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AXIOMATIZATION OF VALUES OF COOPERATIVE
GAMES USING A FAIRNESS PROPERTY

Abstract. We propose new systems of axioms which characterize four
types of values of cooperative games: the Banzhaf value, the Deegan–Packel
value, the least square prenucleolus and the least square nucleolus. The
common element used in these axiomatizations is a fairness property. It
requires that if to a cooperative game we add another game in which two
given players are symmetric, then their payoffs change by the same amount.
In our analysis we will use an idea applied by R. van den Brink (2001) to
obtain an axiomatic characterization of the Shapley value.

Introduction. The article is devoted to axiomatizations of four types
of values of cooperative games: the Banzhaf value, the Deegan–Packel value,
the least square prenucleolus and the least square nucleolus. In contrast to
the existing well known axiomatic theorems concerning these values, we
use a fairness property as a common feature of all systems of axioms. This
property requires that if to a cooperative game we add another game in
which two given players are symmetric, then their payoffs change by the
same amount.

Fairness was used by R. van den Brink (2001) to axiomatize the Shapley
value. Our article is in a sense a continuation of his research. We will show
that by the use of fairness one can obtain a relatively simple collection of
conditions describing the four values mentioned above. In the case of linear
values we can omit additivity. We employ the dummy player, amalgamation
and fairness axioms to characterize the Banzhaf value. In the case of the
Deegan–Packel value the system of axioms includes the quasi-efficiency, zero-
player and fairness properties. Moreover, we will prove that fairness is a
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good tool to characterize the least square nucleolus, which is not additive
and probably for this reason has not been axiomatized yet. This has turned
out to be a simple consequence of the axiomatization of the least square
prenucleolus, which consists of the efficiency, additivity and fairness axioms
and a new inter-game balance axiom. All our new results are presented in
Theorems 6–9 at the beginning of Section 2.

1. Definitions and fundamental facts. In this section we introduce
some main notions, assumptions and relevant facts of cooperative game the-
ory.

1.1. Cooperative games and axioms. Let n be a natural number, fixed
throughout the paper. An n-person transferable utility cooperative game
(briefly: TU-game) is defined by the set of players N = {1, . . . , n} (a grand
coalition) and by a function v : 2N → R with v(∅) = 0, called the character-
istic function of the game. Therefore, when N is fixed, a TU-game (N, v) can
be identified with v. A game v is called additive if v(S ∪K) = v(S) + v(K)
for any disjoint sets S,K ⊆ N , called coalitions. The cardinality of a coali-
tion S will be denoted by |S|. The unanimity game uT , T ⊆ N , is such that
uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise, for any S ⊆ N .

A value of the game v is defined to be a function ϕ(v)=(ϕ1(v), . . . , ϕn(v))
which assigns to the game v a vector from Rn. An n-dimensional vector
x = (x1, . . . , xn) ∈ Rn is called a preimputation if

n∑

i=1

xi = v(N).

If, additionally, xi ≥ v({i}) for all i ∈ N , then x is called an imputation. The
sets of all preimputations and imputations of the game v will be denoted by
P and PI, respectively. Let GN be the set of all games v.

Now we formulate several fundamental properties used most often in
various axiomatic theorems. They are basic for our considerations. The first
group of Axioms 1–7 is standard.

Let ϕ be a value on GN and v ∈ GN be any n-person game.

Axiom 1 (Efficiency). A value ϕ is efficient if for any game v,
n∑

i=1

ϕi(v) = v(N).

This means that the vector ϕ(v) is a preimputation.

Axiom 2 (Super-efficiency). A value ϕ is super-efficient if it is efficient
and the vector ϕ(v) is an imputation for any game v for which the set PI
is nonempty.
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Axiom 3 (Equal treatment). If for two different players i, j ∈ N and all
S ⊆ N \ {i, j} we have v(S ∪ {i}) = v(S ∪ {j}) (in this case players i and j
are called symmetric) then ϕi(v) = ϕj(v).

Let v ∈ GN and σ be a permutation of the set N . We define a new game
σv by σv(σ(K)) = v(K) for any K ⊆ N , where σ(K) = {σ(i) : i ∈ K}.

Axiom 4 (Symmetry). A value ϕ is symmetric if ϕσ(i)(σv) = ϕi(v) for
any i ∈ N , any game v, and any permutation σ of the set N .

Note that symmetry implies equal treatment (cf. L. S. Shapley (1953)).

Axiom 5 (Additivity). A value ϕ is additive if ϕ(v+w) = ϕ(v)+ϕ(w) for
any two n-person cooperative games v, w, where (v+w)(S) = v(S) +w(S)
for any S ⊆ N .

Axiom 6 (Dummy player property). If i ∈ N is a dummy player of
the game v, i.e. if v(S ∪ {i}) = v(S) + v({i}) for any S ⊆ N \ {i}, then
ϕi(v) = v({i}).

Axiom 7 (Inessential game property). If v is an additive game then
ϕi(v) = v({i}) for any i ∈ N .

The next axiom describes an interesting property which is a common
feature of all the values of cooperative games analyzed in the paper. It was
introduced by R. van den Brink (2001) to get a new axiomatization of the
Shapley value.

Axiom 8 (Fairness). A value ϕ has the fairness property if for any
two symmetric players i and j in a game w we have ϕi(v + w) − ϕi(v) =
ϕj(v+w)−ϕj(v) for any game v, i.e. the payoffs of both players change by
the same amount.

E. Lehrer (1988) introduced the notion of amalgamation of two players
and the corresponding new axiom in the description of the Banzhaf value.

