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OPTIMAL INVESTMENT STRATEGY FOR A NON-LIFE
INSURANCE COMPANY: QUADRATIC LOSS

Abstract. The aim of this paper is to construct an optimal investment
strategy for a non-life insurance business. We consider an insurance company
which provides, in exchange for a single premium, full coverage to a portfolio
of risks which generates losses according to a compound Poisson process. The
insurer invests the premium and trades continuously on the financial market
which consists of one risk-free asset and n risky assets (Black-Scholes mar-
ket). We deal with the insurer’s wealth path dependent disutility optimiza-
tion problem and apply a quadratic loss function which penalizes deviations
below a reserve for outstanding liabilities as well as above a given upper
barrier. An optimal investment strategy is derived using stochastic control
theory in the absence of constraints on control variables. Some properties
of the strategy and the behaviour of the insurer’s wealth under the optimal
control are investigated. The set up of our model is more general, as it can
also be used in non-life loss reserving problems.

1. Introduction. In the past few years optimal portfolio selection prob-
lems have gained much interest in financial and actuarial literature. There
are at least two reasons for this: the diversity of investment possibilities on
financial markets and new regulatory requirements.

The idea of portfolio selection is to construct the best allocation of wealth
among assets in order to finance a future stream of spending over a given
time horizon. This allocation of wealth changes dynamically over time, which
implies rebalancing of the investment portfolio.

In this paper we investigate the problem of identifying the optimal invest-
ment strategy for a non-life insurance company. Portfolio selection problems
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for non-life insurance business are rather rare in actuarial literature. Stochas-
tic control theory is usually applied to non-life insurance models in order to
find an optimal dividend payout scheme or optimal reinsurance contract (see
for example Hipp and Vogt (2003), Hgjgaard and Taksar (2002), Hubalak
and Schachermayer (2004), Paulsen (2003) and Schmidli (2002)). For a sur-
vey of control theory in ruin theory models see also Hipp (2002) who deals
with optimal investment, optimal proportional reinsurance, optimal XL rein-
surance, optimal premium control and optimal new business.

Most portfolio selection problems in actuarial mathematics concern opti-
mal asset allocations for defined benefit or defined contribution pension plans
and other retirement problems (see for example Cairns (2000) and Haberman
and Vigna (2002)). This is due to the fact that pension plans are long-term
contracts and investment uncertainty is greater than for short-term non-life
contracts. However, the financial market offers the possibility to improve
company’s financial position and a non-life insurer should be interested in
trading assets on the market even in short-term.

As far as investment choices of a non-life insurance company on a stock
market are concerned, there are two prominent papers of Browne (1995) and
Hipp and Plum (2000). Browne approximates an insurance surplus process
by a Brownian motion with a drift and determines an investment strategy
which maximizes the expected exponential utility from final wealth. It is
shown that this strategy also minimizes the ruin probability. Hipp and Plum
(2000) derive an investment strategy which minimizes the ruin probability
in a classical collective risk model with infinite time horizon. The recent pa-
per of Korn (2005) extends the result of Browne (1995) by introducing the
concept of worst-case portfolio optimization (which takes into account the
possibility of a market crash) and by solving the maximization problem of
worst-case exponential utility from final wealth.

We consider an insurance company which collects a single premium, in-
vests it and trades continuously on the financial market adopting an invest-
ment strategy which is optimal in the sense of a specified loss function. We
investigate the wealth path dependent disutility optimization problem as the
insurer’s performance is evaluated in continuous time during the whole term
of the policy. Applying an optimal investment strategy, the insurer should
meet all future unpredictable liabilities. It seems that our wealth path de-
pendent disutility optimization approach to the investment problem of a
non-life insurer is a novelty as most papers deal with maximization of the
utility from final wealth or minimization of the ruin probability. If we take
a single premium to be an amount of money set aside by the insurer for the
future unpaid liabilities, we obtain an investment problem for non-life loss
reserving. For non-life reserving problems in the context of portfolio selection
see Ahcan et al. (2004).
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This paper is structured as follows. In Section 2 we set up a non-life insur-
ance contract and the financial market, and state our optimization problem.
In Section 3 we derive an optimal investment strategy for the problem with-
out constraints on control variables. Section 4 deals with the properties of
the strategy and the behaviour of the insurer’s wealth under the optimal
control.

