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STABILITY AND OPTIMAL HARVESTING

OF A PREY-PREDATOR MODEL

WITH STAGE STRUCTURE FOR PREDATOR

Abstract. The dynamics of a prey-predator system, where predator has
two stages, a juvenile stage and a mature stage, is modelled by a system of
three ordinary differential equations. Stability and permanence of the system
are discussed. Furthermore, we consider the harvesting of prey species and
obtain the maximum sustainable yield and the optimal harvesting policy.

1. Introduction. Stage structured models have received much atten-
tion in recent years, i.e., models which take into account the fact that indi-
viduals in a population may belong to one of two classes, the immature and
mature. See, for example, Aiello and Freedman [1990], Aiello et al. [1992],
Freedman andWu [1991], Gambell [1985], Landahl and Hanson [1975], Wood
et al. [1989] and the references therein. In these models, the age of maturity
is represented by a time delay. Cannibalism has been observed in a great
variety of species, including a number of fish species. Cannibalism models
of various types have also been investigated by Cushing [1991], Diekmann
et al. [1986], Freedman et al. [1994], Hastings [1987], Magnusson [1999]. For
general models of population growth see Murray [1989]. Recently, papers
like Bosch and Gabriel [1997], Kar [2003] and Zhang et al. [2000] study the
stage structure of species with or without time delays.
The optimal management of renewable resources, which has a direct rela-

tionship to sustainable development, has been studied extensively by many
authors. Economic and biological aspects of renewable resources manage-
ment have been considered by Clark [1976] and other authors like Brauer and
Soudack [1979, 1981], Dai and Tang [1998], Kar and Chaudhuri [2000, 2003],
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Bhattacharya and Begum [1996], Ragozin and Brown [1985], Mesterton-
Gibbons [1988], Leung [1995] and Jerry and Raissi [2001]. From the point of
view of ecological managers, it may be desirable for the system to be glob-
ally stable or permanent, in order to plan harvesting strategies and keep a
sustainable development of the ecosystem.

To facilitate the interpretation of our mathematical findings we assume
that the prey or the renewable resource, density of which is denoted by N1,
can be modelled by a logistic equation when the consumer is absent. We
assume that the predators or consumers are divided into two stage groups:
juveniles and adults, and their densities are denoted by N2 and N3 respec-
tively. Here we also assume that only adult predators are capable of preying
on the prey species and that the juvenile predators live on their parents.
For example, the Chinese alligator can be regarded as a stage-structured
species since the mature is more than 10 years old, and can also be regarded
as a predator because almost all aquatic animals are the chief food of the
Chinese alligator. Another key and somewhat novel feature of our model
is to account for the universally prevalent intra-specific competition in the
consumer growth dynamics (Kuang et al. [2003]). This intra-specific com-
petition is assumed to induce additional instantaneous deaths only to the
adult population and the increased death rate is proportional to the square
of the adult population.

With these assumptions, we have the following plausible two-stage prey-
predator interaction model:

(1.1)

dN1
dt
= r1N1

(

1−
N1
k

)

− αN1N3,
dN2
dt
= βN3 − r2N2,

dN3
dt
= −r3N3 +mαN1N3 + γN2 − δN

2
3 .

Here r1 is the specific growth rate of the prey and k is its carrying capacity.
α is the predation parameter; m is the conversion factor; r3 is the death rate
of mature predator species; γ is the proportionality constant of transforma-
tion of immature to mature predators; r2 = µ+γ, where µ is the death rate;
β is the birth rate of the immature populations.

Defining

N1 =
kr2
r1
x1, N2 =

βx2
mα
, N3 =

r2x3
mα
, t =

τ

r2
,

we can rewrite (1.1) as

(1.2)

dx1
dτ
= ax1 − x

2
1 − bx1x3,

dx2
dτ
= x3 − x2,

dx3
dτ
= −cx3 + dx1x3 + ex2 − fx

2
3,
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where

a =
r1
r2
, b =

1

m
, c =

r3
r2
, d =

mαk

r1
, e =

γβ

r22
, f =

δ

mα
.

In Section 2, we discuss the equilibria and their stability for system (1.2).
In Section 3, we consider the harvesting of prey species. Reasonable harvest-
ing policies are indisputably one of the major and interesting problems from
the ecological and economical point of view. The exploitation of biologi-
cal resources and harvests of population species are commonly practised in
fishery, forestry and wildlife management. A management of multispecies
fisheries is needed to maintain an ecological balance, which is disrupted due
to overexploitation of many conventional fish stocks and growing interest in
harvesting new kinds of food from the sea. An optimal harvesting policy is
studied in Section 4.