Definition 1 (E. Lehrer (1988)). An amalgamation of two different
players i, j of an n-person game v is a transformation from the game v
into the (n− 1)-person game v(ij) with the set of players (N \ {i, j}) ∪ {p},
where p denotes a player represented by the coalition {i, j}. The character-
istic function of this game is defined by

v(ij)(K) =
{
v(K) if p /∈ K,

v((K \ {p}) ∪ {i, j}) if p ∈ K,

for any set K ⊆ (N \ {i, j}) ∪ {p}.
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To formulate the next axiom we need to introduce the set of all games
v with grand coalition S ⊆ N , that is,

G̃N =
⋃

S⊆N
GS .

Axiom 9 (Amalgamation property). For any two different players i, j∈
N and any v ∈ G̃N , ϕp(v(ij)) = ϕi(v) + ϕj(v).

The next two axioms were used in the axiomatic description of the
Deegan–Packel value (J. Deegan and E. W. Packel (1979)).

Axiom 10 (Quasi-efficiency). A value ϕ is quasi-efficient if for any
game v,

n∑

i=1

ϕi(v) =
∑

S⊆N
v(S).

Axiom 11 (Zero-player property). If i ∈ N is a zero-player of a game v
then ϕi(v) = 0. (A player i ∈ N is called a zero-player if for any K ⊆ N ,
v(K) = 0 whenever i ∈ K.)

L. M. Ruiz et al. (1996) proposed a new value, the least square prenu-
cleolus, where the next axiom was used.

For a game v and i ∈ N , we define

gi(v) =
∑

K⊆N
i∈K

v(K).

Axiom 12 (Average marginal contribution monotonicity (AMC)). For
any i, j ∈ N and any game v, if gi(v) ≥ gj(v) then ϕi(v) ≥ ϕj(v).

The last axiom is new. It is applied in the axiomatization of the least
square prenucleolus and the least square nucleolus (values defined by L. M.
Ruiz et al. (1996)), proposed in the present paper.

Axiom 13 (Inter-game balance). Let v, w ∈ GN . For any i, j ∈ N if
ϕi(v + w) = ϕj(v + w), then ϕi(v)− ϕj(w) = ϕj(v)− ϕi(w).

This property means that if the values of two players in the sum of two
games are equal then the differences between the values of these players
in the respective games are opposite (or, in other words, the sums of the
values for these players in the two games are equal). It is easy to check
that additivity implies inter-game balance. Let ϕ be an additive solution
on GN . Then for any v, w ∈ GN and i, j ∈ N if ϕi(v+w) = ϕj(v+w) then
ϕi(v)+ϕi(w) = ϕi(v+w) = ϕj(v+w) = ϕj(v)+ϕj(w), which is equivalent
to Axiom 13. Therefore the inter-game balance axiom seems weaker than
additivity. We show later on that it is satisfied by the least square nucleolus,
which is not additive.
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1.2. Basic values and their properties. We first recall formulae for some
most important types of values of cooperative games, and next quote some
relevant theorems.

Definition 2 (L. S. Shapley (1953)). The Shapley value of player i ∈ N
in a game v ∈ GN is defined as

Shi(v) =
∑

S⊆N

|S|!(n− |S| − 1)!
n!

(v(S ∪ {i})− v(S)).

Definition 3 (J. F. Banzhaf III (1965)). The Banzhaf value of player
i ∈ N in a game v ∈ GN is defined as

Bi(v) =
1

2n−1

∑

S⊆N
(v(S ∪ {i})− v(S)).

Definition 4 (J. Deegan and E. W. Packel (1979)). The Deegan–Packel
value of player i ∈ N in a game v ∈ GN is defined by

DPi(v) =
∑

K⊆N
i∈K

v(K)
|K| .

Denote by S1, . . . , S2n all the subsets of a set N . For a vector x =
(x1, . . . , xn) ∈ Rn and a coalition S we define

x(S) =
∑

i∈S
xi.

A vector r(v, x) ∈ R2n with coordinates of the form

ri(v, x) = v(Si)− x(Si) for i = 1, . . . , 2n

is called the excess vector.

Definition 5 (L. M. Ruiz et al. (1996)). The least square prenucleolus
(briefly: LS-prenucleolus) of a game v ∈ GN is a preimputation x of this
game which satisfies

2n∑

i=1

(ri(v, x)− r(v, x))2 = min
y∈P

2n∑

i=1

(ri(v, y)− r(v, y))2,

where r(v, x) denotes the arithmetic mean of all coordinates of r(v, x).

Definition 6 (L. M. Ruiz et al. (1996)). The least square nucleolus
(briefly: LS-nucleolus) of a game v ∈ GN is an imputation x of this game
which satisfies

2n∑

i=1

(ri(v, x)− r(v, x))2 = min
y∈PI

2n∑

i=1

(ri(v, y)− r(v, y))2.
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Now we will quote several theorems characterizing basic values defined
above. During the last fifty years many axiomatizations based on various
sets of properties have been formulated and proved. We have chosen only
those results which will be useful in our research.

The well known axiomatization of the Shapley value (L. S. Shapley
(1953)) states that Sh(v) is the unique value satisfying the efficiency, dummy
player, equal treatment and additivity axioms. R. van den Brink (2001)
proved that equal treatment and additivity can be replaced by the fairness
axiom.

Theorem 1. A value ϕ on GN satisfies the efficiency , dummy player
and fairness axioms if and only if ϕ(v) = Sh(v) for all v ∈ GN .

Remark. The first axiomatization of the Shapley value without the
additivity axiom was given by H. P. Young (1985). Moreover, R. van den
Brink (2001) noted some connections between fairness and other axioms. We
state them together with a third simple property in the following theorem.

Theorem 2. Let ϕ be a value on GN .

