
APPLICATIONES MATHEMATICAE
32,1 (2005), pp. 57–67

D. Pommeret (Bruz)

APPROXIMATE POLYNOMIAL EXPANSION
FOR JOINT DENSITY

Abstract. Let (X,Y ) be a random vector with joint probability measure
σ and with margins µ and ν. Let (Pn)n∈N and (Qn)n∈N be two bases of
complete orthonormal polynomials with respect to µ and ν, respectively.
Under integrability conditions we have the following polynomial expansion:

σ(dx, dy) =
∑

n,k∈N
%n,kPn(x)Qk(y)µ(dx)ν(dy).

In this paper we consider the problem of changing the margin µ into µ̃ in this
expansion. That is the case when µ is the true (or estimated) margin and µ̃
is its approximation. It is shown that a new joint probability with new mar-
gins is obtained. The first margin is µ̃ and the second one is expressed using
connections between orthonormal polynomials. These transformations are
compared with those obtained by the Sklar Theorem via copulas. A bound
for the distance between the new joint distribution and its parent is pro-
posed. Different cases are illustrated.

1. Introduction and motivations. If X and Y are two random vari-
ables with probability measures µ and ν and if (Pn)n∈N (resp. (Qn)n∈N)
is a µ (resp. ν) complete orthonormal basis of polynomials, then the joint
density of (X,Y ), say σ, satisfies

σ(dx, dy) =
∑

n,k∈N
%n,kPn(x)Qk(y)µ(dx)ν(dy),(1)

as soon as the series
∑
%n,kPn(x)Qk(y) converges in L2(µ × ν), or equiv-

alently if
∑

n,k∈N %
2
n,k < ∞. The sequence (%n,k) expresses the correlation

between Pn(X) and Qk(Y ); that is, %n,k = E(Pn(X)Qk(Y )).
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Such a representation has many advantages. In particular, estimators of
the coefficients %n,k are easily obtained by empirical polynomial correlations
between X and Y (see [1]). Also, independence between X and Y may be
measured by the use of these coefficients (see [7]). An important case is ob-
tained when the coefficients %n,k vanish for n 6= k. In this case σ is called a
Lancaster distribution. Such bivariate distributions have been studied in [8].
Also, [15] proved that if X and Y are unbounded then the condition %n,k = 0
for n − k > N for some integer N implies that %n,k = 0 for n 6= k; that is,
σ is a Lancaster distribution. In canonical analysis, such a situation is stud-
ied as singular value decomposition (see [2]).

In this paper we wish to investigate the structure of the bivariate prob-
ability measures satisfying (1) by changing their margins. Our purpose is to
keep a polynomial expansion of the joint density function. More precisely,
given any joint distribution σ satisfying a polynomial expansion (1), we
study the consequences of transformations of one margin µ or ν. It is shown
that replacing µ by a probability measure µ̃ in the series (1) yields a new
joint distribution, say σ̃, with a polynomial expansion with respect to its
new margins µ̃ and ν̃. Next our purpose is to determine the second margin ν̃
by using connection coefficients between orthogonal polynomials. A bound
for the distance between the parent joint distribution and the new one will
be evaluated.

This problem of change of margins is motivated by different reasons:

Practical motivation. As an illustration assume that µ is a given mea-
sure, for example a negative binomial probability, and let (Pn)n∈N denote its
associated Meixner polynomials. Assume also that ν and the coefficients %n,k
are known and that σ has the form (1). As an illustration we may consider
the vector (X,Y ) corresponding to the number of accident claims and the
age of insured person for insurance data. Usually X and Y are supposed to
be negative binomial and Gaussian distributed, respectively. It is frequent
to approximate the negative binomial distribution by the Poisson one (see
for instance [16]). Consider an appropriate Poisson approximation of µ, say
µ̃ (for example, µ̃ and µ have common mean). We write this µ ≈ µ̃. Such
an approximation yields the following approximation of σ:

σ(dx, dy) ≈
∑

n,k∈N
%n,kPn(x)Qk(y)µ̃(dx)ν(dy) ≡ σ̃(dx, dy).