2. The general model. In this section we introduce an optimization
model for an insurance company which issues a non-life policy and trades
assets on a financial market.

We are given a probability space ({2, F,P) with filtration F = (F¢)o<t<r
and Fpr = F, where T is a time horizon. The filtration satisfies the usual
hypotheses of completeness (Fy contains all sets of P-measure zero) and right
Continuity (ft = ft+).

Consider the collective risk model. Let J(¢) denote the aggregate claim
amount up to time ¢, for 0 < ¢ < T. We assume that the process {J(¢),0 <
t < T} is a compound Poisson process, which means that it has a represen-
tation

N(t)

(2.1) Jm =3,
=1

where {Y;,i € N} is a sequence of positive, independent and identically
distributed random variables with law p and N (t) is a homogeneous Poisson
process with intensity A which is independent of the sequence {Y;,i € N}. We
assume that the process {J(¢),0 <t < T} is F-adapted with cadlag sample
paths (continuous on the right and having limits on the left). In insurance
risk models, Y7,Ys,... denote the amounts of successive claims and N(t)
counts the number of claims up to time ¢. The probability measure p satisfies
§o v*p(dy) < oo, which means that the random variables {Y;,i € N} have
first four moments finite; let u = E(Y;) and po = E(Y?). Let T; = inf{t > 0:
N(t) =i}, with Ty = 0, denote the time of the ith claim and & = T;—T;_1 the
inter-claim time. It is well known that {;,7 € N} is a sequence of independent
and exponentially distributed random variables which are independent of the
sequence {Y;,7 € N}.

The compound Poisson process {J(t),0 < t < T} can also be defined
through the Poisson stochastic integral of the form

t oo
(2.2) J(@t) =\ | 2 M(ds,dz),
00

where M(t,A) = #{0 < s <t: AJ(t) € A}, AJ(t) = J(t) — J(t—), for all
Borel sets A € B(0;00), is a Poisson random measure with intensity measure
Ap(A). The random measure M (¢, A) counts the jumps of the compound
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Poisson process of a specified size of A up to time ¢ and has Poisson dis-

tribution. For more details on Poisson random measures, Poisson stochastic

integrals and general Lévy-type stochastic integrals see Applebaum (2004).
On a financial market, there are n + 1 financial assets. One of the as-

sets is risk-free and its price {B(t),0 < ¢t < T'} is described by an ordinary

differential equation of the form

(2.3) dBB—(S;) =rdt, B(0)=1,

where r denotes the force of interest. The remaining assets are risky and their

prices {S;(t),0 < t < T}, for i = 1,...,n, evolve according to stochastic

differential equations

dS;(1)
Si(t)

=a;dt+Y o dW;(t), Si(0) >0,
j=1

(2.4)

where a; denotes the expected return on the risky asset 4, 0;; denote deter-
ministic volatilities, for j = 1,...,n, and {Wy(¢),...,W,(¢),0<t<T}isa
standard n-dimensional Brownian motion, F-adapted, which is independent
of the compound Poisson process J(t).

Let us consider a portfolio of insurance risks which generates losses ac-
cording to the compound Poisson process. An insurance company issues a
policy, with the term of T years, covering all claims from that portfolio
which occur during the term of the contract. In exchange for that protec-
tion, the insurance company receives a collective, single premium in the
amount of xq, invests the premium on the financial market and trades assets
continuously in order to improve its financial position. At each time, the
insurer adopts an investment strategy (01(t),...,0,(t)), where 0;(t) is the
fraction of the available wealth invested in the risky asset (stock) i at time ¢.
The remaining fraction of the wealth, 0y(t) = 1 — >, 0;(¢), is invested
in the risk-free asset (bank account). We assume that the adopted strategy
{601(t),...,0,(t),0 < t < T} is a predictable process with respect to the
filtration F.