(a) If ϕ satisfies the equal treatment and additivity axioms, then it also
satisfies the fairness axiom.

(b) If ϕ satisfies the dummy player and fairness axioms, then it also
satisfies the equal treatment axiom.

(c) If ϕ satisfies the zero-player and fairness axioms, then it also satisfies
the equal treatment axiom.

In general, the Banzhaf value B(v) is not efficient. On account of this
difficulty, the first axiomatization of this value was given relatively late.
E. Lehrer based his important result on the amalgamation axiom.

Theorem 3 (E. Lehrer (1988)). The Banzhaf value ϕ(v) = B(v) for all
v ∈ GN is the unique value on G̃N which satisfies the dummy player , equal
treatment , amalgamation and additivity axioms.

Theorem 4 (J. Deegan and E. W. Packel (1979)). The value ϕ(v) =
DP(v) for all v ∈ GN is the unique value on GN which satisfies the symme-
try , quasi-efficiency , zero-player and additivity axioms.

L. M. Ruiz et al. (1996) proved that for any v ∈ GN and any player
i ∈ N the LS-prenucleolus L(v) can be expressed by

(1) Li(v) =
v(N)
n

+
1

n2n−2

(
ngi(v)−

∑

d∈N
gd(v)

)
.

It is worth noting that the LS-prenucleolus is the additive normalization
of the Banzhaf value, i.e., for i ∈ N ,
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Li(v) = Bi(v) +
(
v(N)−

n∑

d=1

Bd(v)
)/
n.

In the article by L. M. Ruiz et al. (1996) the following was proved.

Theorem 5. The LS-prenucleolus is the unique value on GN which sat-
isfies the efficiency , average marginal contribution monotonicity , inessential
game and additivity axioms.

The fact that the LS-nucleolus is not additive is the main reason for the
lack of its effective axiomatization. In this article we will try to provide some
consistent set of axioms to characterize this value.

The LS-nucleolus can be calculated using the following algorithm.

Algorithm 1 (L. M. Ruiz et al. (1996)). Construct a sequence of pairs
(xi, Ti), i = 1, 2, . . ., where xi = (xi1, . . . , xin) is a preimputation and Ti is
a subset of N inductively defined by

(a) x1 := L(v) and Ti := {j ∈ N : xij < v({j})},
(b) xi+1 is the solution of the problem

min
∑

S⊆N
(v(S)− y(S))2

such that
∑

j∈N
yj = v(N) and yj = v({j}) ∀j ∈Mi =

i⋃

k=1

Tk.

The sequence terminates when Ti = ∅. This procedure ends after at most
n− 1 steps and the final vector xi is the LS-nucleolus. One can easily check
that the solution xi+1 = (y1, . . . , yn) of the problem in (b) for j /∈ Mi is of
the form

xi+1,j =
v(N)− xi(Mi)

n− |Mi|
+

1
(n− |Mi|)2n−2

(
(n− |Mi|)gi(v)−

∑

k/∈Mi

gk(v)
)

for every i = 2, 3, . . . .

2. Main results. As mentioned earlier, the fairness axiom is a use-
ful property describing a feature of “just” cooperative games and used to
construct a specific axiomatization of the Shapley value (cf. Theorem 1).
It turns out, however, that this axiom is also very helpful in an axiomatic
description of other values: the Banzhaf value, the Deegan–Packel value, the
LS-prenucleolus and the LS-nucleolus. As those values are completely dif-
ferent from one another, this can be rather surprising. Below we formulate
Theorems 6–9, describing the four values axiomatically with the use of the
fairness axiom.
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The first theorem shows that in the classical axiomatic characterization
of the Banzhaf value (cf. Theorem 3) the equal treatment and additivity
properties can be replaced by the fairness axiom.

Theorem 6. A value ϕ on G̃N coincides with the Banzhaf value if and
only if it satisfies the amalgamation, dummy player and fairness axioms.

In our second theorem a new axiomatization of the Deegan–Packel value
consists of two axioms used in the classical approach (cf. Theorem 3) and
the fairness property instead of symmetry and additivity.

Theorem 7. The Deegan–Packel value is the unique value on GN which
satisfies the quasi-efficiency , zero-player and fairness axioms.

The third theorem gives an axiomatization of the LS-prenucleolus. It is
based on the fairness axiom and on the inter-game balance property (cf.
Axiom 13).

Theorem 8. A value ϕ on GN satisfies the efficiency , inter-game bal-
ance, average marginal contribution monotonicity , fairness and inessential
game axioms if and only if ϕ is the LS-prenucleolus.

The last theorem gives an axiomatic description of the LS-nucleolus; it is
a simple consequence of Theorem 8. This is the first effective axiomatization
of this value.

Theorem 9. A value ϕ on GN satisfies the super-efficiency , inter-game
balance, average marginal contribution monotonicity , fairness and inessen-
tial game axioms if and only if ϕ is the LS-nucleolus.

The proofs of Theorems 6–9 are given in Subsections 2.1–2.4.

2.1. Proof of Theorem 6. We begin with the following lemma.

Lemma 1. Assume that a value ϕ on G̃N satisfies the amalgamation,
dummy player and fairness axioms. Then for any nonempty coalition T ⊆N ,
unanimity game uT and any constant c,

(2) ϕi(c · uT ) =
{
c/2|T |−1 if i ∈ T,
0 if i /∈ T.

Proof. The proof is similar to the corresponding proofs for other ax-
iomatizations (A. S. Nowak (1997), for example). It will be carried out by
induction on t, 1 ≤ t ≤ n. First notice that ϕi(c·uT ) of the form (2) coincides
with the Banzhaf value Bi(ci · uT ). This follows easily from Definition 3.

