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OPTIMAL INVESTMENT STRATEGY FOR A NON-LIFEINSURANCE COMPANY: QUADRATIC LOSS
Abstra
t. The aim of this paper is to 
onstru
t an optimal investmentstrategy for a non-life insuran
e business. We 
onsider an insuran
e 
ompanywhi
h provides, in ex
hange for a single premium, full 
overage to a portfolioof risks whi
h generates losses a

ording to a 
ompound Poisson pro
ess. Theinsurer invests the premium and trades 
ontinuously on the �nan
ial marketwhi
h 
onsists of one risk-free asset and n risky assets (Bla
k�S
holes mar-ket). We deal with the insurer's wealth path dependent disutility optimiza-tion problem and apply a quadrati
 loss fun
tion whi
h penalizes deviationsbelow a reserve for outstanding liabilities as well as above a given upperbarrier. An optimal investment strategy is derived using sto
hasti
 
ontroltheory in the absen
e of 
onstraints on 
ontrol variables. Some propertiesof the strategy and the behaviour of the insurer's wealth under the optimal
ontrol are investigated. The set up of our model is more general, as it 
analso be used in non-life loss reserving problems.1. Introdu
tion. In the past few years optimal portfolio sele
tion prob-lems have gained mu
h interest in �nan
ial and a
tuarial literature. Thereare at least two reasons for this: the diversity of investment possibilities on�nan
ial markets and new regulatory requirements.The idea of portfolio sele
tion is to 
onstru
t the best allo
ation of wealthamong assets in order to �nan
e a future stream of spending over a giventime horizon. This allo
ation of wealth 
hanges dynami
ally over time, whi
himplies rebalan
ing of the investment portfolio.In this paper we investigate the problem of identifying the optimal invest-ment strategy for a non-life insuran
e 
ompany. Portfolio sele
tion problems2000 Mathemati
s Subje
t Classi�
ation: 91B28, 91B30, 93E20.Key words and phrases: optimal investment strategy, insurer's wealth path depen-dent disutility optimization, Hamilton�Ja
obi�Bellman equation, Lévy-type sto
hasti
 in-tegrals. [263℄



264 �. Delongfor non-life insuran
e business are rather rare in a
tuarial literature. Sto
has-ti
 
ontrol theory is usually applied to non-life insuran
e models in order to�nd an optimal dividend payout s
heme or optimal reinsuran
e 
ontra
t (seefor example Hipp and Vogt (2003), Højgaard and Taksar (2002), Hubalakand S
ha
hermayer (2004), Paulsen (2003) and S
hmidli (2002)). For a sur-vey of 
ontrol theory in ruin theory models see also Hipp (2002) who dealswith optimal investment, optimal proportional reinsuran
e, optimal XL rein-suran
e, optimal premium 
ontrol and optimal new business.Most portfolio sele
tion problems in a
tuarial mathemati
s 
on
ern opti-mal asset allo
ations for de�ned bene�t or de�ned 
ontribution pension plansand other retirement problems (see for example Cairns (2000) and Habermanand Vigna (2002)). This is due to the fa
t that pension plans are long-term
ontra
ts and investment un
ertainty is greater than for short-term non-life
ontra
ts. However, the �nan
ial market o�ers the possibility to improve
ompany's �nan
ial position and a non-life insurer should be interested intrading assets on the market even in short-term.As far as investment 
hoi
es of a non-life insuran
e 
ompany on a sto
kmarket are 
on
erned, there are two prominent papers of Browne (1995) andHipp and Plum (2000). Browne approximates an insuran
e surplus pro
essby a Brownian motion with a drift and determines an investment strategywhi
h maximizes the expe
ted exponential utility from �nal wealth. It isshown that this strategy also minimizes the ruin probability. Hipp and Plum(2000) derive an investment strategy whi
h minimizes the ruin probabilityin a 
lassi
al 
olle
tive risk model with in�nite time horizon. The re
ent pa-per of Korn (2005) extends the result of Browne (1995) by introdu
ing the
on
ept of worst-
ase portfolio optimization (whi
h takes into a

ount thepossibility of a market 
rash) and by solving the maximization problem ofworst-
ase exponential utility from �nal wealth.We 
onsider an insuran
e 
ompany whi
h 
olle
ts a single premium, in-vests it and trades 
ontinuously on the �nan
ial market adopting an invest-ment strategy whi
h is optimal in the sense of a spe
i�ed loss fun
tion. Weinvestigate the wealth path dependent disutility optimization problem as theinsurer's performan
e is evaluated in 
ontinuous time during the whole termof the poli
y. Applying an optimal investment strategy, the insurer shouldmeet all future unpredi
table liabilities. It seems that our wealth path de-pendent disutility optimization approa
h to the investment problem of anon-life insurer is a novelty as most papers deal with maximization of theutility from �nal wealth or minimization of the ruin probability. If we takea single premium to be an amount of money set aside by the insurer for thefuture unpaid liabilities, we obtain an investment problem for non-life lossreserving. For non-life reserving problems in the 
ontext of portfolio sele
tionsee Ah
an et al. (2004).