Let X (t), for 0 < t < T, denote the value of the insurer’s wealth aris-
ing from the insurance contract. In the classical risk theory, the process
{X(t),0 <t < T} is called the insurance surplus process. It evolves accord-
ing to the stochastic differential equation

(2.5) dX(t) = Zn: Gi(t)X(t—){ai dt + zn: o1 de(t)}
+ (1 - f: Gi(t))X(t—)rdt —dJ(t),  X(0) = xo.

i=1



Non-life insurance 267

We require that investment strategies satisfy the conditions

T

(2.6) IP( [ 0ut)2x (8-)% at < oo) =1, i=1,...,n,
’ T

(2.7) IP’( [ oo(t)x(t—) dt < oo) = 1.

0

These conditions ensure that the stochastic differential equation (2.5) is well
defined and that the process {X (¢),0 <t < T'} is an F-adapted semimartin-
gale with cadlag sample paths. Strategies which are predictable processes
with respect to the filtration F and satisfy (2.6) and (2.7) are called admis-
sible for our problem.

The above stochastic differential equation can be rewritten in matrix
form as

(2.8)  dX(t) = X(t—)0(t) T mdt+X(t—=)0(t)T X dW(t)+ X (t—)r dt—dJ(t),

with X (0) = xo, where 0(t)T = (61(t),...,0,(t)) denotes the investment
strategy adopted by the insurer, 77 = (7y,...,7,) the vector of risk premi-
ums attached to given assets (m; = a; — r), X the matrix of volatilities and
W(t)T = (Wi(t),...,Wy(t)) the standard n-dimensional Brownian motion.
A natural assumption is to consider positive risk premiums. We assume that
the matrix of volatilities is nonsingular. This implies that the covariance
matrix Q = Y X7 is positive definite. It is worth noting that the process
{X(t),0 <t < T} is a Lévy-type stochastic integral as its stochastic differ-
ential can be represented in the form

(2.9) dX(t):(X(t—)@(t)T7H—X(t—)r— { y)\p(dy))dt

O<y<1
+ X (t=)0()" £ dW(t) — | yM(dt,dy)
y>1
— | y(M(a, dy) — Ap(dy)dt), X(0) = .

O<y<1

During the term of the policy, the insurance company sets aside a reserve.
The reserve is the amount of money which should ensure that the insurer
will meet all the future contractual obligations arising from the portfolio.
The reserve is usually calculated under prudential basis. This means that
the insurer assumes in the calculations a higher loss frequency and a more
severe claim size distribution.

Traditionally, actuaries calculate reserves for the outstanding liabilities
as the conditional expected value of all future discounted payments,
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(2.10) R(t) = ]Eﬁe‘g(s_t) dJ(s) ( ft}, 0<t<T,

where § is a prudent rate of return on investments (discount rate) and J(t)
is a compound Poisson process with Poisson intensity P\ > A and claim size
distribution with finite first moment i > p.

In order to calculate the above expected value we use the following

well known fact from the theory of Poisson processes (see for example Sato
(1999)).

LEMMA 2.1. The distribution of the random vector (11, ...,Ty,), condi-
tioned on N(t) = n, is given by the density function

n!
(211) f(Tl,...Tn)\N(t):n(tla v atn) = t_na 0<t <--- <t <t,

which means that the random vector (T1,...,T,), conditioned on N(t) = n,
is distributed as the vector of n ordered statistics taken from the uniform
distribution on the interval [0, t].

With the above lemma, calculation of the expectation in (2.10) is straight-
forward. Because of the independence and stationarity of the increments of
the compound Poisson process and the lack of memory for the inter-claim
times, the reserve at time ¢ is equal to

N(T-t)
(2.12) R(t) = IE[ 3 e*éTiY,}.
i=1
Using the properties of the conditional expectation and the independence of

the sequences {&;,i > 1} and {Y;,i > 1} we arrive at

00 N(T—t)

(2.13) R(t):ZIE[ Y ey,
n=0

~

N(T 1) = n} Pr(N(T — t) = n)

i=1
o NT-t)
- ,721@[ 3N e NT 1) = n} Pr(N(T — t) = n).

n=0 i=1
From Lemma 2.1 it follows that

n U -t 1
(2.14) E[;e_‘m N(T—t):n} =n S 6_53T_td3

1 — e—0(T—1)
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Finally, at time ¢, the reserve for the outstanding liabilities is equal to
) R
(2.15) R(t) = % (1-edT-0), 0<t<T.

