
APPLICATIONES MATHEMATICAE33,1 (2006), pp. 71�84

Wojciech Połowczuk (Wroªaw)
ON TWO-POINT NASH EQUILIBRIA INBIMATRIX GAMES WITH CONVEXITY PROPERTIES

Abstrat. This paper onsiders bimatrix games with matries having on-avity properties. The games desribed by suh payo� matries well approx-imate two-person non-zero-sum games on the unit square, with payo� fun-tions F1(x, y) onave in x for eah y, and/or F2(x, y) onave in y for eah x.For these games it is shown that there are Nash equilibria in players' strate-gies with supports onsisting of at most two points. Also a simple searhproedure for suh Nash equilibria is given.1. Introdution. The assumption of onavity of payo� funtions isvery often used, both in theoretial onsiderations and pratial appliationsof nonooperative games. A lassial result in this �eld belongs to Gliksberg[1℄ and onerns n-person games on R
k with ontinuous quasi-onave payo�s(see Theorem 1).Non-zero-sum n-person �nite games were �rst studied by Nash [3℄, whoproved that suh games always have Nash equilibria. Shapley [8℄ gave someonditions for existene of saddle points in zero-sum matrix games. Radzik[5, 7℄ extended Shapley's results to games with matries having some on-avity-onvexity properties. Next, a generalization of his result from [5℄ tobimatrix games was given in [4℄. In these two papers [4, 5℄, pure Nash equi-libria were onsidered. In [7℄, Radzik disussed two-point optimal strategies,i.e. strategies having supports with at most two elements. In the presentpaper we use the same onept of solution, generalizing the results from [7℄to bimatrix games.The organization of the paper is as follows. In Setion 2 we present baside�nitions and some bakground results. Setion 3 ontains our new resultsfor bimatrix games. Finally, Setions 4 and 5 are devoted to their proofs.2000 Mathematis Subjet Classi�ation: Primary 91A05.Key words and phrases: non-zero-sum game, onave/onvex game, Nash equilibrium.[71℄



72 W. Poªowzuk2. Preliminary results. In this setion we reall four bakground the-orems, essential for our further onsiderations. First we need to �x somenotation. We will onsider n-person non-zero-sum games in normal formG = 〈N, {Xi}i∈N , {Fi}i∈N 〉, where1. N = {1, . . . , n} is a �nite set of players;2. for eah i ∈ N , Xi is a spae of pure strategies xi of Player i.3. for eah i ∈ N and x = (x1, . . . , xn) ∈
∏

i∈N Xi, Fi(x) is the pay-o� funtion of Player i in the situation when the players use purestrategies x1, . . . , xn, respetively.A mixed strategy for Player i is any probability measure µi on Xi, i =
1, . . . , n.The �rst bakground theorem belongs to Gliksberg [1℄. We reall thatby de�nition, a real-valued funtion f on a onvex set X is quasi-onaveif for eah real c, the set {x : f(x) ≥ c} is onvex. Clearly, every onavefuntion is quasi-onave.Theorem 1. Let Xi ⊂ R

k be non-empty , onvex and ompat for all
i ∈ N . If every funtion Fi is ontinuous on ∏

i∈N Xi and quasi-onavein xi, then the n-person non-zero-sum game G has a pure strategy Nashequilibrium.In the next two theorems, a two-person non-zero-sum game on the unitsquareG′ = 〈{1, 2}, {[0, 1], [0, 1]}, {F, G}〉 is onsidered. The payo� funtions
F (x, y) and G(x, y) for Players 1 and 2, respetively, are assumed to bebounded and bounded from above on [0, 1] × [0, 1], respetively. Both theseresults were proved by Radzik in [6℄. (Here and throughout the paper, δt isthe degenerate probability distribution onentrated at the point t.)Theorem 2. Let F (x, y) be onave in x for eah y. Then for any ε > 0,the game G′ has an ε-Nash equilibrium of the form (αδa + (1 − α)δb, βδc +
(1 − β)δd) for some 0 ≤ α, β, a, b, c, d ≤ 1 with |a − b| < ε.Theorem 3. Let F (x, y) be onvex in x for eah y. Then for any ε > 0,the game G′ has an ε-Nash equilibrium of the form (αδ0 + (1 − α)δ1, βδc +
(1 − β)δd) for some 0 ≤ α, β, c, d ≤ 1, where α is independent of ε.In many situations, the players' strategy spaes are �nite and the abovetheorems annot be applied. In this paper we try to answer the question ifthe theorems have any �disrete� ounterparts. We will study this problemfor the two-person non-zero-sum ase.For the rest of the paper we will onsider two-person non-zero-sum �nitegames with strategy spaes of the form X1 = {1, . . . , m} and X2 = {1, . . . , n}for two natural numbers m and n, and with payo� funtions F1 and F2 forPlayers 1 and 2, respetively. Let A and B denote the (m×n)-matries suh