Non-life insuran
e 265This paper is stru
tured as follows. In Se
tion 2 we set up a non-life insur-an
e 
ontra
t and the �nan
ial market, and state our optimization problem.In Se
tion 3 we derive an optimal investment strategy for the problem with-out 
onstraints on 
ontrol variables. Se
tion 4 deals with the properties ofthe strategy and the behaviour of the insurer's wealth under the optimal
ontrol.2. The general model. In this se
tion we introdu
e an optimizationmodel for an insuran
e 
ompany whi
h issues a non-life poli
y and tradesassets on a �nan
ial market.We are given a probability spa
e (Ω,F , P) with �ltration F = (Ft)0≤t≤Tand FT = F , where T is a time horizon. The �ltration satis�es the usualhypotheses of 
ompleteness (F0 
ontains all sets of P-measure zero) and right
ontinuity (Ft = Ft+).Consider the 
olle
tive risk model. Let J(t) denote the aggregate 
laimamount up to time t, for 0 ≤ t ≤ T . We assume that the pro
ess {J(t), 0 ≤
t ≤ T} is a 
ompound Poisson pro
ess, whi
h means that it has a represen-tation

J(t) =

N(t)∑

i=1

Yi,(2.1)where {Yi, i ∈ N} is a sequen
e of positive, independent and identi
allydistributed random variables with law p and N(t) is a homogeneous Poissonpro
ess with intensity λ whi
h is independent of the sequen
e {Yi, i ∈ N}. Weassume that the pro
ess {J(t), 0 ≤ t ≤ T} is F-adapted with 
àdlàg samplepaths (
ontinuous on the right and having limits on the left). In insuran
erisk models, Y1, Y2, . . . denote the amounts of su

essive 
laims and N(t)
ounts the number of 
laims up to time t. The probability measure p satis�esT∞
0 y4 p(dy) < ∞, whi
h means that the random variables {Yi, i ∈ N} have�rst four moments �nite; let µ = E(Yi) and µ2 = E(Y 2

i ). Let Ti = inf{t ≥ 0 :
N(t) = i}, with T0 = 0, denote the time of the ith 
laim and ξi = Ti−Ti−1 theinter-
laim time. It is well known that {ξi, i ∈ N} is a sequen
e of independentand exponentially distributed random variables whi
h are independent of thesequen
e {Yi, i ∈ N}.The 
ompound Poisson pro
ess {J(t), 0 ≤ t ≤ T} 
an also be de�nedthrough the Poisson sto
hasti
 integral of the form

J(t) =

t\
0

∞\
0

z M(ds, dz),(2.2)where M(t, A) = #{0 ≤ s ≤ t : △J(t) ∈ A}, △J(t) = J(t) − J(t−), for allBorel sets A ∈ B(0;∞), is a Poisson random measure with intensity measure
λp(A). The random measure M(t, A) 
ounts the jumps of the 
ompound



266 �. DelongPoisson pro
ess of a spe
i�ed size of A up to time t and has Poisson dis-tribution. For more details on Poisson random measures, Poisson sto
hasti
integrals and general Lévy-type sto
hasti
 integrals see Applebaum (2004).On a �nan
ial market, there are n + 1 �nan
ial assets. One of the as-sets is risk-free and its pri
e {B(t), 0 ≤ t ≤ T} is des
ribed by an ordinarydi�erential equation of the form
dB(t)

B(t)
= r dt, B(0) = 1,(2.3)where r denotes the for
e of interest. The remaining assets are risky and theirpri
es {Si(t), 0 ≤ t ≤ T}, for i = 1, . . . , n, evolve a

ording to sto
hasti
di�erential equations

dSi(t)