Then it is of interest to study the new expression σ̃ and to compare it with σ.
Our purpose is to show that it defines a new joint probability measure with
new margins. A bound for the distance of σ̃ from its parent distribution σ
will be obtained.

Theoretical motivations. An important problem, but without general so-
lution, is the following: given two margins µ and ν with associated orthog-
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onal polynomials Pn and Qn, respectively, do there exist coefficients %n,k
such that (1) defines a joint probability measure? This problem is partially
studied in [15] (see also [13]). It is clear that if X and Y are bounded ran-
dom variables then there exist such coefficients %n,k (for example: choose a
finite family of coefficients). However, if X and Y are unbounded there is
no general condition to ensure the positivity of σ defined in (1).

The theory of copulas introduced in [14] gives another viewpoint on this
problem. If we express a joint distribution function as a combination of
its margins, then the same combination of any margins yields a new joint
distribution function.

Here we wish to investigate the following related problem: if (1) defines
a joint probability measure, do the same coefficients %n,k ensure a new joint
probability measure if we change one margin? The answer is positive and
this approach will be compared with the copula approach.

The paper is organized as follows. In Section 2 changes of margins pre-
serving polynomial expansions are studied. In Section 3 changes of margins
using copulas are examined. In Section 4 a bound for the distance between
the new joint distribution and its parent is obtained. We give some illus-
trations related to connection coefficients in Section 5. In the Appendix we
give a brief exposition of the connection problem for polynomials.

2. Change of margin

2.1. General case. Our purpose is to study the structure of bivariate
distributions satisfying (1). We obtain a method for constructing new joint
distributions with particular margins. The following result may be proved
in the multivariate case in much the same way.

Theorem 1. Let σ be a joint density function satisfying (1) and let
X̃ be a random variable with distribution measure µ̃ such that the series∑
%2
n,kE(P 2

n(X̃)) converges. Then the measure

σ̃(dx, dy) =
∑

n,k∈N
%n,kPn(x)Qk(y)µ̃(dx)ν(dy)(2)

is still a probability measure. Its first margin is µ̃ and the second one is given
by

ν̃(dy) =
∑

k∈N
αkQk(y)ν(dy),(3)

where αk =
∑

n∈N %n,kE(Pn(X̃)).

Proof. By construction we have σ̃ ≥ 0. We now prove that its mass
is equal to 1. Using the orthogonality of the sequence {Qk(x)} and the
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convergence condition we obtain
�
σ̃(dx, dy) =

∑

n,k∈N
%n,k

�
Pn(x) µ̃(dx)

�
Qk(y) ν(dy) =

∑

n∈N
%n,0

�
Pn(x) µ̃(dx).

But %n,0 = E(Pn(X)) = 0 for all n > 0. Hence
�
σ̃(dx, dy) = %0,0 = 1.

The first margin of σ̃ is given by
�
σ̃(dy) =

∑

n,k∈N
%n,kPn(x)µ̃(dx)

�
Qk(y) ν(dy) =

∑

n∈N
%n,0Pn(x) µ̃(dx)

= P0(x)µ̃(dx) = µ̃(dx).

The second margin is given by
�
σ̃(dx) =

∑

n,k∈N
%n,kQk(y)

( �
Pn(x)µ̃(dx)

)
ν(dy),

which establishes the formula.

If the µ̃-orthogonal polynomials, denoted by (P̃n)n∈N, are known we may
simply write

ν̃(dy) =
∑

k∈N
αkQk(y)ν(dy),(4)

where αk =
∑

n∈N %n,kC̃0(n), with C̃k(n) denoting the connection coeffi-
cients between Pn and P̃n; that is, Pn(x) =

∑n
k=0 C̃k(n)P̃k(x) (see Ap-

pendix).
The joint distribution σ̃ can be expressed in the same way. We have

σ̃(dx, dy) =
∑

n,k∈N
%̃n,kP̃s(x)Qk(y)µ̃(dx)ν(dy),(5)

where %̃n,k = %n,k
∑

s≤n C̃s(n). Also

σ̃(dx, dy) =
∑

n,k∈N
%n,k

∑

s≤n
C̃s(n)P̃s(x)Qk(y)/N(y) µ̃(dx)ν̃(dy),(6)

where N(y) is such that ν̃(dy) = N(y)ν(dy) a.e. The associated connection
coefficients appear in (5) and (6). However, from (4), we only need the first
coefficients C̃0 to compute the new margin ν̃. This fact will be illustrated in
Section 5.