The insurance company can choose the parameters 5 N7 , v taking into ac-
count its own attitude towards insurance risk ()\ i) and investment risk (5)
or there exist solvency regulations which require the insurer to set reserves
for future payments on a specified basis. In actuarial literature, the market
reserve, which is the market value of insurance liabilities, is gaining much
interest. For the concept of no-arbitrage between insurance and reinsurance
markets and the arbitrage-free pricing of non-life business see Jang and Kr-
vavych (2004) and Sondermann (1991).

We investigate the following insurer’s wealth path dependent disutility
optimization problem. The aim of the insurer is to find an investment strat-
egy which minimizes the quadratic loss function

T
(2.16) E [ {(R(s) — X () + a(R(s) — X(s)} ds

0
+B(X(T)? — aX(T)) ( X(0) = xo} .

The above quadratic loss function penalizes deviations of the insurance sur-
plus process below the reserve for outstanding liabilities, and rewards devia-
tions above the reserve, which prompts the insurer to gain from the financial
market. It is clear that the insurance company should have interest in keep-
ing the wealth arising from the policy above the required reserve, just for
solvency reasons. However, if the wealth crosses the upper barrier, which is
given by the parameter v > 0, the loss function penalizes those deviations
above again. This means that when the wealth becomes too large it is cau-
tiously invested. Notice that the “real” target imposed by such a quadratic
function is R(t) + /2. The parameter o > 0 can be interpreted as the in-
surer’s attitude towards investment risk, as a higher value of a corresponds
to a lower risk aversion (see Haberman and Vigna (2002)). Stability of the
surplus and the necessity of redistribution of large profits to the insured can
serve as another explanation for laying down the upper barrier. The param-
eter § > 0 attaches a weight to the terminal cost. Applying the investment
strategy which minimizes (2.16) the insurer should meet all the contractual
payments and make a profit on the issued policy.
In Sections 3 and 4 we use the following lemma.

LEMMA 2.2. The solutions to the ordinary differential equations

(2.17) 1+d'(t) + ¢a(t) =0, a(T)=p,
(2.18)  —2R(t) — o — 2uXa(t) + b'(t) + pb(t) =0, b(T) = —af,
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where ¢, are constant parameters, are given by
1
(2.19) a(t) = p (e?T=1) — 1) 4 BTt

and
T

(2.20) b(t) = —aﬁeW(T*t) _a (eSO(T*t) _ 1) _9 S R(S)ego(sft) ds
2

T
—2uA\ S a(s)e?™ ds
t

— —afe? Tt _ (e#(T-8) _q) (212 + 2 %)

Sp © v
(9T _ BTy 2N
0(p+0)
20\
(T _pmty 2N s
( ) o(p — o) ( ?)

Proof. Solve the equations using variation of constants or check by direct
substitution. =

REMARK 2.1. Notice that a(t) > > 0 and b(¢t) <0 for all ¢ € [0, 7.

Let (a(t),b(t)) ~ (¢,¢) denote the functions which solve the ordinary
differential equations from Lemma 2.2 with parameters ¢, . This notation
is used in Sections 3 and 4.

REMARK 2.2. Notice that we solve the differential equations in Lemma
2.2 and calculate the reserve in (2.15) assuming non-zero parameters. If a

parameter appears to be zero, an appropriate limit in the given formulas
should be taken.

In the next section we solve our optimization problem.

3. The solution of the optimization problem. In this section we
present the solution to the optimization problem without constraints on
control variables. This means that we allow short selling of assets and bor-
rowing from a bank account.

Let V(t,z) denote the optimal value function for our optimization prob-
lem defined as

T
(3.1) V(t,z)= 9(%”1&[ [{(R(s) = X(5))? + a(R(s) — X(s))} ds
+ B(X(T)? — aX(T)) ( X(t) = x} 0<t<T,
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and V(T,z) = B(z% — ax). We first derive the Hamilton—Jacobi-Bellman
equation heuristically, based on the Dynamic Programming Principle, and
then state the verification theorem.
We have for all ¢, 0 <t < T,

(3.2) V(t—, x) = l)nfR {(R(t—) — z)2dt + a(R(t—) — z)dt

t n

+E[V(t, X(#) [ X (1) = «]}-
Applying 1t&’s formula for Lévy-type stochastic integrals (see Applebaum
(2004)), we arrive at