Si(t)
= ai dt +

n∑

j=1

σij dWj(t), Si(0) > 0,(2.4)
where ai denotes the expe
ted return on the risky asset i, σij denote deter-ministi
 volatilities, for j = 1, . . . , n, and {W1(t), . . . , Wn(t), 0 ≤ t ≤ T} is astandard n-dimensional Brownian motion, F-adapted, whi
h is independentof the 
ompound Poisson pro
ess J(t).Let us 
onsider a portfolio of insuran
e risks whi
h generates losses a
-
ording to the 
ompound Poisson pro
ess. An insuran
e 
ompany issues apoli
y, with the term of T years, 
overing all 
laims from that portfoliowhi
h o

ur during the term of the 
ontra
t. In ex
hange for that prote
-tion, the insuran
e 
ompany re
eives a 
olle
tive, single premium in theamount of x0, invests the premium on the �nan
ial market and trades assets
ontinuously in order to improve its �nan
ial position. At ea
h time, theinsurer adopts an investment strategy (θ1(t), . . . , θn(t)), where θi(t) is thefra
tion of the available wealth invested in the risky asset (sto
k) i at time t.The remaining fra
tion of the wealth, θ0(t) = 1 −

∑n
i=1 θi(t), is investedin the risk-free asset (bank a

ount). We assume that the adopted strategy

{θ1(t), . . . , θn(t), 0 < t ≤ T} is a predi
table pro
ess with respe
t to the�ltration F.Let X(t), for 0 ≤ t ≤ T , denote the value of the insurer's wealth aris-ing from the insuran
e 
ontra
t. In the 
lassi
al risk theory, the pro
ess
{X(t), 0 ≤ t ≤ T} is 
alled the insuran
e surplus pro
ess. It evolves a

ord-ing to the sto
hasti
 di�erential equation

dX(t) =
n∑

i=1

θi(t)X(t−)
{
ai dt +

n∑

j=1

σij dWj(t)
}(2.5)

+
(
1 −

n∑

i=1

θi(t)
)
X(t−)r dt − dJ(t), X(0) = x0.



Non-life insuran
e 267We require that investment strategies satisfy the 
onditions
P

( T\
0

θi(t)
2X(t−)2 dt < ∞

)
= 1, i = 1, . . . , n,(2.6)

P

( T\
0

θ0(t)X(t−) dt < ∞
)

= 1.(2.7)
These 
onditions ensure that the sto
hasti
 di�erential equation (2.5) is wellde�ned and that the pro
ess {X(t), 0 ≤ t ≤ T} is an F-adapted semimartin-gale with 
àdlàg sample paths. Strategies whi
h are predi
table pro
esseswith respe
t to the �ltration F and satisfy (2.6) and (2.7) are 
alled admis-sible for our problem.The above sto
hasti
 di�erential equation 
an be rewritten in matrixform as
(2.8) dX(t) = X(t−)θ(t)T π dt+X(t−)θ(t)TΣ dW(t)+X(t−)r dt−dJ(t),with X(0) = x0, where θ(t)T = (θ1(t), . . . , θn(t)) denotes the investmentstrategy adopted by the insurer, πT = (π1, . . . , πn) the ve
tor of risk premi-ums atta
hed to given assets (πi = ai − r), Σ the matrix of volatilities and
W(t)T = (W1(t), . . . , Wn(t)) the standard n-dimensional Brownian motion.A natural assumption is to 
onsider positive risk premiums. We assume thatthe matrix of volatilities is nonsingular. This implies that the 
ovarian
ematrix Q = ΣΣT is positive de�nite. It is worth noting that the pro
ess
{X(t), 0 ≤ t ≤ T} is a Lévy-type sto
hasti
 integral as its sto
hasti
 di�er-ential 
an be represented in the form

dX(t) =
(
X(t−)θ(t)T π + X(t−)r −

\
0<y<1

yλ p(dy)
)

dt(2.9)
+ X(t−)θ(t)T Σ dW(t) −

\
y≥1

y M(dt, dy)

−
\

0<y<1

y (M(dt, dy) − λ p(dy) dt), X(0) = x0.During the term of the poli
y, the insuran
e 
ompany sets aside a reserve.The reserve is the amount of money whi
h should ensure that the insurerwill meet all the future 
ontra
tual obligations arising from the portfolio.The reserve is usually 
al
ulated under prudential basis. This means thatthe insurer assumes in the 
al
ulations a higher loss frequen
y and a moresevere 
laim size distribution.Traditionally, a
tuaries 
al
ulate reserves for the outstanding liabilitiesas the 
onditional expe
ted value of all future dis
ounted payments,