2.2. Transformations of Lancaster probabilities. A particularly interest-
ing case is obtained when the orthonormal sequences {Pn(x)} and {Qn(x)}
satisfy the following bi-orthogonality:

E(Pn(X)Qk(Y )) = %nδnk,(7)
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where δnk = 1 if n = k and 0 otherwise. Then (1) becomes

σ(dx, dy) =
∑

n∈N
%nPn(x)Qn(y)µ(dx)ν(dy).(8)

In such a situation σ is called a Lancaster probability and the sequence %n
is referred to as the Lancaster sequence. Lancaster probabilities appear in
Markov theory, canonical analysis (see [6], and references therein) and also
have a role in disjunctive kreaging (see [9]).

Under the condition that the series (%n) converges in l2(N), the polyno-
mial expansion has the simpler form (8) and Theorem 1 may be used. We
just give a reformulation here:

Corollary 2. Let σ be a Lancaster probability satisfying (8). Then, for
all probability measures µ̃, the measure

σ̃(dx, dy) =
∑

n∈N
%nPn(x)Qn(y)µ̃(dx)ν(dy)(9)

=
∑

n∈N

∑

k≤n
%nC̃k(n)P̃k(x)Qn(y)µ̃(dx)ν(dy)

is still a probability measure, where C̃k(n) are the connection coefficients
between Pn and the µ̃ orthonormal polynomials P̃n (see Appendix ). The first
margin of σ̃ is µ̃ and the second one is given by

ν̃(dy) =
∑

n∈N
%nC̃0(n)Qn(Y )ν(dy).(10)

It is remarkable that the diagonal summation in (8) becomes triangular
in (9). Therefore the joint distribution resulting from a change of margin is
not in general a Lancaster probability.

An important fact is that the Lancaster sequence %n can be expressed
in terms of the new margins as follows:

Proposition 3. Let (X̃, Ỹ ) have a new joint distribution σ̃ given in (9).
Then

%n = E(Pn(X̃)Qn(Ỹ ))E(Pn(X̃))−1.

Proof. This follows from the orthogonality of the polynomials Qn.

Thus the coefficients %n express correlations between Pn(X̃) and Qn(Ỹ )
weighted by E(Pn(X̃))−1. Note also that the form of the summation in (9)
easily permits one to truncate the expansion and thus to get estimates.

3. Copula approach. Next it is of interest to compare the change of
margins in Theorem 1 with the Sklar Theorem (see [14]) within the frame
of copulas. This famous result permits one to change marginal distribution
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functions to obtain new joint distribution functions. Note that Sklar’s The-
orem allows any changes of margins although Theorem 1 only ensures one
change of margins (see the counterexample given in Section 5). Obviously,
some cases permit many changes of margins, like the independent case when
σ is the product of µ and ν.

However, in the case of multivariate margins Sklar’s Theorem breaks
down (see [3]). In such a case, when the two margins are multidimensional,
Theorem 1 is valid and then provides a way of generating new joint distri-
butions with fixed multivariate margins.

From the Sklar Theorem (see [10] for a fuller treatment of copulas) it
is well known that if a joint distribution function is expressed in terms of
marginal ones, namely

F (x, y) = C(FX(x), FY (y)),(11)

where C : [0, 1] × [0, 1] → [0, 1] is a copula (that is, C(u, 0) = C(0, v) = 0,
C(u, 1) = C(1, v) = 1 and C is 2-increasing), then changing FX and FY in
such an expression yields a new joint distribution function with some nice
properties (see [14]). We can apply this result to the expansion given in (1).
Write F , FX and FY for the distribution functions associated to σ, µ and
ν, respectively. Then there exists a copula, say C, such that (11) occurs.
Differentiating twice this equality yields (under the condition of existence)

f(x, y) = fX(x)fY (y)C ′′(FX(x), FY (y)),

where f , fX and fY denote the densities associated to σ, µ and ν, respec-
tively. It is required here that the relevant derivatives exist. To simplify
notation we write C ′′ instead of (∂/∂x)(∂/∂y)C. Comparing this expression
with (1) we obtain the following relation:

C ′′(u, v) =
∑

n,k∈N
%n,kPn(F−1

X (u))Qk(F
−1
Y (v)),(12)

assuming that FX and FY are invertible.