Nash equilibria in bimatrix games 73that aij = F1(i, j) and bij = F2(i, j) for all i and j. We will denote thisbimatrix game by Γ (A, B). It will also be alled an (m × n)-game Γ (A, B)or denoted by Γ (A, B)m×n, to emphasize the size of the payo� matries Aand B.Now we give the de�nitions of onavity for �nite games, whih are basifor our paper.Definition 1. A bimatrix game Γ (A, B)m×n is said to be olumn-onave [row-onave℄ if there exists a funtion F1(x, y) [F2(x, y)] on theunit square, onave in x for eah y [onave in y for eah x℄ and if thereare two stritly inreasing sequenes {xi}
m
i=1 and {yj}

n
j=1 in [0, 1] suh that

F1(xi, yj) = aij [F2(xi, yj) = bij ℄ for all i and j. A olumn-onvex [row-onvex ℄ game is de�ned analogously.Definition 2. A game Γ (A, B) is alled onave [onvex ℄ when it isolumn-onave and row-onave [olumn-onvex and row-onvex℄. For azero-sum game (B = −A), the equality F2 = −F1 is also required.For a given game Γ (A, B) it is rather di�ult to hek diretly if itis onave or not. It turns out, however, that there exists an alternative(equivalent) haraterization of onavity of bimatrix games, whih allowsus to hek this property without di�ulty. The proof of the following resultis idential to the one for zero-sum two-person games, given in Radzik [7℄.Theorem 4. A game Γ (A, B)m×n is olumn-onave [row-onave℄ ifand only if there exist positive numbers θ1, . . . , θm−1 [τ1, . . . , τn−1] suh that(1) θ1(a2j − a1j) ≥ θ2(a3j − a2j) ≥ · · · ≥ θm−1(amj − am−1,j) for all j(2) [τ1(bi2 − bi1) ≥ τ2(bi3 − bi2) ≥ · · · ≥ τn−1(bin − bi,n−1) for all i].When all the inequalities in (1) and/or in (2) are reverse, the game Γ (A, B)is olumn-onvex and/or row-onvex.Remark 1. Note that (1) and/or (2) hold with positive θ1, . . . , θm−1and τ1, . . . , τn−1 if and only if for any 1 ≤ k ≤ m−2 and 1 ≤ l ≤ n−2 thereare αk > 0 and βl > 0 suh that(3) αk(ak+1,j − akj) ≥ ak+2,j − ak+1,j for all jand/or(4) βl(bi,l+1 − bil) ≥ bi,l+2 − bi,l+1 for all i.These two onditions are easily veri�able, allowing one to hek whether agame is olumn-onave and/or row-onave. An analogous algorithm anbe used in the �onvex� ase.To end this setion, we quote Theorem 4.3 from Radzik [7℄, essential forour paper. It desribes the struture of players' optimal strategies in two-



74 W. Poªowzukperson zero-sum onave matrix games. This result an be seen as a �disrete�ounterpart of Theorem 1 for zero-sum games, with quasi-onavity replaedby onavity.Theorem 5. Let Γ (A,−A)m×n be a onave zero-sum matrix game.Then there exist 0 ≤ λ, γ ≤ 1 and 1 ≤ s < m and 1 ≤ r < n suh that
(µ∗, ν∗) = (λδs +(1−λ)δs+1, γδr +(1−γ)δr+1) is a pair of optimal strategiesin Γ (A,−A).It is worth adding here that a simple proedure of searhing for optimalstrategies desribed in the above theorem is also given in [7℄.Remark 2. In view of Theorem 1, one ould ask if Theorem 5 remainstrue when �onavity� of Γ (A,−A) is replaed by �quasi-onavity� (de�nedanalogously to onavity). Unfortunately, as shown in [7℄, the result of The-orem 5 does not hold under this new weaker assumption.In the next setions, we study two problems. The �rst is to generalizeTheorem 5 to onave bimatrix games. The seond problem is to get disreteounterparts of Theorems 2 and 3.3. Main theorems. In this setion we formulate our four main results.The �rst of them (Theorem 6) generalizes Theorem 5 to non-zero-sum games.It may also be seen as a disrete ounterpart of Theorem 1 for the two-personase. To formulate it, we need to introdue some notation.Let A = [aij ] and B = [bij] be �xed matries of the same size m × n,
m, n ≥ 2.The game Γ1(A1, B1) is said to be a subgame of Γ (A, B) if the matries
A1 and B1 an be obtained by removing some rows and (or) olumns from
A and B (the same for A and B).Now let Γ

ij
kl = Γ (Aij

kl, B
ij
kl), 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n, where for any

(m × n)-matrix W = [wsr] we put
W

ij
kl =













wij wi,j+1 . . . wil

wi+1,j wi+1,j+1 . . . wi+1,l... ... ...
wkj wk,j+1 . . . wkl













.