268 �. Delong
R(t) = E

[ T\
t

e−δ̂(s−t) dĴ(s)
∣∣∣Ft

]
, 0 ≤ t < T,(2.10)

where δ̂ is a prudent rate of return on investments (dis
ount rate) and Ĵ(t)is a 
ompound Poisson pro
ess with Poisson intensity λ̂ ≥ λ and 
laim sizedistribution with �nite �rst moment µ̂ ≥ µ.In order to 
al
ulate the above expe
ted value we use the followingwell known fa
t from the theory of Poisson pro
esses (see for example Sato(1999)).Lemma 2.1. The distribution of the random ve
tor (T1, . . . , Tn), 
ondi-tioned on N(t) = n, is given by the density fun
tion
f(T1,...Tn)|N(t)=n(t1, . . . , tn) =

n!

tn
, 0 ≤ t1 ≤ · · · ≤ tn ≤ t,(2.11)whi
h means that the random ve
tor (T1, . . . , Tn), 
onditioned on N(t) = n,is distributed as the ve
tor of n ordered statisti
s taken from the uniformdistribution on the interval [0, t].With the above lemma, 
al
ulation of the expe
tation in (2.10) is straight-forward. Be
ause of the independen
e and stationarity of the in
rements ofthe 
ompound Poisson pro
ess and the la
k of memory for the inter-
laimtimes, the reserve at time t is equal to

R(t) = E

[ N̂(T−t)∑

i=1

e−δ̂T̂i Ŷi

]
.(2.12)Using the properties of the 
onditional expe
tation and the independen
e ofthe sequen
es {ξ̂i, i ≥ 1} and {Ŷi, i ≥ 1} we arrive at

R(t) =
∞∑

n=0

E

[ N̂(T−t)∑

i=1

e−δ̂T̂i Ŷi

∣∣∣ N̂(T − t) = n
]
Pr(N̂(T − t) = n)(2.13)

= µ̂

∞∑

n=0

E

[ N̂(T−t)∑

i=1

e−δ̂T̂i

∣∣∣ N̂(T − t) = n
]
Pr(N̂(T − t) = n).From Lemma 2.1 it follows that

E

[ n∑

i=1

e−δ̂T̂i

∣∣∣ N̂(T − t) = n
]

= n

T−t\
0

e−δ̂s 1

T − t
ds(2.14)

= n
1 − e−δ̂ (T−t)

δ̂(T − t)
.



Non-life insuran
e 269Finally, at time t, the reserve for the outstanding liabilities is equal to
R(t) =

µ̂λ̂

δ̂
(1 − e−δ̂(T−t)), 0 ≤ t < T.(2.15)The insuran
e 
ompany 
an 
hoose the parameters δ̂, λ̂, µ̂ taking into a
-
ount its own attitude towards insuran
e risk (λ̂, µ̂) and investment risk (δ̂),or there exist solven
y regulations whi
h require the insurer to set reservesfor future payments on a spe
i�ed basis. In a
tuarial literature, the marketreserve, whi
h is the market value of insuran
e liabilities, is gaining mu
hinterest. For the 
on
ept of no-arbitrage between insuran
e and reinsuran
emarkets and the arbitrage-free pri
ing of non-life business see Jang and Kr-vavy
h (2004) and Sondermann (1991).We investigate the following insurer's wealth path dependent disutilityoptimization problem. The aim of the insurer is to �nd an investment strat-egy whi
h minimizes the quadrati
 loss fun
tion

(2.16) E

[ T\
0

{(R(s) − X(s))2 + α(R(s) − X(s)} ds

+ β(X(T )2 − αX(T ))
∣∣∣ X(0) = x0

]
.The above quadrati
 loss fun
tion penalizes deviations of the insuran
e sur-plus pro
ess below the reserve for outstanding liabilities, and rewards devia-tions above the reserve, whi
h prompts the insurer to gain from the �nan
ialmarket. It is 
lear that the insuran
e 
ompany should have interest in keep-ing the wealth arising from the poli
y above the required reserve, just forsolven
y reasons. However, if the wealth 
rosses the upper barrier, whi
h isgiven by the parameter α ≥ 0, the loss fun
tion penalizes those deviationsabove again. This means that when the wealth be
omes too large it is 
au-tiously invested. Noti
e that the �real� target imposed by su
h a quadrati
fun
tion is R(t) + α/2. The parameter α ≥ 0 
an be interpreted as the in-surer's attitude towards investment risk, as a higher value of α 
orrespondsto a lower risk aversion (see Haberman and Vigna (2002)). Stability of thesurplus and the ne
essity of redistribution of large pro�ts to the insured 
anserve as another explanation for laying down the upper barrier. The param-eter β > 0 atta
hes a weight to the terminal 
ost. Applying the investmentstrategy whi
h minimizes (2.16) the insurer should meet all the 
ontra
tualpayments and make a pro�t on the issued poli
y.In Se
tions 3 and 4 we use the following lemma.Lemma 2.2. The solutions to the ordinary di�erential equations