Formula (2) holds for |T | = 1, because then each player in the game
uT is dummy. Suppose that it is true for some n and for any coalition T
with |T | = t < n. Let ωT be an n-person unanimity game with |T | =
t + 1. Amalgamate some two different players i, j ∈ T . Then according to



Values of cooperative games 77

Definition 1, ωT (ij) = ωT ∗ is the n-person unanimity game of the coalition
T ∗ = (T \ {i, j}) ∪ {p} with |T ∗| = t.

By the induction hypothesis ϕp(c · ωT ∗) = c/2|T
∗|−1 = c/2t−1 and ac-

cording to the amalgamation property ϕi(c · ωT ) + ϕj(c · ωT ) = c/2t−1.
The fairness and dummy player axioms imply equal treatment (by Theo-

rem 2(b)). Hence, since players i and j are symmetric in the game c ·ωT , we
have ϕi(c ·ωT ) = ϕj(c ·ωT ), and consequently, ϕi(c ·ωT ) = c/2t = c/2|T |−1

for i ∈ T .
On the other hand, the dummy player axiom implies that ϕi(c ·ωT ) = 0

if i 6∈ T . Therefore, by the induction principle, formula (2) holds. Thus
ϕ(c · uT ) = B(c · uT ) for any unanimity game uT and any real c, ending the
proof of the lemma.

In the proof of the theorem, we will use the game graph method proposed
by R. van den Brink (2001) for the Shapley value. For completeness we
repeat some arguments from that paper.

(⇒) The Banzhaf value satisfies the amalgamation and dummy players
axioms (cf. Theorem 3). Because it is additive and has the equal treatment
property, according to Theorem 2(a), it also satisfies fairness.

(⇐) Fix a value ϕ on G̃N and assume that it has all the properties
mentioned in the theorem.

We will prove that ϕ = B. It is clear that ϕ = B for all one-player games
(in this case v = c · u{i} for some real number c). Suppose that ϕ = B for
all m-person games where m ≤ n − 1. Let then v be an n-person game. It
can be uniquely represented as a linear combination of unanimity games (cf.
L. S. Shapley (1953)):

(3) v =
∑

S⊆N
ηSuS ,

where ηS are constants. Let δ(v) be the number of nonzero coefficients ηS
in (3). We will use induction on δ(v).

If δ(v) = 0, then v is the null game, i.e. v(S) = 0 for all S ⊆ N . The
dummy player property implies that ϕi(v) = 0 = Bi(v) for any i ∈ N .
If δ(v) = 1 then v = ηSuS for some S ⊆ N with ηS 6= 0. Then we have
ϕi(v) = Bi(ηSuS) for any i ∈ N .

Now assume that ϕ(z) is uniquely determined and coincides with B(z)
for all games z ∈ GN with δ(z) ≤ k (k ≥ 1), and let v be any n-person game
with δ(v) = k+ 1. Then δ(v) ≥ 2 and n ≥ 2. Put ∆(v) = {S ⊆ N : ηS 6= 0}.
We introduce the following auxiliary definition.

Definition 7. Define the graph (N,<v) as follows: {i, j} ∈ <v if and
only if i, j ∈ N , i 6= j and there exists a set S ∈ ∆(v) with {i, j} ⊆ S
or {i, j} ∩ S = ∅. A coalition K ⊆ N is said to be connected in <v if
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either card(K) = 1 or for any i, j ∈ K, i 6= j, there is a sequence of
players p1, . . . , pq such that p1 = i, pq = j and {pr, pr+1} ∈ <v for all
r ∈ {1, . . . , q−1}. A connected coalitionK is a component in <v if {i, j} /∈ <v
whenever i ∈ K and j ∈ N \K.

The rest of the proof will be divided into two cases.

Case 1: N is a component in <v, i.e. (N,<v) is a connected graph. Let
ζ(v) = {i ∈ N : ηS 6= 0 for some S 3 i}. Fix any j ∈ ζ(v) and let S0 = {j}.
For b ∈ N we define recursively the sets

(4) Sb =
{
i ∈ N \

b−1⋃

µ=0

Sµ : there exists an h ∈ Sb−1 such that {i, h} ∈ <v
}
.

Clearly, Sr ∩ St = ∅ for r 6= t. Suppose that N \⋃b−1
µ=0 Sµ 6= ∅ and Sb = ∅.

Then for any i ∈ N \⋃b−1
µ=0 Sµ and h ∈ ⋃b−1

µ=0 Sµ we have {i, h} /∈ <v, which

is impossible, because N is a component in <v. Thus N \⋃b−1
µ=0 Sµ = ∅.

Therefore the finiteness of N implies that there exists an m ∈ N such
that S0, S1, . . . , Sm is a partition of N consisting of nonempty sets.

Let ϕj(v) = a for some a ∈ R and let aj = 0. Therefore we can put

ϕi(v) = a+ ai, i ∈ N,
for some ai. Clearly, the set {ai : i ∈ S0} is uniquely determined, since
S0 = {j} and aj = 0. Suppose now that all ah for h ∈ St−1, for some t ≥ 1,
have been uniquely determined.

For any fixed i ∈ St, there exist h ∈ St−1 and S ∈ ∆(v) such that
{i, h} ⊆ S or {i, h} ∩ S = ∅. Then players i, h are symmetric in the game
ηSuS and from the fairness property we have ϕi(v)−ϕi(v−ηSuS) = ϕh(v)−
ϕh(v − ηSuS). Hence,

a+ ai = ϕi(v) = ϕh(v)− ϕh(v − ηSuS) + ϕi(v − ηSuS)

= a+ ah − ϕh(v − ηSuS) + ϕi(v − ηSuS)

and therefore ai = ah − ϕh(v − ηSuS) + ϕi(v − ηSuS). However, by our
main induction hypothesis (i.e. δ(v − ηSuS) = k) we have ϕh(v − ηSuS) =
Bh(v − ηSuS) and ϕi(v − ηSuS) = Bi(v − ηSuS). It follows, therefore, that
ai is uniquely determined.