Obviously, eah game Γ
ij
kl is a subgame of Γ (A, B).Further, de�ne(5) λ

ij
kl = min(bij

kl, b
i,j+1

k,l+1
), λ

ij
kl = max(bij

kl, b
i,j+1

k,l+1
),(6) γ

ij
kl = min(aij

kl, a
i+1,j
k+1,l), γ

ij
kl = max(aij

kl, a
i+1,j
k+1,l),



Nash equilibria in bimatrix games 75where
b
ij
kl =

bkl − bkj

bkl − bkj + bij − bil

,(7)
a

ij
kl =

ail − akl

ail − akl + akj − aij

.(8) Remark 3. One an easily hek that if a game of the form
Γ = Γ

([

aij ail

akj akl

]

,

[

bij bil

bkj bkl

])

does not have a pure Nash equilibrium, then the pair (µ∗, ν∗) with µ∗ =

b
ij
klδi + (1 − b

ij
kl)δk and ν∗ = a

ij
klδj + (1 − a

ij
kl)δl is a Nash equilibrium in Γ .Now we are ready to formulate our �rst main theorem.Theorem 6. Let Γ = Γ (A, B)m×n be a onave game. Then one of thefollowing four ases must our :

Case 1: There exists a pure Nash equilibrium (s, r) in Γ .
Case 2: There exists a (2×2)-subgame Γ sr

s+1,r+1 of Γ without pure Nashequilibria.In this ase there is a Nash equilibrium in Γ sr
s+1,r+1 of the form µ∗ = λδs +

(1 − λ)δs+1 and ν∗ = γδr + (1 − γ)δr+1 with λ = bsr
s+1,r+1 and γ = asr

s+1,r+1,whih is also a Nash equilibrium in Γ .
Case 3: For some k ≥ 3 there is a (k × 2)-subgame Γ sr

s+k−1,r+1
of Γwithout pure Nash equilibrium, whih satis�es(9) blr = bl,r+1 for all l with s < l < s + k − 1.In this ase for every l with s < l < s + k − 1 and every γ with γ

l−1,r
l,r+1

≤

γ ≤ γ
l−1,r
l,r+1

, there is a Nash equilibrium in Γ sr
s+k−1,r+1

of the form µ∗ = δland ν∗ = γδr + (1 − γ)δr+1, whih is also a Nash equilibrium in Γ .
Case 4: For some k ≥ 3 there is a (2 × k)-subgame Γ sr

s+1,r+k−1
of Γwithout pure Nash equilibrium, for whih(10) asl = as+1,l for all l with r < l < r + k − 1.In this ase for every l with r < l < r + k − 1 and every λ with λ

s,l−1

s+1,l ≤

λ ≤ λ
s,l−1

s+1,l, there is a Nash equilibrium in Γ sr
s+1,r+k−1

of the form µ∗ =

λδs + (1 − λ)δs+1 and ν∗ = δl, whih is also a Nash equilibrium in Γ .Remark 4. A zero-sum version of Theorem 6 was proved in [7, Theorem4.3℄. However, for zero-sum games it is enough to onsider only (2× 3)- and
(3 × 2)-subgames in Cases 3 and 4 above.



76 W. PoªowzukOur seond main theorem generalizes Theorem 6.1 of [7℄ to non-zero-sum�nite games. It an also be seen as a disrete ounterpart of Theorem 2 givenin the previous setion.Theorem 7. Let Γ = Γ (A, B)m×n be a olumn-onave game. Then oneof the following three ases must our :
Case 1: There exists a pure Nash equilibrium (s, r) in Γ .
Case 2: For some 1 ≤ s < m, there exists a (2 × n)-subgame Γ s1

s+1,n of
Γ without pure Nash equilibria.In this ase there is a Nash equilibrium in Γ s1

s+1,n of the form µ∗ = λδs +
(1 − λ)δs+1 and ν∗ = γδr + (1 − γ)δu for some 0 < λ < 1, 0 ≤ γ ≤ 1 and
1 ≤ r < u ≤ n, whih is also a Nash equilibrium in Γ .
Case 3: For some 1 < l < m and 1 ≤ r < u ≤ n there exists a (3 × 2)-subgame of Γ of the form

Γ ′ = Γ













al−1,r al−1,u

alr alu

al+1,r al+1,u






,







bl−1,r bl−1,u

blr blu

bl+1,r bl+1,u













satisfying(11) blr = blu ≥ blj for all 1 ≤ j ≤ nand
(12) (a)

{

al−1,r < alr < al+1,r

al−1,u > alu > al+1,u

or (b)