2. Equilibria and stability analysis. System (1.2) has to be analyzed
with the following initial conditions: x1(0) > 0, x2(0) > 0 and x3(0) > 0. We
observe that the right-hand side of (1.2) is a smooth function of the variables
(x1, x2, x3) and the parameters, as long as these quantities are non-negative,
so local existence and uniqueness properties hold in the positive octant. The
state space for system (1.2) is the positive octant, {(x1, x2, x3) : x1 > 0,
x2 > 0 and x3 > 0}, which is clearly an invariant set, since the vector field
on the boundary does not point to the exterior. Our next result concerns
the existence of equilibrium points.
We observe that the possible non-negative equilibria of system (1.2) are

P0(0, 0, 0), P1(a, 0, 0) and P2(x
∗

1, x
∗

2, x
∗

3) where

x∗1 =
af + bc− be

db+ f
and x∗2 = x

∗

3 =
e+ da− c

db+ f
.

We remark that if e > c, then there exists another equilibrium in the absence
of prey. But it is not feasible since prey is the only source of food for the
predator. So throughout the paper we assume that c ≥ e (i.e., the ratio of
the death rate of the mature predators to the rate of transformation from
immature to mature is greater than or equal to the ratio of the birth rate and
enhanced death rate of the immature predators). Therefore, P2 is feasible if
c < e+ ad.
We are particularly interested in the interior equilibrium point P2(x

∗

1,
x∗2, x

∗

3) for its usual importance.
In order to investigate the stability of system (1.2) near P0, P1 and P2,

we compute the variational matrix which is given by

M(x1, x2, x3) =





a− 2x1 − bx3 0 −bx1
0 −1 1
dx3 e −c+ dx1 − 2fx3



 .
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Now,

M(0, 0, 0) =





a 0 0
0 −1 1
0 e −c



 .

The characteristic equation ofM(0, 0, 0) is (a−λ){λ2+(c+1)λ+c−e} = 0.
Hence the point P0(0, 0, 0) is unstable.

Next,

M(a, 0, 0) =





−a 0 −ba
0 −1 1
0 e −c+ ad



 .

The characteristic equation of M(a, 0, 0) is

(a+ λ){λ2 − λ(ad− c− 1)− (ad+ e− c)} = 0.

Therefore P1(a, 0, 0) is locally asymptotically stable for c > e+ ad.

Finally,

M(x∗1, x
∗

2, x
∗

3) =





−x∗1 0 −bx∗1
0 −1 1
dx∗3 e −c− 2fx∗3 + dx

∗

1



 .

The characteristic equation ofM(x∗1, x
∗

2, x
∗

3) is λ
3+Aλ2+Bλ+C = 0 where

A = 1 + e+ x∗1 + fx
∗

3 > 0,

B = fx∗3 + x
∗

1 + x
∗

1(fx
∗

3 + e) + bdx
∗

1x
∗

3,

C = (f + bd)x∗1x
∗

3 > 0.

Obviously, AB − C > 0. According to the Routh-Hurwitz criterion, P2(x
∗

1,
x∗2, x

∗

3) is locally asymptotically stable if c < e+ ad.

Now we shall discuss the condition of global stability, permanence and
extinction for system (1.2). First, we set

R
3
+ = {x = (x1, x2, x3) ∈ R

3 : xi ≥ 0},

IntR3+ = {x = (x1, x2, x3) ∈ R
3 : xi > 0}.

Definition 2.1. An equilibrium point P (x1, x2, x3) is said to be glob-
ally asymptotically stable in R

3
+ if it is locally asymptotically stable and all

trajectories in R
3
+ converge to P (x1, x2, x3).

Lemma 2.1. (i) If c ≥ e+ ad, then the equilibrium P1(a, 0, 0) is globally

asymptotically stable in R
3
+.

(ii) If c < e+ad, then the unique interior equilibrium point P2(x
∗

1, x
∗

2, x
∗

3)
is globally asymptotically stable in IntR3+.
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Proof. (i) We construct the Lyapunov function

V1 = α1

(

x1 − a− a ln
x1
a

)

+ α2x2 + α3x3

where αi, i = 1, 2, 3, are positive constants to be determined below. Calcu-
lating the derivative of V1 along each solution of (1.2), we have

dV1
dτ
= α1

(

x1 − a

x1

)

dx1
dτ
+ α2

dx2
dτ
+ α3

dx3
dτ

= − α1(x1 − a)
2 − α1b(x1 − a)x3 + (α2x3 − cα3x3)

− α2x2 + α3ex2 + α3dx1x3 − α3fx
2
3.