1 + a′(t) + φa(t) = 0, a(T ) = β,(2.17)
− 2R(t) − α − 2µλa(t) + b′(t) + ϕb(t) = 0, b(T ) = −αβ,(2.18)



270 �. Delongwhere φ, ϕ are 
onstant parameters, are given by
a(t) =

1

φ
(eφ(T−t) − 1) + βeφ(T−t)(2.19)and

b(t) = −αβeϕ(T−t) −
α

ϕ
(eϕ(T−t) − 1) − 2

T\
t

R(s)eϕ(s−t) ds(2.20)
− 2µλ

T\
t

a(s)eϕ(s−t) ds

= −αβeϕ(T−t) − (eϕ(T−t) − 1)

(
2µ̂λ̂

δ̂ϕ
+

α

ϕ
−

2µλ

φϕ

)

+ (eϕ(T−t) − e−δ̂(T−t))
2µ̂λ̂

δ̂(ϕ + δ̂)

− (eϕ(T−t) − eφ(T−t))
2µλ

φ(ϕ − φ)
(1 + βφ).Proof. Solve the equations using variation of 
onstants or 
he
k by dire
tsubstitution.Remark 2.1. Noti
e that a(t) ≥ β > 0 and b(t) ≤ 0 for all t ∈ [0, T ].Let (a(t), b(t)) ∼ (φ, ϕ) denote the fun
tions whi
h solve the ordinarydi�erential equations from Lemma 2.2 with parameters φ, ϕ. This notationis used in Se
tions 3 and 4.Remark 2.2. Noti
e that we solve the di�erential equations in Lemma2.2 and 
al
ulate the reserve in (2.15) assuming non-zero parameters. If aparameter appears to be zero, an appropriate limit in the given formulasshould be taken.In the next se
tion we solve our optimization problem.3. The solution of the optimization problem. In this se
tion wepresent the solution to the optimization problem without 
onstraints on
ontrol variables. This means that we allow short selling of assets and bor-rowing from a bank a

ount.Let V (t, x) denote the optimal value fun
tion for our optimization prob-lem de�ned as

V (t, x) = inf
θ(·)∈Rn

E

[ T\
t

{(R(s) − X(s))2 + α(R(s) − X(s))} ds(3.1)
+ β(X(T )2 − αX(T ))

∣∣∣X(t) = x
]
, 0 ≤ t < T,



Non-life insuran
e 271and V (T, x) = β(x2 − αx). We �rst derive the Hamilton�Ja
obi�Bellmanequation heuristi
ally, based on the Dynami
 Programming Prin
iple, andthen state the veri�
ation theorem.We have for all t, 0 < t ≤ T ,
V (t−, x) = inf

θ(t)∈Rn

{(R(t−) − x)2dt + α(R(t−) − x)dt(3.2)
+ E[V (t, X(t)) |X(t−) = x]}.Applying It�'s formula for Lévy-type sto
hasti
 integrals (see Applebaum(2004)), we arrive at

dV (t, X(t)) =
∂V

∂t
(t, X(t−)) dt(3.3)

+
∂V

∂x
(t, X(t−)){X(t−)θ(t)Tπ + X(t−)r} dt

+
1

2

∂2V

∂x2
(t, X(t−))X(t−)2θ(t)T Qθ(t) dt

+
∂V

∂x
(t, X(t−))X(t−)θ(t)TΣ dW(t)

+

∞\
0

{V (t, X(t−) − y) − V (t, X(t−))}M(dt, dy).

Let Vt = ∂V
∂t

(t, x), Vx = ∂V
∂x

(t, x), Vxx = ∂2V
∂x2 (t, x). The Hamilton�Ja
obi�Bellman equation for our problem is of the form

0 = (R(t) − x)2 + α(R(t) − x) + Vt + Vx(3.4)
+

∞\
0

{V (t, x − y) − V (t, x)}λ p(dy)

+ inf
θ∈Rn

{VxxθT π +
1

2
Vxxx2θT Qθ}.The optimal 
ontrol at time t, 0 < t ≤ T , is given by

θ∗(t) = −
Vx

Vxxx
Q−1π.(3.5)Substituting this value into the Hamilton�Ja
obi�Bellman equation, we ar-rive at the partial integro-di�erential equation whi
h the optimal value fun
-tion V (t, x) must satisfy. We �nd that

0 = (R(t) − x)2 + α(R(t) − x) + Vt + Vxxr −
1

2

V 2
x

Vxx
πT Q−1π(3.6)

+ λ

∞\
0

{V (t, x − y) − V (t, x)} p(dy),with the boundary 
ondition V (T, x) = β(x2 − αx).