(3.3) dV(t,X(t)) = %‘; (t, X (t—))dt
+ Z—Z(t, X)X ()8t + X (t—)r} dt
10%V 29/\T
5o (6 X (0-) X (-)20(6)TQ0() de
+ gv (t, X (=) X (t-)0(t)" X dW(t)

+ S (V(t, X(t=) —y) — V(t, X (t=))} M(dt, dy).
0

2 . .
Let V; = %—‘;(t,x),vx = %—‘;(t,x),Vm = %Tg(t,x). The Hamilton—Jacobi-
Bellman equation for our problem is of the form

(3.4) 0= (R(t)—xz)? +a(R(t) —z)+ Vi +V,

+ S {V<t7$ - y) - V(t7x)})‘p(dy)
0
+ mf {V 20T+ = me29T(@9}
The optimal control at tlme t, 0<t< T7 is given by
(3.5) 0*(t) = —

x
ViaT
Substituting this value into the Hamilton—Jacobi—Bellman equation, we ar-
rive at the partial integro-differential equation which the optimal value func-
tion V' (¢, x) must satisfy. We find that
2
€T

(3.6) 0= (R(t)—2)2 + a(R(t) — 2) + Vi + Vaar — % 2 T Q
A S {V(twr - y) - V(t7 .%)}p(dy),
0

with the boundary condition V (T, ) = 8(z% — ax).
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As the loss function is quadratic in x, we are looking for a quadratic
solution of the form V (t,x) = a(t)x? + b(t)x + c(t). Then

(3.7) Vi=d@®)2® +b(t)x+ (), Ve=2a(t)r+b(t), Vi =2a(t),

[e.e]

(3.8) A S {V(t,x —y) = V(t,z)} p(dy) = —2ura(t)x + pada(t) — pAb(t).
0

Substituting (3.7) and (3.8) into (3.6) we arrive at
(3.9) 0=R(t) —2R(t)x + x> + aR(t) — azx + d (t)z* + V' (t)x + (1)

+ 2ra(t)z? + rb(t)x — 2ua(t)x + poda(t) — pb(t

7TQ ra(t)z? — 7T Q tab(t)r — 7T Q Ix (t<):)
The problem of finding the optimal value function V(¢,z) satisfying the
partial integro-differential equation (3.6) is equivalent to finding functions
a(t),b(t), c(t) satisfying the ordinary differential equations
(310) 0=1+d(t)+ 2r —71Q 'm)a(t), aT)=4,
(3.11) 0= —2R(t) — o — 2pXa(t) + V'(t) + (r — 71 Q 1m)b(t),
b(T) = —af,

(3.12)  0=C(t) + (1 + a)R(t) + p2a(t) — pAb(t) —
c(T)=0.

As the optimal control depends only on the functions a(t),b(t) we solve
only the first two equations. It suffices to set ¢ = 2r — 77 Q7 !'7 and ¢ =
r —77Q ™7 to recover our solutions from Lemma 2.2.

THEOREM 3.1. If there exists a function V (t,z) € CH2([0,T] x R) satis-
fying the Hamilton—Jacobi-Bellman equation

(3.13) 0= (R(t) —2)* + a(R(t) — x) + Vi + Vpar

o0

+ | {V(t.z —y) = V(t.2) A p(dy)
0

1
inf T r 5 YxT 297
+01€an{Vx9 T+ 2V x40 QH},
with the boundary condition V(T,z) = B(x? — ax), such that the processes

SGV

) 0

(3.14) (s,X(s—))X(s—)0i(s)dW;(s), i,j=1,...,n,

t oo

(3.15) | [{V (s, X (s—=) —y) = V(s, X (s—))} (M (ds, dy) — Ap(dy)ds),
00
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are martingales for t € [0,T], and there exists an admissible control 0*(-) for
which the infimum is reached, then

T
(3.16) V(t,x)= e(i)nfR IE[ S{(R(S) — X(5))? 4 a(R(s) — X(s)} ds

+BX(1)? - aX (1) | X (1) = ],

and 0*(-) is the optimal control for the problem.