Let α1 = d/b, α2 = e and α3 = 1. Then

dV1
dτ
= −
d

b
(x1 − a)

2 − (c− e− ad)x3 − fx
2
3 < 0 in IntR

3
+ for c ≥ e+ ad.

Therefore, by Lyapunov–LaSalle (Hale [1969]), it follows that P1 is locally
asymptotically stable and all trajectories starting in IntR3+ approach P1 as
t goes to infinity. This establishes the global asymptotic stability.
(ii) Let us take the Lyapunov function

V2(x1, x2, x3) =
∑

αi

(

xi − x
∗

i − x
∗

i ln
xi
x∗
i

)

where αi, i = 1, 2, 3, are positive constants to be determined below. Calcu-
lating the derivative along each solution of (1.2), we have

dV2
dτ
=
∑

αi

(

xi − x
∗

i

xi

)

dxi
dτ

= − α1(x1 − x
∗

1)
2 − bα1(x1 − x

∗

1)(x3 − x
∗

3) + α2(x2 − x
∗

3)

(

x3
x2
−
x∗3
x∗2

)

+ α3d(x3 − x
∗

3)(x1 − x
∗

1) + eα3(x3 − x
∗

3)

(

x2
x3
−
x∗2
x∗3

)

− fα3(x3 − x
∗

3)
2.

Let α1 = d/b, α2 = e and α3 = 1. Then

dV2
dτ
= −

d

b
(x1 − x

∗

i )
2 − f(x3 − x

∗

3)
2 − e

(

x3
x2x∗2

)

(x2 − x
∗

2)
2

− e

(

x2
x3x∗3

)

(x3 − x
∗

3)
2 +
2e

x∗2
(x2 − x

∗

2)(x3 − x
∗

3)

= −
d

b
(x1 − x

∗

i )
2 − f(x3 − x

∗

3)
2

− ex∗2

[√

x3
x2
(x2 − x

∗

2)
2 −

√

x2
x3
(x3 − x

∗

3)

]2

< 0.
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By similar arguments to those used for P1, we conclude that P2(x
∗

1, x
∗

2, x
∗

3)
is globally asymptotically stable if c < e+ ad.

Definition 2.2. System (1.2) is said to be permanent if there are pos-
itive constants m and M such that each positive solution x(t, x0) of (1.2)
with initial condition x0 ∈ IntR

3
+ satisfies

m ≤ lim inf
t→∞

xi(t, x0) ≤ lim sup
t→∞

xi(t, x0) ≤M, i = 1, 2, 3.

Definition 2.3. The ith species of system (1.2) is said to be extinctive
if each positive solution x(t, x0) of (1.2) with initial condition x0 ∈ IntR

3
+

satisfies
lim
t→∞
xi(t, x0) = 0, i = 1, 2, 3.
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Fig. 1. Phase space trajectories of system (1.2) beginning with different initial levels. It is
seen that P2(0.77, 0.56, 0.56) is a global attractor, where a = 3.0, f = 0.04, b = 4, c = 2.5,
e = 0.2, d = 3.0.

Remark. We have c ≥ e+ ad⇔ r3 ≥ mαk + γβ/r2.

We have the following theorem.

Theorem 2.1. (i) The predator species of system (1.2) is extinctive and
the prey species is not extinctive if and only if c ≥ e+ ad.

(ii) Both prey and predator species are permanent if and only if c < e+ad.

Proof. This follows easily from Definitions 2.1 and 2.2, and Lemma 2.1.

3. Harvesting of prey species. In order to study the effect of har-
vesting on system (1.2), let us consider the following system:
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dx1
dτ
= ax1 − x

2
1 − bx1x3 − qEx1,

dx2
dτ
= x3 − x2,(3.1)

dx3
dτ
= −cx3 + dx1x3 + ex2 − fx

2
3.

Here qEx1 is based on the catch-per-unit-effort hypothesis (Clark [1976]),
where q is the catchability coefficient and E is the harvesting effort.

The possible non-negative equilibria of system (3.1) are Q0(0, 0, 0),
Q1(a− qE, 0, 0) and Q2(x1, x2, x3) where

x1 =
(a− qE)f + bc− be

db+ f
, x2 = x3 =

e− c+ d(a− qE)

db+ f
.

Similar to the previous section, we have the following theorem.

Theorem 3.1. (i) The predator species of system (3.1) is extinctive and

the prey species is not extinctive if and only if c+ qEd ≥ e+ ad.

(ii) System (3.1) is permanent if and only if c+ qEd < e+ ad.