Theorem 4. Let σ be a joint density function satisfying (1) and denote
by FX the distribution functions associated to the margins µ. Let X̃ be a ran-
dom variable with distribution measure µ̃ and with distribution function F̃X .
Then the measure

σ̃(dx, dy) =
∑

n,k∈N
%n,kPn(F−1

X (F̃X(x)))Qk(y)µ̃(dx)ν(dy)

is still a probability measure with margins µ̃ and ν.

Proof. Applying Sklar’s Theorem we can change FX into F̃X . Hence

F̃ (x, y) = C(F̃X(x), FY (y)).
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By taking second derivatives we finally obtain a new joint density as

f̃(x, y) = f̃X(x)fY (y)C ′′(F̃X(x), FY (y)),

and using (11) we get

f̃(x, y) = f̃X(x)fY (y)
∑

n,k∈N
%n,kPn(F−1

X (F̃X(x)))Qk(y),

that is,

σ̃(dx, dy) =
∑

n,k∈N
%n,kPn(F−1

X (F̃X(x)))Qk(y)µ̃(dx)ν(dy).

It is important to note that we can also change FY into F̃Y to obtain
a new joint distribution. However, it appears that the orthogonal functions
Pn(F−1

X (F̃X)) are polynomials if and only if there exists a polynomial h
such that F̃ (x) = F (h(x)). Thus, to keep a polynomial expansion of the
new joint distribution the change of the marginal variable X must have the
form X̃ = h−1(X), where h is a polynomial. Very few interesting examples
have this property. For instance we may consider X̃ = −X or X̃ =

√
X or

any affinities. But if the degree of h is ≥ 2 it appears very difficult to obtain
a simple expression for h−1.

4. Distance of a new joint distribution from its parent. It is
natural now to try to measure the distance between models (1) and (2). For
instance, we may consider the case where µ̃(dx) = µ(dx)(1 + p(x)), as in
an Edgeworth expansion. The following proposition shows how the distance
depends of this quantity p(x).

Proposition 5. Let σ be a joint distribution with polynomial expan-
sion (1). Assume that µ̃ is absolutely continuous with respect to µ and write
h = dµ̃/dµ; that is, µ̃(dx) = h(x)µ(dx). Denote by σ̃ the new joint distribu-
tion with margin changed from µ into µ̃. Then

�
|σ − σ̃|(dx, dy) ≤

( �
h(x) µ̃(dx)− 1

)1/2 ∑

n,k∈N
|%n,k|.

Proof. We have
�
|σ − σ̃|(dx, dy) =

∑

n,k∈N
|%n,k|

�
|Qk(y)| ν(dy)

�
|Pn(x)| |µ− µ̃|(dx)

≤
∑

n,k∈N
|%n,k|

�
|Pn(x)| |1− h(x)|µ(dx)

≤
∑

n,k∈N
|%n,k|

( �
(1− h(x))2 µ(dx)

)1/2
,

which establishes the formula.



64 D. Pommeret

Example 1. Let µ and µ̃ be Gaussian with unit variance and with
two different means 0 and m. Consider the Lancaster distribution σ with
margins µ = ν with correlation −1 < t < 1. The Lancaster sequence is
given by %n = tn (see [6]) and the associated orthonormal polynomials are
Hermite polynomials. Then we have h(x) = exp(mx−m2/2) and

( �
h(x) µ̃(dx)− 1

)1/2
= (exp(m2)− 1)1/2.

We obtain �
|σ − σ̃|(dx, dy) ≤ (exp(m2)− 1)1/2(1− |t|)−1.

Example 2. Let µ be a normal distribution and let

µ̃(dx) = µ(dx)
{

1 +
J∑

j=1

αjHj(x)
}

be an Edgeworth expansion, where Hj are Hermite polynomials and αj are
suitable constants. Then

�
|σ − σ̃|(dx, dy) ≤

J∑

j=1

|αj |
∑

n,k∈N
|%n,k|.