REMARK 3.1. In order to have the martingale property for the processes
(3.14) and (3.15), the function V (¢, z) should satisfy the conditions

v 2
(3.17) ]E[S {&—(t,X(t—))X(t—)Hi(t)} dt} <oo, i=1,...,n,
x

0

T oo
(3.18) IE“ WVt X(t-) —y) = V£, X(t-)) A p(dy) dt] < 0.

00

Proof of Theorem 3.1. The function satisfying (3.13) is of the form a(t)z>

+ b(t)x + c(t), where a(t), b(t), c(t) solve (3.10)—(3.12), and it is of class
C12([0,T] x R). As a(t) is positive for 0 < ¢t < T and the matrix Q is
positive definite, the feedback control

(0 = = (X°0-) + ok ) i @

where
(a(t),b(t)) ~ (2r — 7" Q 'm,r — 7T Q 1),

minimizes the quadratic form as required. One can also show that
SUPye(o,7] E|X*(t)|* < oo (see the next section for a short explanation). It is
straightforward to check that the control is a predictable process and satis-
fies (2.6) and (2.7), so it is admissible, and that conditions (3.17) and (3.18)
are satisfied. Applying Itd’s calculus, one can show that the derived function
is the optimal value function for our optimization problem and the derived
optimal control is the optimal investment strategy. =

Next, we investigate some properties of the optimal investment strategy
and the evolution of the insurer’s wealth under this optimal strategy.

4. The optimal strategy and the insurer’s wealth. The optimal
investment strategy, at time ¢, 0 < t < T, for our optimization problem
without constraints on control variables is given in the feedback form

(4.1 (1) = (9() = X"(-2) e @'
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where g(t) = —b(t)/2a(t) and (a(t),b(t)) ~ (2r — 77 Q7 lm,r — 77Q 7).
The evolution of the insurer’s wealth under the optimal investment strategy
is given by
(4.2) dX*(t) = X*(t—)0* () mdt + X*(t—)0* ()T X dW(¢)
+ X*(t—)rdt —dJ(t), X*(0)=xo.
Substituting the optimal strategy we arrive at
(4.3) dX*(t) = (9(t) — X*(t=))nTQ tndt + X*(t—)rdt
+(g(t) = X*(t=))(Z7 )T dW(t) — dJ (1), X*(0) = wo.

As the coefficients in the diffusion part of the equation (4.3) satisfy Lip-
schitz and growth conditions and the compound Poisson distribution has
finite fourth moment, the above stochastic differential equation has a unique
solution such that sup,¢( 7 E|X*(t)]* < oc.

We solve this stochastic differential equation. Let H(t) = g(t) — X*(¢).
The stochastic differential of the process {H(t),0 <t < T} is
(4.4)  dH(t)=g'(t)dt — dX*(t)

=g (t)dt — g(t)rdt + Ht—)(r — n'Q x)dt
— H(t—)(Z7'm)" dW(t) + dJ(t), H(0) = g(0) — xo.

Let us introduce the process {Z(t),0 < ¢t < T}, with continuous sample
paths, of the form

(45) Z(t) — e*(T*TI'T@_lﬂ‘)t+% ||2_17r||2t+(2_17r)TW(t)

)

where || - || denotes the vector norm. The stochastic differential of this process
is

(4.6) dZ(t) = Z(t){—(r — 7T Q 'm)dt + | X x|%dt + (X7 m)T daW(¢)}.

Multiplying both sides of (4.4) by Z(t) we arrive at

(4.7)  Z@t)dH(t)—H{t—)Z(t)(r—nTQ tx) dt+H(t—)Z(t) (X 1m)T dW(¢)
= Z(t)(g'(t)dt — g(t)rdt +dJ(t)), H(0) = g(0) — xo.

Let us recall Ité’s product formula for two Lévy-type stochastic integrals
Y1(t) and Ya(t) (see Applebaum (2004)):

(4.8)  dM(t)Ya(t)) = Yi(t—) dYa(t) + Ya(t—) dYi(t) + d[Y1, Yo] dt,
where

(4.9) V1, Ya](8) = [Y, Y51(8) + ) AYi(s)AYa(s),
0<s<t

[-](t) denotes the quadratic variation process and ¢ denotes the continuous
parts of the processes. Now we recognize that the left-hand side of (4.7) is the
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stochastic differential for H(t)Z(t). Notice that Z(t) has continuous sample
paths and the second term in (4.9) is zero. We arrive at