(iii) Both prey and predator species of system (3.1) are extinctive if and
only if a < qE.

In the following we shall consider the maximum sustainable yield of
system (3.1).

Maximum sustainable yield. The maximum sustainable yield (MSY) of
a biological resource population is the maximum rate at which it can be
harvested even after maintaining the population at a constant level.

Theorem 3.2. The maximum sustainable yield of system (3.1) is equal
to

(af + bc− be)2

4(db+ f)f

and occurs at the effort level

EMSY =
af + bc− be

2qf
.

Proof. Corresponding to a given effort E, the sustainable yield is given
by

h(E) = qEx1 = qE
(a− qE)f + bc− be

db+ f
.

Then
dh

dE
=

q

db+ f
[(a− qE)f + bc− be]−

q2Ef

db+ f
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and dh/dE = 0 gives

E =
af + bc− be

2qf
.

Now
d2h

dE2
= −

2q2f

db+ f
< 0.

Therefore, h(E) is maximum when E = E. Hence,

MSY = qEx1 =
(af + bc− be)2

4(db+ f)f
.

Thus the MSY occurs at the effort level EMSY = E and for any value of
E > EMSY, the yield h(E) monotonically decreases with E towards zero (see
Figure 2). If the effort level exceeds its MSY level, biologists call it a case
of biological overexploitation. It is observed that at EMSY, Q2 is globally
asymptotically stable.
For simulation let us take a = 3.0, f = 0.7, b = 4.0, c = 0.62, d = 3.0,

e = 0.25, q = 0.5. For these values we get EMSY = 4.95 and MSY = 0.38.
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Fig. 2. Yield-effort curve. The curve shows that when E > EMSY , yield monotonically
decreases with effort E towards zero.

4. Optimal harvesting policy. The MSY is a simple way to manage
resources taking into consideration that overexploiting resources leads to a
loss in productivity. Therefore, the aim is to determine how much we can
harvest without altering dangerously the harvested population. The main
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problem of the MSY is economical irrelevance. It is so since it takes into
consideration the benefits of resource exploitation, but completely disregards
its costs. For example, it ignores the fact that if a species is harvested in
such a way that its population decreases to a certain level, then the cost
of harvesting can become exorbitant because finding the desirable resource
becomes more consuming. This might lead to a situation where the cost of
harvesting is higher than the benefit. Confronted with the inadequacy of the
MSY, people tried to replace it by the “optimal sustainable yield”, which is
based on the standard cost benefit criterion used to maximize the revenues.
Our objective is to solve the following optimization problem:

(4.1) max

∞\
0

e−θτ (pqx1 − c)E(τ) dτ

subject to the state equations of (3.1) and the control constraint 0 ≤ E(τ) ≤
Emax, where θ is the instantaneous annual discount rate.
In order to solve the above optimization problem, we employ Pontrya-

gin’s Maximal Principle (Pontryagin et al. [1964]).
The associated Hamiltonian function is given by

H = e−θτ (pqx1 − c)E + λ1[ax1 − x
2
1 − bx1x3 − qEx1] + λ2[x3 − x2]

+ λ3[−cx3 + dx1x3 + ex2 − fx
2
3]

where λ1, λ2 and λ3 are adjoint variables and

φ(τ) = e−θτ (pqx1 − c)− λ1qx1

is called the switching function.
Since H is linear in the control variable, the optimal control will be a

combination of the extreme control and the singular control. The optimal
control E(τ) which maximizes H must satisfy the following conditions:

E =

{

Emax when φ(τ) > 0, i.e. when λ1(τ)e
θτ < p− c/qx1,

0 when φ(τ) < 0, i.e., when λ1(τ)e
θτ > p− c/qx1.

λ1(τ)e
θτ is the usual shadow price and p − c/qx1 is the net economic

revenue on a unit harvest. This shows that E = Emax or zero according as
the shadow price is less than or greater than the net economic revenue on a
unit harvest. Economically, the first condition implies that if the profit after
paying all the expenses is positive, then it is beneficial to harvest up to the
limit of available effort. The second condition implies that when the shadow
price exceeds the fisherman’s net economic revenue on a unit harvest, then
the fisherman will not exert any effort.
When φ(τ) = 0, i.e. when the shadow price equals the net economic

revenue on a unit harvest, then the Hamiltonian H becomes independent
of the control variable E(τ), i.e., ∂H/∂E = 0. This is the necessary and
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sufficient condition for the singular control E∗(τ) to be optimal over the
control set 0 < E∗ < Emax.
Thus the optimal harvest policy is

(4.2) E(τ) =











Emax, φ(τ) > 0,

0, φ(τ) < 0,

E∗, φ(τ) = 0.