Amalgamate now players i and h. Then the amalgamation axiom and
induction hypothesis imply

2a+ ai + ah = ϕi(v) + ϕh(v) = ϕp(v(ih)) = Bp(v(ih)).

Consequently, also a = (Bp(v(ih)) − ai − ah)/2 is uniquely determined.
Summarizing, all values ϕi(v), i = 1, . . . , n, are uniquely determined. Thus
ϕi(v) = Bi(v) for any i = 1, . . . , n, because B(v) satisfies the three axioms
considered in Theorem 6 (cf. Theorems 3 and 2(a)).
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Case 2: N is not a component in <v. Then (N,<v) is not a connected
graph. This implies that <v has at least two components. Moreover, any
distinct components are disjoint. We will prove that <v has exactly two
components. Suppose B1, B2 and B3 are three distinct components in <v.
Because δ(v)≥2 we have ∆(v) 6= ∅. Without loss of generality we can assume
that there exists S ∈ ∆(v) such that S ⊆ B3. If i ∈ B1 and j ∈ B2 then
{i, j} ∩ S = ∅ since different components are disjoint. But then {i, j} ∈ <v,
yielding a contradiction with B1, B2 being distinct components in <v.

Let S and T be two components in <v. Then S ∩ T = ∅. If S ∪ T 6= N ,
then for i ∈ S, j ∈ T and h ∈ N \(S∪T ) we have {{i, h}, {j, h}} ⊆ <v, which
is a contradiction with T and S being components in <v. Because δ(v) ≥ 2,
v is the sum of two multiplied unanimity games, i.e. v = ηSuS+ηTuT , where
ηS 6= 0 and ηT 6= 0.

We will analyze two subcases according to the cardinality of the set N .
First let n ≥ 3. Without loss of generality we can assume that |S| ≥ 2.

Take i ∈ S and j ∈ T and define the game ξ ∈ GN as

ξ = v + ηSu(S\{i})∪{j} = ηSuS + ηSu(S\{i})∪{j} + ηTuT .

Now we determine ϕ(ξ). Let ϕj(ξ) = a. By fairness (1) we have ϕi(ξ)−
ϕi(ηTuT ) = ϕj(ξ) − ϕj(ηTuT ). We know by (2) that ϕi(ηTuT ) = 0 and
ϕj(ηTuT ) = ηT /(2|T |−1). This way, ϕi(ξ) = ϕj(ξ) − ϕj(ηTuT ) + ϕi(ηTuT )
= a− ηT /(2|T |−1). The dummy player axiom implies that

ϕh(ηSuS + ηSu(S\{i})∪{j}) = 0 for h ∈ T \ {j}.
Fairness (2) and the fact that δ(ηSu(S\{i})∪{j}) = 1 imply that for h ∈

T \ {j},
ϕj(ηSuS+ηSu(S\{i})∪{j}) = ϕh(ηSuS+ηSu(S\{i})∪{j})−ϕh(ηSu(S\{i})∪{j})

+ ϕj(ηSu(S\{i})∪{j}) = ηS/2|S|−1.

Thus, for any h ∈ T \ {j} by fairness (3) we have

ϕh(ξ) = ϕj(ξ)− ϕj(ηSuS + ηSu(S\{i})∪{j}) + ϕh(ηSuS + ηSu(S\{i})∪{j})

= a− ηS/2|S|−1.

For any h ∈ S \ {i} by fairness (4) we have ϕh(ξ) − ϕh(ηSu(S\{i})∪{j})
= ϕi(ξ) − ϕi(ηSu(S\{i})∪{j}). We know that ϕi(ηSu(S\{i})∪{j}) = 0 and
ϕh(ηSu(S\{i})∪{j}) = ηS/2|S|−1 for any h ∈ S \ {i}. Thus

(1) Players i and j are symmetric in the game ηSuS + ηSu(S\{i})∪{j}.
(2) Players h and j are symmetric in the game ηSuS .
(3) Players h and j are symmetric in the game ηT uT .
(4) Players i and h are symmetric in the game v.
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ϕh(ξ) = ϕi(ξ)− ϕi(ηSu(S\{i})∪{j}) + ϕh(ηSu(S\{i})∪{j})

= a− ηT /2|T |−1 + ηS/2|S|−1

for any h ∈ S \ {i}.
We can now recapitulate our considerations as follows:

(5) ϕh(ξ) =





a if h = j,

a− ηT /2|T |−1 if h = i,

a− ηS/2|S|−1 if h ∈ T \ {j},
a− ηT /2|T |−1 + ηS/2|S|−1 if h ∈ S \ {i}.

Let i 6= θ ∈ S. Amalgamate players h and θ. Then θ ∈ S \ {i} and by
the amalgamation axiom as well as the induction hypothesis we have

Bp(ξ(hθ)) = ϕp(ξ(hθ)) = ϕh(ξ) + ϕθ(ξ)

=





2a− ηT /2|T |−1 + ηS/2|S|−1 if h = j,

2a− ηT /2|T |−2 + ηS/2|S|−1 if h = i,

2a− ηT /2|T |−1 if h ∈ T \ {j},
2a− ηT /2|T |−2 + ηS/2|S|−2 if h ∈ S \ {i}.