272 �. DelongAs the loss fun
tion is quadrati
 in x, we are looking for a quadrati
solution of the form V (t, x) = a(t)x2 + b(t)x + c(t). Then
(3.7) Vt = a′(t)x2 + b′(t)x + c′(t), Vx = 2a(t)x + b(t), Vxx = 2a(t),

(3.8) λ

∞\
0

{V (t, x − y) − V (t, x)} p(dy) = −2µλa(t)x + µ2λa(t) − µλb(t).Substituting (3.7) and (3.8) into (3.6) we arrive at
0 = R(t) − 2R(t)x + x2 + αR(t) − αx + a′(t)x2 + b′(t)x + c′(t)(3.9)

+ 2ra(t)x2 + rb(t)x − 2µλa(t)x + µ2λa(t) − µλb(t)

− πT Q−1πa(t)x2 − πT Q−1πb(t)x − πT Q−1π
b(t)2

4a(t)
.The problem of �nding the optimal value fun
tion V (t, x) satisfying thepartial integro-di�erential equation (3.6) is equivalent to �nding fun
tions

a(t), b(t), c(t) satisfying the ordinary di�erential equations
(3.10) 0 = 1 + a′(t) + (2r − πT Q−1π)a(t), a(T ) = β,

(3.11) 0 = −2R(t) − α − 2µλa(t) + b′(t) + (r − πT Q−1π)b(t),

b(T ) = −αβ,

(3.12) 0 = c′(t) + (1 + α)R(t) + µ2λa(t) − µλb(t) −
b(t)2

4a(t)
πT Q−1π,

c(T ) = 0.As the optimal 
ontrol depends only on the fun
tions a(t), b(t) we solveonly the �rst two equations. It su�
es to set φ = 2r − πT Q−1π and ϕ =
r − πT Q−1π to re
over our solutions from Lemma 2.2.Theorem 3.1. If there exists a fun
tion V (t, x) ∈ C1,2([0, T ]×R) satis-fying the Hamilton�Ja
obi�Bellman equation

0 = (R(t) − x)2 + α(R(t) − x) + Vt + Vxxr(3.13)
+

∞\
0

{V (t, x − y) − V (t, x)}λ p(dy)

+ inf
θ∈Rn

{
VxxθT π +

1

2
Vxxx2θT Qθ

}
,with the boundary 
ondition V (T, x) = β(x2 − αx), su
h that the pro
esses

t\
0

∂V

∂x
(s, X(s−))X(s−)θi(s) dWj(s), i, j = 1, . . . , n,(3.14)

t\
0

∞\
0

{V (s, X(s−) − y) − V (s, X(s−))} (M(ds, dy) − λp(dy)ds),(3.15)
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e 273are martingales for t ∈ [0, T ], and there exists an admissible 
ontrol θ∗(·) forwhi
h the in�mum is rea
hed , then
V (t, x) = inf

θ(·)∈Rn

E

[ T\
t

{(R(s) − X(s))2 + α(R(s) − X(s)} ds(3.16)
+ β(X(T )2 − αX(T ))

∣∣∣ X(t) = x
]
,and θ∗(·) is the optimal 
ontrol for the problem.Remark 3.1. In order to have the martingale property for the pro
esses(3.14) and (3.15), the fun
tion V (t, x) should satisfy the 
onditions

E

[ T\
0

{
∂V

∂x
(t, X(t−))X(t−)θi(t)

}2

dt

]
< ∞, i = 1, . . . , n,(3.17)

E

[ T\
0

∞\
0

{V (t, X(t−) − y) − V (t, X(t−))}2λ p(dy) dt
]

< ∞.(3.18)
Proof of Theorem 3.1. The fun
tion satisfying (3.13) is of the form a(t)x2

+ b(t)x + c(t), where a(t), b(t), c(t) solve (3.10)�(3.12), and it is of 
lass
C1,2([0, T ] × R). As a(t) is positive for 0 ≤ t ≤ T and the matrix Q ispositive de�nite, the feedba
k 
ontrol

θ∗(t) = −

(
X∗(t−) +

b(t)

2a(t)

