ1

j∞

(
x,
d((µ− γB(u) ds)⊗s ν)
d|(µ− γB(u) ds)⊗s ν|

)
d|(µ− γB(u) ds)⊗s ν|

and

G∗∗j (ε(u)) =
�

Ω

j(x, ε(u)a) dx+
�

Ω

j∞

(
x,

dε(u)s
d|ε(u)s|

)
d|ε(u)s|.(4.34)

Lemma 12 (cf. Lemma 15 of [8]). If f ∈ Ln+δ(Ω,Rn), where δ ≥ 0,
then the functional BD(Ω) 3 u 7→ � Ω f · u dx ∈ R is continuous in the
weak∗ BD(Ω) and σ(Y1(Ω), Cdiv(Ω,En

s )) topologies on bounded subsets of
BD(Ω).

Assumption 8. There exist kb > 0 and r1 > 0 such that j∗(x,w∗) ≤ kb
for every w∗ ∈ BEn

s
(0, r1) and dx-a.e. x ∈ Ω, where BEn

s
(0, r1) is the closed

ball in En
s with center 0 and radius r1.
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Suppose the function

(u,µ) 7→ dSSλ,je(u,µ) ≡ λF2(u,µ) +Gj(ε(u))(4.35)

is coercive over BD(Ω)×Mb(Γ1,Rn), where F2 and Gj are given by (3.11)
and (3.9). Moreover, let 0 ≤ λ1 < λ. Then dSSλ1,je is coercive on BD(Ω)×
Mb(Γ1,Rn). Similarly, if the function

(u,µ) 7→ dOP ∗∗λ,je(u,µ) = (λFs)∗∗(u,µ) +G∗∗j (ε(u))(4.36)

is coercive and 0 ≤ λ1 < λ, then dOP ∗∗λ1,j
e is coercive over BD(Ω) ×

Mb(Γ1,Rn). Moreover,

dSSλ,je(u,µ) ≥ dOP ∗∗λ,je(u,µ)(4.37)

for every (u,µ) ∈ BD(Ω)×Mb(Γ1,Rn).
We say that a net {(ut,µt)}t∈T ⊂ BD(Ω) × Mb(Γ1,Rn) converges to

(u0,µ0) in the weak∗ BD(Ω) × Mb(Γ1,Rn) topology if ut ⇀ u0 in the
weak∗ BD(Ω) topology and µt ⇀ µ0 in the weak∗ Mb(Γ1,Rn) topology.

Theorem 13. Let f ∈ Ln+δ(Ω,Rn), where δ ≥ 0. If the function dSSλ,je
is coercive over BD(Ω)×Mb(Γ1,Rn), then the l.s.c. regularization of dSSλ,je
(in the weak∗ BD(Ω)×Mb(Γ1,Rn) topology) is dOP ∗∗λ,je.

Proof. The proof is similar to that of [8, Theorem 18] and [9, Theo-
rem 8].

Thus for every solution (u0,µ0) of (OP ∗∗λ,j) there is a net {(um,µm)}m∈H
which minimizes dSSλ,je and (um,µm) ⇀ (u0,µ0) in the weak∗ BD(Ω) ×
Mb(Γ1,Rn) topology.

Corollary 14. The functional dSSλ,je is coercive over the space BD(Ω)
×Mb(Γ1,Rn) if and only if dOP ∗∗λ,je is coercive.

Proof. By Theorem 13, if dSSλ,je is coercive, then so is dOP ∗∗λ,je (cf.
Corollary 19 of [8]). By (4.37) the proof is complete.

The bidual relaxed Signorini problem (where the relaxation on Γ1, pro-
posed by Suquet in [22], is omitted) is defined by the formula

(NP ∗∗λ,j) Find inf{(λFN )∗∗(u) +G∗∗j (ε(u)) | u ∈ BD(Ω)},(4.38)

where for every u ∈ BD(Ω),

(4.39) (λFN )∗∗(u) ≡ −λ
[ �

Ω

f · u dx+
�

Γ1

g · γB(u) ds
]