Calculating a in each of these cases we obtain

(6) ϕh(ξ) =





Bp(ξp)/2 + ηT /2|T | − ηS/2|S| if h = j,

Bp(ξp)/2 + ηT /2|T |−1 − ηS/2|S| if h = i,

Bp(ξp)/2 + ηT /2|T | if h ∈ T \ {j},
Bp(ξp)/2 + ηT /2|T |−1 − ηS/2|S|−1 if h ∈ S \ {i}.

Now we must determine the value ϕi(v), i ∈ N . Let ϕj(v) = b. Fairness
and the dummy player property imply equal treatment (by Theorem 2(b))
and therefore ϕh(v) = b for all h ∈ T . For any h ∈ S\{i} by fairness (players
h and j are symmetric in the game ηSu(S\{i})∪{j}) we have ϕh(v)−ϕh(ξ) =
ϕj(v)− ϕj(ξ), and by (6)

ϕh(v) = ϕj(v)− ϕj(ξ) + ϕh(ξ) = b+ (ηT /2|T |−1 − ηS/2|S|−1)/2.

From Theorem 2(b) we can also conclude that ϕh(v) = ϕd(v) for all d ∈ S,
since any two players in S are symmetric in the game v. This way

(7) ϕi(v) =
{
b+ ηT /2|T | − ηS/2|S| if i ∈ S,

b if i ∈ T .
Now, amalgamate two players i ∈ S and j ∈ T . Then according to

the amalgamation axiom and induction hypothesis we obtain Bp(v(ij)) =
ϕi(v)+ϕj(v) = 2b+ηT /2|T |−ηS/2|S|, whence b = Bp(v(ij))/2−ηT /2|T |+1 +
ηS/2|S|+1. Therefore, it follows by (7) that ϕi(v) is uniquely determined for
any i ∈ N , when n ≥ 3.
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Suppose now that n = 2. Let N = {1, 2} and repeat the considerations
of the previous subcase with obvious modifications (|S| = |T | = 1).

Thus ϕ(v) is uniquely determined and because it satisfies all axioms
mentioned in the theorem, we also have ϕ(v) = B(v), as in Case 1.

2.2. Proof of Theorem 7. In the proof we again apply the graph method
using a new system of basic games in R2n instead of unanimity games. The
idea is similar to the standard R. van den Brink method.

(⇒) The Deegan–Packel value (DP) has the quasi-efficiency and zero-
player properties (cf. Theorem 4). Because it also satisfies equal treat-
ment (an easily verifiable fact) and additivity, it satisfies fairness (by Theo-
rem 2(a)).

(⇐) Fix a value ϕ on GN and assume that it satisfies all the three
properties appearing in Theorem 7. For S ⊆ N , let wS be a basic game, i.e.

(8) ws(K) =
{

1 if K = S

0 if K 6= S
for any K ⊆ N .

Then according to quasi-efficiency, zero-player and equal treatment (a con-
sequence of Theorem 2(b)), we have

(9) ϕi(c · ws) =
{
c/|S| if i ∈ S
0 if i 6∈ S

for any constant c.

We will prove that ϕ = DP. It is clear that ϕ = DP for all one-player
games. Suppose that ϕ = DP for all m-person games where m ≤ n− 1, and
let v be any n-person game. It is known (cf. J. Deegan and E. W. Packel
(1979)) that v can be uniquely represented as a linear combination

(10) v =
∑

S⊆N
cSwS ,

where cS are constants. Let d(v) be the number of nonzero coefficients cS
in (10). We will use induction on d(v).

If d(v) = 0, then by the zero-player axiom, ϕi(v) = 0 = DPi(v) for
any i ∈ N . If d(v) = 1 then v = cS · wS for some S ⊆ N . By earlier
conclusions we have ϕi(v) = cS/|S| = DPi(cS · wS) for any i ∈ S and
ϕi(v) = 0 = DPi(cS · wS) for any i ∈ N \ S.

The game graph in Subsection 2.1 was constructed for the structure of
unanimity games. It is easy to obtain a similar construction for the repre-
sentation consisting of the basic games {wS}. Assume that ϕ(z) coincides
with DP(z) for all games z ∈ GN with d(z) ≤ k (k ≥ 1) and let d(v) = k+1.
Then d(v) ≥ 2 and n ≥ 2. Let D(v) = {S ⊆ N : cS 6= 0}. Define the graph
(N,Γv) as in Definition 7 with D(v) instead of ∆(v). We consider two cases.

Case 1: N is a component in Γv. Let ϑ(v) = {i ∈ N : cS 6= 0 for some
S 3 i}. Fix any j ∈ ϑ(v) and let S0 = {j}. For b ∈ N , we define recursively
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the sets Sb as in (4), where <v is replaced by Γv. As in Subsection 2.1 we can
prove that there is m ∈ N such that S0, S1, . . . , Sm is a partition of N con-
sisting of nonempty sets. We can also repeat the further considerations for
i ∈ St and some h ∈ St−1 to get ai = ah−DPh(v−cS ·wS)+DPi(v−cS ·wS),
with some constant ah determined inductively. Hence, all ai with i ∈ St are
uniquely determined, implying the same for all ai, i ∈ N .

Quasi-efficiency implies that
n∑

i=1

ϕi(v) = n · a+
n∑

i=1

ai =
∑

S⊆N
v(S).

Therefore the constant a is also uniquely determined. By the equalities
ϕi(v) = a + ai for i ∈ N , we conclude that all values ϕi(v), i = 1, . . . , n,
are uniquely determined. Thus ϕi(v) = DPi(v) for any i = 1, . . . , n, because
DP satisfies the three axioms considered in Theorem 7 (see part (⇒)).