5. Illustrations

5.1. Calculating some connection coefficients. We use the recurrence
relations given in [11] to find the values of some coefficients. The important
simplification is that we only need the coefficients C̃0. Some examples are
reported in Table 1, where M (a,b)

n , Can,K
(a,b)
n are the Meixner, Charlier and

Krawtchouk polynomials, respectively (see [5] for notation and properties of
orthogonal polynomials) and where (x)n = x(x+ 1) · · · (x+ n− 1) denotes
the Pochhammer symbol.

Table 1. Connection coefficients between polynomials

Polynomials C0(n)

C
(a)
n → C

(b)
n (b− a)n

M
(1,a)
n →M

(1,b)
n n{(b− a)/(1− a)(1− b)}n

K
(a)
n (·, N)→ k

(b)
n (·, N) (N + 1)n(b− a)n

M
(c,1)
N → C

(b)
n (−b)n(n+ 1)!/(c)n

5.2. Examples with connection coefficients. Consider a joint distribu-
tion with margins µ = P(m0) (Poisson with mean m0) and ν = NB(1, p)
(corresponding to the geometric distribution) and with expansion

σ(dx, dy) =
∑

n,k∈N
%n,kC

(m0)
n M (p,1)

n P(m0)(dx)NB(1, p)(dy).(13)
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Poisson to Poisson. Changing µ into a new Poisson margin P(m1) yields,
from Table 1, a new joint distribution with margins µ̃ = P(m1) and

ν̃(dy) =
∑

n,k∈N
%n,k(m0 −m1)nM (p,1)

n NB(p, 1)(dy).

Negative binomial to Poisson. In (13), changing NB(1, p) into P(m1)
yields a new joint distribution with new margins ν̃ = P(m1) and

µ̃(dx) =
∑

n,k∈N
%n,k(−m0)n(n+ 1)!/(p)nC(m0)

n P(m0)(dx).

5.3. Counterexample. We give here a counterexample to point out the
limitations of Theorem 1. It proves that changing both µ and ν in (1) does
not yield a new joint distribution in general.

Consider a Lancaster distribution with margins µ = ν distributed as
a Gaussian N (0, 1) with correlation −1 < t < 1. Let Pn = Qn be the
associated orthonormal Hermite polynomials. Changing both µ and ν into
arbitrary new measures µ̃ = ν̃ = ϕ in (8) yields

σ̃(dx, dy) =
(

1 +
∑

n>0

%nPn(x)Pn(Y )
)
ϕ(dx)ϕ(dy),

where %n = tn. Then
� �
σ̃(dx, dy) = 1 +

∑

n>0

%n

{ �
Pn(x)ϕ(dx)

}2
> 1,

as soon as t > 0, and σ̃ is a positive measure but not with mass equal to 1.

Appendix: Connection polynomials. Consider two sequences of
polynomials {Pn(x)} and {Qn(x)}; that is, each element Pn(x) (resp. Qn(x))
is an nth degree polynomial in x. The connection problem between them
consists in finding the coefficients Ck(n) in the following expression:

Pn(x) =
n∑

k=0

Ck(n)Qk(x).(14)

When both sequences are orthonormal, i.e.
�

E

Pn(x)Pk(x)µ(dx) =
{

1 if n = k,

0 otherwise,
�

E

Qn(x)Qk(x) ν(dx) =
{

1 if n = k,

0 otherwise,

they satisfy three-term recurrence relations

xPn(x) = anPn+1(x) + bnPn(x) + cnPn−1(x),(15)

xQn(x) = αnQn+1(x) + βnQn(x) + γnQn−1(x).(16)
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Then, multiplying (14) by x, using (15)–(16), and identifying with respect
to Qn yields

(17) (βk − bn)Ck(n) + αk−1Ck−1(n)

+ γk+1Ck+1(n)− anCk(n+ 1)− cnCk(n− 1) = 0.

Recurrence relations for connection coefficients are studied in various pa-
pers (see [11], [4], [12]). Note that in Theorem 1 we only need particular
connection coefficients which simplify the use of the relation (17).
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