+
�

Γ0

j∞(x,−γB(u)⊗s ν) ds+
�

Γs

(h∗s + IK)∗(x,−γB(u)⊗s ν) ds

and G∗∗j is defined by (4.34).
Similarly to Theorem 13 (cf. [9, Theorem 18]) we obtain the following

result:
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Theorem 15. Let f ∈ Ln+δ(Ω,Rn), where δ ≥ 0. If the function

BD(Ω) 3 u 7→ dSNλ,je(u) = λF1(u) +Gj(ε(u))(4.40)

is coercive over BD(Ω), then the l.s.c. regularization of dSNλ,je in the weak∗

BD(Ω) topology is the functional

BD(Ω) 3 u 7→ dNP ∗∗λ,je(u) = (λFN )∗∗(u) +G∗∗j (ε(u)).(4.41)

Remark 1. Let f ∈ Ln+δ(Ω,Rn), where δ ≥ 0, and suppose the func-
tional dSNλ,je is coercive over LD(Ω). Since dSNλ,je(u) = ∞ for u ∈
BD(Ω) − LD(Ω), the l.s.c. regularization of dSNλ,je in the weak∗ BD(Ω)
topology (over the space SBD(Ω)) is

SBD(Ω) 3 u 7→ dNP ∗∗λ,je(u) = (λFN )∗∗(u) +G∗∗j (ε(u))(4.42)

(cf. [5]). Indeed, (4.42) is the supremum over the set of affine mappings
(continuous in the weak∗ BD(Ω) topology) less than the functional dSNλ,je.

Corollary 16. The functional dSNλ,je is coercive over BD(Ω) if and
only if dNP ∗∗λ,je is coercive.

Proof. The proof is similar to that of Corollary 14.

Corollary 17. The functional dSNλ,je is coercive over BD(Ω) if and
only if dOP ∗∗λ,je is coercive over BD(Ω)×Mb(Γ1,Rn).

Proof. Indeed, by (3.7)–(3.11) the function dSSλ,je is coercive over
BD(Ω) × Mb(Γ1,Rn) if and only if dSNλ,je is coercive over BD(Ω). By
Corollary 14 the proof is complete.

Theorem 18. Let f ∈ Ln+δ(Ω,Rn), where δ ≥ 0. Moreover , let j∗ : Ω×
En
s → R ∪ {∞} be a nonnegative normal integrand. If the function dSNλ,je

is coercive over BD(Ω), then the couple (ũ, µ̃) ∈ BD(Ω)×Mb(Γ1,Rn) is a
solution of (OP ∗∗λ,j) if and only if µ̃ = γB(ũ)|Γ1ds ∈ Mb(Γ1,Rn) and ũ is a
minimum point of the function dNP ∗∗λ,je.

Proof. Since j∗ is nonnegative, (NP ∗∗λ,j) and (OP ∗∗λ,j) have finite infima.
Indeed, dNP ∗∗λ,je(0) <∞ and dOP ∗∗λ,je(0,0) <∞ (cf. Assumptions 3 and 6).

First, let ũ be a solution of (NP ∗∗λ,j). Then the couple (ũ,γB(ũ)|Γ1ds) ∈
BD(Ω)×Mb(Γ1,Rn) is a solution of (OP ∗∗λ,j), since

inf(NP ∗∗λ,j) = inf(SNλ,j) = inf(SSλ,j) = inf(OP ∗∗λ,j)(4.43)

(cf. Theorems 15 and 13 and formulae (3.7)–(3.11)).
Next, we show the converse implication. Let (ũ, µ̃) be a solution of

(OP ∗∗λ,j). Then there exists a sequence {(um,µm)}m∈N inBD(Ω)×Mb(Γ1,Rn)
such that limm→∞dSSλ,je(um,µm) = inf(OP ∗∗λ,j) and (um,µm) ⇀ (ũ, µ̃) in
the weak∗ BD(Ω) × Mb(Γ1,Rn) topology. By (3.10) there exists m0 ∈ N
such that for every m > m0 we obtain µm = γB(um) ds on Γ1, because
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inf(OP ∗∗λ,j) <∞. Since inf(NP ∗∗λ,j) = inf(OP ∗∗λ,j), we have

(4.44) lim
m→∞

dSSλ,je(um,γB(um)|Γ1ds) = lim
m→∞

dSNλ,je(um) = inf(NP ∗∗λ,j)