Case 2: N is not a component in Γv. In exactly the same way as in
Case 2 in the previous subsection, we conclude that there are coalitions S
and T with S ∩ T = ∅ and S ∪ T = N such that v = cSwS + cTwT with
cS 6= 0 and cT 6= 0. We consider two subcases.

If n ≥ 3, then without loss of generality we can assume that |S| ≥ 2.
Take an i ∈ S and j ∈ T and define the game χ ∈ GN as

χ = v + cSw(S\{i})∪{j} = cSwS + cSw(S\{i})∪{j} + cTwT .

Now, we can repeat the reasoning of the analogous subcase leading to for-
mula (5), replacing ξ, u, (2) and the dummy player axiom by χ, w, (10) and
the zero-player axiom, respectively. Then the result, instead of (5), will be

(11) ϕh(χ) =





a if h = j,

a− cT /|T | if h = i,

a− cS/|S| if h ∈ T \ {j},
a− cT /|T |+ cS/|S| if h ∈ S \ {i}.

By quasi-efficiency we have

2cS + cT =
∑

S⊆N
χ(S) =

n∑

i=1

ϕi(v) = n · a− |S||T | cT +
|S| − |T |
|S| cS .

Hence the constant a, and thereby value ϕh(χ) for h ∈ N , is uniquely de-
termined.

Now we must determine ϕi(v), i ∈ N . Let ϕj(v) = b. Fairness and the
zero-player property imply equal treatment (by Theorem 2(c)) and therefore
ϕh(v) = b for all h ∈ T . For any h ∈ S \ {i} by fairness we have ϕh(v) −
ϕh(χ) = ϕj(v)−ϕj(χ) since then h and j are symmetric players in the game
cSw(S\{i})∪{j}. Therefore, by (11) we have ϕh(v) = ϕj(v)−ϕj(χ)+ϕh(χ) =
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b − (cT /|T | − cS/|S|) for h ∈ S \ {i}. According to Theorem 2(c) we can
also conclude that ϕi(v) = ϕd(v) for all d ∈ S, since i and any d in S are
symmetric. Thus

ϕi(v) =
{
b− cT /|T |+ cS/|S| if i ∈ S,

b if i ∈ T.
But quasi-efficiency implies

cS + cT =
∑

K⊆N
v(K) =

n∑

i=1

ϕi(v) = n · b− |S||T | cT + cS .

Hence the constant b, and thereby the value ϕi(v) for i ∈ N , are uniquely
determined for n ≥ 3.

Now, let n = 2. Therefore N = {1, 2}. Then v = c{1}w{1}+c{2}w{2}. Let
ϕ2(v) = a. The zero-player property implies that ϕ2((c{1}− c{2})w{1}) = 0.
By quasi-efficiency we have ϕ1((c{1} − c{2})w{1}) = c{1} − c{2}. Fairness
implies that

ϕ1(v)− ϕ1((c{1} − c{2})w{1}) = ϕ2(v)− ϕ2((c{1} − c{2})w{1})
and so ϕ1(v) = a + c{1} − c{2}. From the quasi-efficiency axiom we obtain
c{1} + c{2} = ϕ1(v) + ϕ2(v) = 2a+ c{1} − c{2}, and hence a = c{2}.

Thus ϕ(v) is uniquely determined and because it satisfies all axioms
mentioned in Theorem 7, by part (⇒), we finally have ϕ(v) = DP(v).

2.3. Proof of Theorem 8. (⇒) It is known that the least square prenu-
cleolus (L) satisfies the efficiency, average marginal contribution monotonic-
ity (AMC), and inessential game and additivity axioms (cf. Theorem 5). It
is easy to verify that additivity implies inter-game balance. On the other
hand, the LS-prenucleolus is a symmetric value; therefore it also has the
equal treatment property. Thus, by Theorem 2(a) it satisfies fairness.

(⇐) Fix a value ϕ on GN and assume that it satisfies all the conditions
mentioned in the theorem. For S ⊆ N , let wS ∈ GN be a basic game defined
in (8).

By efficiency and AMC, there exist constants αS , S ⊆ N , such that for
real cS ,

(12) ϕi(cS · wS) =
{
cS · αS/|S| if i ∈ S,

−cS · αS/(n− |S|) if i 6∈ S
with αN = 1.

Let S1 and S2 be two disjoint nonempty subsets of N . Then, by AMC, we
have ϕi(wS1 +wS2) = ϕj(wS1 +wS2) for i ∈ S1, j ∈ S2. Thus, by inter-game
balance it follows that ϕi(wS1) − ϕj(wS2) = ϕj(wS1) − ϕi(wS2), whence,
by (12),

αS1

|S1|
− αS2

|S2|
= − αS1

n− |S1|
+

αS2

n− |S2|
,
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and consequently,

(13) αS1/(|S1|(n− |S1|)) = αS2/(|S2|(n− |S2|))
if S1 6= ∅, S2 6= ∅ and S1 ∩ S2 = ∅.

We will now prove that (13) holds for all nonempty subsets of N . If
S1 ∩ S2 6= ∅ and S1 ∪ S2 6= N then (13) is true for S1 and N \ (S1 ∪ S2) as
well as for S2 and N \ (S1 ∪S2), and therefore for S1 and S2. If S1 ∩S2 6= ∅
and S1 ∪ S2 = N then (13) holds for S1 and N \ S1 as well as for S2 and
N \ S2, and thus for N \ S1 and N \ S2 and finally for S1 and S2. Then

(14) α := αS/(|S|(n− |S|))
for any nonempty S ( N is a constant. Thus α is well defined when n =
|N | > 1. For |N | = 1, let α be arbitrary.