(4.10) H(t) = —{H(O) +{Z(s)(g'(s) — g(s)r) ds
0

+1 | Z(S)yM(ds,dy)},
00
where the last term is a Poisson stochastic integral. Finally, the insurer’s
wealth, under the optimal investment strategy, at time ¢ is equal to
¢

@11) X"(0) = 9(0) = 57-{90) ~ 0+ | Z)(/ () - a(s)r) ds
0
+S S Z(s)yM(ds,dy)}.
00

It is possible to derive a formula for the expected value of the insurer’s
wealth under the optimal investment strategy. If we take the expected value
on both sides of (4.3) and let m(t) = EX*(¢), then we obtain an ordinary
differential equation for the function m(t):

(4.12)  m/(t) = (g(t) — m(t)) 7T Q7 x + m(t)r — Au, m(0) = xo.
This equation has the solution
_ Au T-1

4.13 1) = (T*ﬂTQ Imyt (r—n*Q 'tm)t _ 1
( ) m( ) To€ r_ WT@_lTr {6 }

¢

+7TQx S g(s)e(r_”TQilﬂ)(t_s) ds.
0
The insurance company can choose the parameters 3, X, 1, and 3 in the

optimization process. These parameters reflect the insurer’s attitude towards
the risk it faces and introduce the risk profile of the insurer.

Let us consider the case of one risky asset. Then the optimal investment
strategy is given by

(4.14) 0*(t) = (g(t) — X™(t-))
where
g(t) = —22(2) and  (a(t), b(t)) ~ (27« - (“ ~ T)Q,r - (a ~ ’”>2>.

The parameters g, X, 1 have an influence on the reserve. The higher the
loss frequency A, the higher the reserve, and the same relation holds for the

1 a—r
X*(t—) o2’
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expected severity of claims .. However, the lower the rate of return 3\, the
higher the reserve. The reserve constitutes the lower and upper barrier on
the loss function and has an impact on the optimal investment strategy and
on the insurer’s expected wealth under this strategy. The higher the reserve,
the higher the fraction of the wealth invested in the risky asset (given the
same positive level of available wealth) and the higher the expected value
of the insurer’s wealth. This can be seen from equations (2.20), (4.13) and
(4.14), as g(t) is decreasing in b(t) and b(t) is decreasing in the reserve.

The parameter « affects the “real” target imposed by the loss function
and it also has an impact on the optimal investment strategy and on the
insurer’s expected wealth under this strategy. The higher the value of «, the
higher the fraction of the wealth invested in the risky asset (given the same
positive level of available wealth) and the higher the expected value of the
insurer’s wealth. This can be seen again from equations (2.20), (4.13) and
(4.14), as b(t) is decreasing in «. The above relations are intuitively clear.
Notice that the statements concerning the insurer’s expected wealth also
hold in the multi-asset economy, as 77 Q™! is positive (the matrix Q! is
positive definite).

It is straightforward to derive regions where the strategy of short selling
the asset or borrowing from a bank account is optimal. We observe that

(4.15) 0" (t) <0< X*(t—) <0V X*(t—) > g(t),
(4.16) ) >1=0< X*(t—) < Lt)z
1+ =

If the wealth is low (but positive), the insurer should borrow from a bank
account and invest aggressively in the risky asset in order to reach the de-
sired target. When the wealth is increasing, the insurer should invest more
cautiously and decrease the fraction of the wealth invested in the risky asset.
However, if the wealth is too large, then the optimal strategy is short-selling
of the asset, which means throwing money away. Notice that in the opti-
mization problem with constraints on control variables (no short selling of
assets or borrowing from a bank account), o would be the parameter setting
the amount of wealth which “satisfies” the insurer and over which the insurer
takes no investment risk and invests only in the risk free asset. In the case
of negative wealth, the short-selling strategy gives the insurer a chance to
recover the positive level of wealth. This coincides with the properties of the
applied quadratic loss function.

Summing up, in this paper we have investigated the construction of an
investment strategy for a non-life insurance company. We have dealt with a
wealth path dependent disutility optimization problem and for a quadratic
loss function we have derived an optimal investment strategy. The solution
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can easily be implemented in practice.
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