(cf. (4.43)). Therefore, by Theorem 15, we get

dNP ∗∗λ,je(ũ) = inf(NP ∗∗λ,j) = inf(OP ∗∗λ,j).(4.45)

We now prove that µ̃ = γB(ũ) ds on Γ1. Suppose otherwise. By (4.38), (4.32)
and (4.45) we have dOP ∗∗λ,je(ũ,γB(ũ)|Γ1 ds) = dOP ∗∗λ,je(ũ, µ̃). The function

[0,∞) 3 t 7→
�

Γ1

j∞

(
x,
d(t(µ̃− γB(ũ) ds)⊗s ν)
d|(µ̃− γB(ũ) ds)⊗s ν

)
d|(µ̃− γB(ũ) ds)⊗s ν|

+ (1− t)
�

Γ1

g · γB(ũ) ds+ t
�

Γ1

g · µ̃

is positively homogeneous. Then

dOP ∗∗λ,je(ũ, µ̃) = dOP ∗∗λ,je(ũ, t(µ̃− γB(ũ)|Γ1 ds) + γB(ũ)|Γ1 ds)

for every t > 0. This contradicts with the coercivity of dOP ∗∗λ,je (cf. Corol-
lary 17).

Remark 2. In the case of soil mechanics, the set of admissible stresses
is a convex cone which contains the half-line AL ≡ {σ ∈ En

s | trσ ≤ 0,
σD = 0}, where σD = σ−n−1δ trσ and δij is the Kronecker delta. Moreover,
by Assumption 8, the set of admissible stresses contains a neighborhood of
0 ∈ En

s (the origin of the cone 6= 0). Then by direct calculation we obtain

(h∗s + IK1)∗(x,−γB(u)⊗s ν) = h∗∗s (x,−γB(u)⊗s ν)(4.46)

= hs(x,−γB(u)⊗s ν),

where K1 is the elastic domain (of the soil) at the point x. Indeed,

(4.47)
n∑

i,j=1

σij(γIB(u)⊗s ν)ij

=
1
n

trσ tr(γIB(u)⊗s ν) +
n∑

i,j=1

σDij (γIB(u)⊗s ν)Dij

and sup{σ : (−γIB(u)(x) ⊗s ν) − IAL(σ) | σ ∈ En
s } = hs(x,−γIB(u) ⊗s ν)

(cf. (4.15)). Thus we obtain a generalization of Lemma 6 to the case of a
soil material.

Let f ∈ Ln+δ(Ω,Rn), where δ ≥ 0. Moreover, suppose the functions
dSNλ,je, dNP ∗∗λ,je, dSSλ,je and dOP ∗∗λ,je describe a piece of elastic-plastic soil,
i.e. j, j∞, K (K = K1) describe the properties of the soil and Assumption 7
does not hold. If the function dSSλ,je is coercive over BD(Ω)×Mb(Γ1,Rn),
then its l.s.c. regularization in the weak∗ BD(Ω) × Mb(Γ1,Rn) topology



General method of regularization 491

is dOP ∗∗λ,je. Moreover, Theorems 13, 15, 18, Corollaries 14, 16 and 17 hold
for the case of a soil material.

Suppose ds(Γ0) = 0 and � Ω f ·û dx+ � Γ1
g·γB(û) ds = 0 for every û ∈ R0.

Moreover, suppose that for every sequence {(um,µm)}m∈N ⊂ BD(Ω) ×
Mb(Γ1,Rn) such that infr{‖um + r‖BD + ‖µm + γB(r)|Γ1 ds‖Mb(Γ1,Rn) | r ∈
R0} → ∞ as m→∞, we have dOP ∗∗λ,je(um,µm)→∞. Then there exists a
solution (us,µs) of the problem (OP ∗∗λ,j) in BD(Ω)×Mb(Γ1,Rn). For every
u1 ∈ R0 the field (us + u1, µs + γB(u1)|Γ1ds) ∈ BD(Ω) ×Mb(Γ1,Rn) is
a solution of dOP ∗∗λ,je if and only if � Γs(h∗s + IK)∗(x,−γB(us) ⊗s ν) ds =

� Γs(h∗s + IK)∗(x,−γB(us + u1)⊗s ν) ds (cf. Theorems 4.34 and 4.31 of [6]).
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