Let

(15) λi(v) =
v(N)
n

+ α
(
n
∑

K⊆N
i∈K

v(K)−
∑

p∈N

∑

K⊆N
p∈K

v(K)
)

for any i ∈ N .
We will prove that the value ϕ is uniquely determined as ϕi(v) = λi(v)

for any i ∈ N .
We apply all the assumptions and notations concerning the game graph

method introduced in Subsection 2.2.
It is clear (by the efficiency axiom and (15)) that ϕ = λ for all one-player

games. Suppose that ϕ = λ for all m-person games where m ≤ n − 1, and
let v be an n-person game. We will use induction on d(v).

If d(v) = 0, then the efficiency and AMC properties imply that ϕi(v) =
0 = λi(v) for any i ∈ N . If d(v) = 1 then v = cSwS for some S ⊆ N . By
(12), (14) and (15) we easily get ϕi(v) = λi(cS · wS) for all i ∈ N .

Assume therefore that ϕ(z) coincides with λ(z) for all games z ∈ GN
with d(z) ≤ k (for some k ≥ 1) and let d(v) = k + 1. Then d(v) ≥ 2 and
n ≥ 2. We consider two cases.

Case 1: N is a component in Γv. Fix any j ∈ ϑ(v) and let S0 = {j},
where ϑ(v) and Sb are defined as in Subsection 2.2. We know that there
exists an m ∈ N such that S0, S1, . . . , Sm is a partition of N consisting
of nonempty sets. We can repeat those considerations for i ∈ St and some
h ∈ St−1 to get ai = ah−λh(v−cS ·wS)+λi(v−cS ·wS), with some constant
ah determined inductively. It follows that all ai with i ∈ St are uniquely
determined, implying the same for all ai, i ∈ N . Just as in Subsection
2.2, we can prove that a and, consequently, the values ϕi(v), i = 1, . . . , n,
are uniquely determined. Hence ϕi(v) = λi(v) for all i ∈ N , because λ
satisfies the first four axioms considered in Theorem 8 (we have not used
the inessential game property of ϕ yet).
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Case 2: N is not a component in Γv. In exactly the same way as in
Case 2 in Subsections 2.1 and 2.2 we conclude that Γv has exactly two
components, denoted by S and T , with S ∩ T = ∅ and S ∪ T = N , and
therefore v is the sum of two basic games: v = cSwS + cTwT with cS 6= 0
and cT 6= 0.

Since gi(cSwS + cTwT ) = gj(cSwS + cTwT ) for i, j ∈ S, the efficiency
and AMC axioms imply that there exists a constant βS such that

(16) ϕi(cSwS + cTwT ) =
{
βS/|S| if i ∈ S,

−βS/(n− |S|) if i ∈ T
(note that |T | = n− |S|).

Define an n-person game z = cSwS+cTwT +(cS−cT )wT = cS(wS+wT ).
By the AMC axiom we have ϕi(z) = ϕj(z) for any i ∈ S and j ∈ T and
then, according to the inter-game balance property,

ϕi(cSwS +cTwT )−ϕj(cSwS +cTwT ) = ϕj((cS−cT )wT )−ϕi((cS−cT )wT ).

Hence, using (16) and (12), we get
βS
|S| +

βS
n− |S| = (cS − cT )α(n− |T |) + (cS − cT )α|T | = (cS − cT )α · n

and therefore

βS =
(cS − cT )α · n · |S| · (n− |S|)

|S|+ n− |S| = (cS − cT )α|S|(n− |S|).

Now, using (16), (14) and (15) we deduce that ϕi(v) = λi(v) for any i ∈ N .
This way we have proved that ϕ coincides with λ on GN . The inessential

game property (applied to λ) implies that α = 1/(n2n−2). Thus, we finally
obtain λ = L. The proof is complete.

2.4. Proof of Theorem 9. (⇒) It is well known (cf. L. M. Ruiz et al.
(1996)) that the LS-nucleolus (LN) satisfies the super-efficiency, average
marginal contribution monotonicity and inessential game axioms. We must
prove that it also has the inter-game balance and fairness properties.

One can easily check that for any v ∈ GN and i, j ∈ N , i 6= j, we have
(cf. L. M. Ruiz et al. (1996))

(17) LNi(v)− LNj(v) =
1

2n−2 (gi(v)− gj(v)).

Suppose that v, w ∈ GN and LNi(v+w) = LNj(v+w) for some i, j ∈ N ,
i 6= j. Then by (17), we have gi(v+w) = gj(v+w). Thus, by additivity of g,
we obtain gi(v) − gj(w) = gj(v) − gi(w) and by (17), LNi(v) − LNj(w) =
LNj(v)−LNi(w). Therefore the LS-nucleolus satisfies the inter-game balance
axiom.

Let w ∈ GN and i, j ∈ N , i 6= j, be two players such that w(S ∪ {i}) =
w(S ∪ {j}) (i.e. players i, j are symmetric in the game w). Then we have
gi(w) = gj(w). Therefore
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gi(v + w)− gi(v)− gi(w) = gj(v + w)− gj(v)− gj(w)

and gi(v +w)− gi(v) = gj(v +w)− gj(v) for any v ∈ GN . By (17) we have
LNi(v+w)−LNi(v) = LNj(v+w)−LNj(v). Thus the LS-nucleolus satisfies
fairness.

(⇐) Suppose that a value ϕ on GN satisfies all axioms given in the
theorem. Then it is an imputation satisfying the assumptions of Theorem 8.
According to that theorem and the conclusions (5) made by L. M. Ruiz et
al. (1996) we have ϕ = LN.
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(5) An LS-prenucleolus of a game v which is an imputation of this game coincides
with its LS-nucleolus.