)
1

X∗(t−)
Q−1π,where

(a(t), b(t)) ∼ (2r − πT Q−1π, r − πT Q−1π),minimizes the quadrati
 form as required. One 
an also show that
supt∈[0,T ] E|X

∗(t)|4 < ∞ (see the next se
tion for a short explanation). It isstraightforward to 
he
k that the 
ontrol is a predi
table pro
ess and satis-�es (2.6) and (2.7), so it is admissible, and that 
onditions (3.17) and (3.18)are satis�ed. Applying It�'s 
al
ulus, one 
an show that the derived fun
tionis the optimal value fun
tion for our optimization problem and the derivedoptimal 
ontrol is the optimal investment strategy.Next, we investigate some properties of the optimal investment strategyand the evolution of the insurer's wealth under this optimal strategy.4. The optimal strategy and the insurer's wealth. The optimalinvestment strategy, at time t, 0 < t ≤ T , for our optimization problemwithout 
onstraints on 
ontrol variables is given in the feedba
k form
θ∗(t) = (g(t) − X∗(t−))

1

X∗(t−)
Q−1π,(4.1)



274 �. Delongwhere g(t) = −b(t)/2a(t) and (a(t), b(t)) ∼ (2r − πT Q−1π, r − πT Q−1π).The evolution of the insurer's wealth under the optimal investment strategyis given by
dX∗(t) = X∗(t−)θ∗(t)T π dt + X∗(t−)θ∗(t)T Σ dW(t)(4.2)

+ X∗(t−)r dt − dJ(t), X∗(0) = x0.Substituting the optimal strategy we arrive at
dX∗(t) = (g(t) − X∗(t−))πT Q−1π dt + X∗(t−)r dt(4.3)

+ (g(t) − X∗(t−))(Σ−1π)T dW(t) − dJ(t), X∗(0) = x0.As the 
oe�
ients in the di�usion part of the equation (4.3) satisfy Lip-s
hitz and growth 
onditions and the 
ompound Poisson distribution has�nite fourth moment, the above sto
hasti
 di�erential equation has a uniquesolution su
h that supt∈[0,T ] E|X
∗(t)|4 < ∞.We solve this sto
hasti
 di�erential equation. Let H(t) = g(t) − X∗(t).The sto
hasti
 di�erential of the pro
ess {H(t), 0 ≤ t ≤ T} is

dH(t) = g′(t) dt − dX∗(t)(4.4)
= g′(t)dt − g(t)r dt + H(t−)(r − πT Q−1π) dt

− H(t−)(Σ−1π)T dW(t) + dJ(t), H(0) = g(0) − x0.Let us introdu
e the pro
ess {Z(t), 0 ≤ t ≤ T}, with 
ontinuous samplepaths, of the form
Z(t) = e−(r−πT Q−1π)t+ 1

2
‖Σ−1π‖2t+(Σ−1π)T W(t),(4.5)where ‖ · ‖ denotes the ve
tor norm. The sto
hasti
 di�erential of this pro
essis

dZ(t) = Z(t){−(r − πT Q−1π) dt + ‖Σ−1π‖2dt + (Σ−1π)T dW(t)}.(4.6)Multiplying both sides of (4.4) by Z(t) we arrive at
(4.7) Z(t) dH(t)−H(t−)Z(t)(r−πT Q−1π) dt+H(t−)Z(t)(Σ−1π)T dW(t)

= Z(t)(g′(t) dt − g(t)r dt + dJ(t)), H(0) = g(0) − x0.Let us re
all It�'s produ
t formula for two Lévy-type sto
hasti
 integrals
Y1(t) and Y2(t) (see Applebaum (2004)):

d(Y1(t)Y2(t)) = Y1(t−) dY2(t) + Y2(t−) dY1(t) + d[Y1, Y2] dt,(4.8)where
[Y1, Y2](t) = [Y c

1 , Y c
2 ](t) +

∑

0≤s≤t

△Y1(s)△Y2(s),(4.9)
[·](t) denotes the quadrati
 variation pro
ess and c denotes the 
ontinuousparts of the pro
esses. Now we re
ognize that the left-hand side of (4.7) is the
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hasti
 di�erential for H(t)Z(t). Noti
e that Z(t) has 
ontinuous samplepaths and the se
ond term in (4.9) is zero. We arrive at
H(t) =

1

Z(t)

{
H(0) +

t\
0

Z(s)(g′(s) − g(s)r) ds(4.10)
+

t\
0

∞\
0

Z(s)y M(ds, dy)
}
,where the last term is a Poisson sto
hasti
 integral. Finally, the insurer'swealth, under the optimal investment strategy, at time t is equal to