When φ(τ) = 0, it follows that

(4.3) λ1 = e
−θτ (pqx1 − c)/qx1.

Now the adjoint equations are

dλ1
dτ
= −
∂H

∂x1
= −[e−θτpqE + λ1(a− 2x1 − bx3 − qE) + λ3(dx3)],(4.4)

dλ2
dτ
= −
∂H

∂x2
= −[−λ2 + λ3e],(4.5)

dλ3
dτ
= −
∂H

∂x3
= −[λ1(−bx1) + λ2 + λ3(−c+ dx1 − 2fx3)].(4.6)

To obtain an optimal equilibrium solution, we shall use

(4.7)











a− x1 − bx3 − qE = 0,

x3 − x2 = 0,

− cx3 + dx1x3 + ex2 − fx
2
3 = 0,

and x1, x2, x3 and E can be treated as constants.
By using (4.7), equations (4.4), (4.5) and (4.6) take the form

(4.8)











(D − x1)λ1 + (dx3)λ3 = e
−θτpqE,

(D − 1)λ2 + eλ3 = 0,

(D + (−c+ dx1 − 2fx3))λ3 + λ2 − bx1λ1 = 0,

where D ≡ d/dτ . By eliminating λ1, λ2 from the above differential equations
we get

(4.9)

(A2D
2 +A1D +A0)λ3 =Me

−θτ ,

A2 = 1,

A1 = −c+ dx1 − 2fx3 − 1,

A0 = −(−c+ dx1 − 2fx3)− e,

M = −
b

q
(pqx1 − c)(θ + 1).

Therefore, the solution of (4.9) is

(4.10) λ3 = B1e
m1τ +B2e

m2τ +
M

N
e−θτ
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where Bi, i = 1, 2, are arbitrary constants and the mi, i = 1, 2, are the roots
of the characteristic equation of (4.9) and N = A2θ

2 −A1θ +A0 6= 0.
It is clear from (4.10) that λ3 is bounded if and only if mi < 0, i = 1, 2,

or the Bi, i = 1, 2, are identically equal to zero. For robust calculations we
ignore the case mi < 0, i = 1, 2, and take Bi = 0, i = 1, 2. Then we have

(4.11) λ3 =
M

N
e−θτ .

Now substituting λ3 from (4.11) and λ1 from (4.3) into the first equation of
(4.8) we get the singular path

(4.12)
pqx1 − c

qx1
(θ + x1)− dx3

M

N
+ p(a− x1 − bx3) = 0.

Equation (4.12) together with (4.7) gives the optimal equilibrium population
(x∗1, x

∗

2, x
∗

3) and the corresponding optimal harvesting effort E
∗.

5. Concluding remarks. In this paper, we have considered a prey-
predator model with stage-structure for predator. We have first discussed
the existence of possible steady states and then local as well as global sta-
bility. An important and interesting question in mathematical ecology is
permanence, which ensures the survival of biological species and excludes
extinction of species for all positive initial conditions. The question of per-
manence of biological species is of particular interest to fishery, forestry and
wildlife managers. If it is known that a system exhibits such a permanent
behaviour, then ecological planning based on a fixed eventual population
can be carried out. Analyzing the problem we have obtained conditions for
permanence of the solutions of our system.
We have also studied the dynamical behaviour of the system when prey

species are subjected to harvesting. Our study indicates a practical danger
in the ecological reality. More care should be exercised in setting harvesting
rates, since the maximum sustainable yields of the harvesting rates may
be far less than what we assumed for the existence of feasible equilibria.
Next the optimal harvesting policy is discussed using bang-bang controls
and singular controls.
The dynamics exhibited by the system shows good consistence with the

observation in biological reality. If the unharvested system is permanent,
then a sufficiently small harvesting rate will not change drastically the qual-
itative behaviour of the system, but the region of coexistence shrinks as the
harvesting rate increases. The result provides a theoretical support for safe
harvesting in biological resource management.
Before ending this article, we would like to mention that there is still

tremendous amount of work to do in this model. For example,

(i) One can consider the stage-structure of prey population.
(ii) The effort level E may be taken as dynamic, i.e. time dependent.
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Fig. 3. Phase space trajectories of system (3.1) for E = EMSY . It is seen that the corre-
sponding equilibrium point (0.16, 0.13, 0.13) is a global attractor.

(iii) Gestation period for predator is also an important characteristic to
be considered. We leave it for future considerations.
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