X∗(t) = g(t) −
1

Z(t)

{
g(0) − x0 +

t\
0

Z(s)(g′(s) − g(s)r) ds(4.11)
+

t\
0

∞\
0

Z(s)y M(ds, dy)
}
.It is possible to derive a formula for the expe
ted value of the insurer'swealth under the optimal investment strategy. If we take the expe
ted valueon both sides of (4.3) and let m(t) = EX∗(t), then we obtain an ordinarydi�erential equation for the fun
tion m(t):

m′(t) = (g(t) − m(t))πT Q−1π + m(t)r − λµ, m(0) = x0.(4.12)This equation has the solution
m(t) = x0e

(r−πT Q−1π)t −
λµ

r − πT Q−1π
{e(r−πT Q−1π)t − 1}(4.13)

+ πT Q−1π

t\
0

g(s)e(r−πT Q−1π)(t−s) ds.

The insuran
e 
ompany 
an 
hoose the parameters δ̂, λ̂, µ̂, α and β in theoptimization pro
ess. These parameters re�e
t the insurer's attitude towardsthe risk it fa
es and introdu
e the risk pro�le of the insurer.Let us 
onsider the 
ase of one risky asset. Then the optimal investmentstrategy is given by
θ∗(t) = (g(t) − X∗(t−))

1

X∗(t−)

a − r

σ2
,(4.14)where

g(t) = −
b(t)

2a(t)
and (a(t), b(t)) ∼

(
2r −

(
a − r

σ

)2

, r −

(
a − r

σ

)2)
.The parameters δ̂, λ̂, µ̂ have an in�uen
e on the reserve. The higher theloss frequen
y λ̂, the higher the reserve, and the same relation holds for the



276 �. Delongexpe
ted severity of 
laims µ̂. However, the lower the rate of return δ̂, thehigher the reserve. The reserve 
onstitutes the lower and upper barrier onthe loss fun
tion and has an impa
t on the optimal investment strategy andon the insurer's expe
ted wealth under this strategy. The higher the reserve,the higher the fra
tion of the wealth invested in the risky asset (given thesame positive level of available wealth) and the higher the expe
ted valueof the insurer's wealth. This 
an be seen from equations (2.20), (4.13) and(4.14), as g(t) is de
reasing in b(t) and b(t) is de
reasing in the reserve.The parameter α a�e
ts the �real� target imposed by the loss fun
tionand it also has an impa
t on the optimal investment strategy and on theinsurer's expe
ted wealth under this strategy. The higher the value of α, thehigher the fra
tion of the wealth invested in the risky asset (given the samepositive level of available wealth) and the higher the expe
ted value of theinsurer's wealth. This 
an be seen again from equations (2.20), (4.13) and(4.14), as b(t) is de
reasing in α. The above relations are intuitively 
lear.Noti
e that the statements 
on
erning the insurer's expe
ted wealth alsohold in the multi-asset e
onomy, as πT Q−1π is positive (the matrix Q−1 ispositive de�nite).It is straightforward to derive regions where the strategy of short sellingthe asset or borrowing from a bank a

ount is optimal. We observe that
θ∗(t) < 0 ⇔ X∗(t−) < 0 ∨ X∗(t−) > g(t),(4.15)
θ∗(t) > 1 ⇔ 0 < X∗(t−) <

g(t)

1 + σ2

a−r

.(4.16)If the wealth is low (but positive), the insurer should borrow from a banka

ount and invest aggressively in the risky asset in order to rea
h the de-sired target. When the wealth is in
reasing, the insurer should invest more
autiously and de
rease the fra
tion of the wealth invested in the risky asset.However, if the wealth is too large, then the optimal strategy is short-sellingof the asset, whi
h means throwing money away. Noti
e that in the opti-mization problem with 
onstraints on 
ontrol variables (no short selling ofassets or borrowing from a bank a

ount), α would be the parameter settingthe amount of wealth whi
h �satis�es� the insurer and over whi
h the insurertakes no investment risk and invests only in the risk free asset. In the 
aseof negative wealth, the short-selling strategy gives the insurer a 
han
e tore
over the positive level of wealth. This 
oin
ides with the properties of theapplied quadrati
 loss fun
tion.Summing up, in this paper we have investigated the 
onstru
tion of aninvestment strategy for a non-life insuran
e 
ompany. We have dealt with awealth path dependent disutility optimization problem and for a quadrati
loss fun
tion we have derived an optimal investment strategy. The solution
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an easily be implemented in pra
ti
e.
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