{

al−1,r > alr > al+1,r

al−1,u < alu < al+1,u.In this ase for every γ with γ
l−1,r
lu ≤ γ ≤ γ

l−1,r
lu , the game Γ ′ has a mixedNash equilibrium (µ∗, ν∗) of the form µ∗ = δl and ν∗ = γδr +(1−γ)δu, whihis also a Nash equilibrium in Γ .Before formulating our next theorem, for any (m × n)-matrix C = [cij],de�ne the (2 × n)-matrix

C1
m =

[

c11 c12 . . . c1n

cm1 cm2 . . . cmn

]

.Then, for any Γ (A, B)m×n, we put Γ 1
m = Γ (A1

m, B1
m).The theorem below generalizes Theorem 6.2 of Radzik [7℄ to the ase of�nite non-zero-sum games. It an also be seen as a disrete ounterpart ofTheorem 3.Theorem 8. Let Γ = Γ (A, B)m×n be a olumn-onvex game. Then oneof the following two ases must our :

Case 1: There exists a pure Nash equilibrium (s, r) in Γ 1
m.



Nash equilibria in bimatrix games 77In this ase (µ∗, ν∗) = (δs, δr) is also a pure Nash equilibrium in Γ .
Case 2: Γ 1

m does not have a pure Nash equilibrium.In this ase there is a Nash equilibrium in Γ 1
m of the form µ∗ = λδ1+(1−λ)δmand ν∗ = γδs + (1− γ)δr for some 0 < λ < 1, 0 ≤ γ ≤ 1 and 1 ≤ s < r ≤ n,whih is also a Nash equilibrium in Γ .Our last result is a modi�ation of Theorem 6 with �onavity� replaedby �onvexity�.Theorem 9. Let Γ = Γ (A, B), with payo� (m × n)-matries A = [aij]and B = [bij ], be a onvex game, and let

Γ ′′ = Γ

([

a11 a1n

am1 amn

]

,

[

b11 b1n

bm1 bmn

])

.Then one of the following two ases must our :
Case 1: There exists a pure Nash equilibrium (s, r) in Γ ′′.In this ase (µ∗, ν∗) = (δs, δr) is also a pure Nash equilibrium in Γ .
Case 2: Γ ′′ does not have a pure Nash equilibrium.In this ase there is a Nash equilibrium in Γ ′′ of the form (µ∗, ν∗), where

µ∗ = λδ1 + (1− λ)δm and ν∗ = γδ1 + (1− γ)δn, with λ = b11
mn and γ = a11

mn,whih is also a Nash equilibrium in Γ .4. Auxiliary lemmata. The proofs of Theorems 6�9 will be given inthe next setion. In view of their omplexity, we preede them by sevenhelpful lemmata.Throughout this setion, Γ denotes any bimatrix game Γ (A, B), where
A = [aij ] and B = [bij ] are (m × n)-matries, m, n ≥ 2.Lemma 1.Any subgame of a olumn-onave [row-onave℄ bimatrix game
Γ is also a olumn-onave [row-onave℄ game.Proof. This is an immediate onsequene of De�nition 1.The result of the next lemma in the ase of a zero-sum game was provedin [7, Lemma 5.1℄. Here we extend it to the non-zero-sum ase.Lemma 2. Let Γ be a olumn-onave [row-onave℄ game. Then for eah
j there exist natural numbers 1 ≤ q ≤ t ≤ m [for eah i there exist naturalnumbers 1 ≤ s ≤ r ≤ n] suh that(13) a1j < a2j < · · · < aqj = aq+1,j = · · · = atj > at+1,j > · · · > amj(14) [bi1 < bi2 < · · · < bis = bi,s+1 = · · · = bir > bi,r+1 > · · · > bin].When Γ is a olumn-onvex [row-onvex℄ game, all the inequalities in (13)and (14) are reverse.



78 W. PoªowzukProof. Assume that Γ is olumn-onave. We easily onlude from (1)that for eah j there exist q and t suh that the sequene of di�erenes
a2j − a1j, a3j − a2j , . . . , amj − am−1,jhas the following property: the �rst q−1 elements are positive, the elementsfrom the qth to the (t − 1)th are 0, and the remaining ones are negative.(13) is a simple onsequene of this property. Inequalities (14) an be provedanalogously with the help of (2). The proof of the last part of the lemma issimilar.Lemma 3. Let Γ be a olumn-onave [row-onave℄ game. For nonneg-ative numbers γ1, . . . , γn [λ1, . . . , λm], let pk =

∑n
j=1

γjakj [wl =
∑m

i=1
λiail]for k = 1, . . . , m [l = 1, . . . , n]. Then there exist natural numbers 1 ≤ s ≤

r ≤ m [there exist natural numbers 1 ≤ q ≤ t ≤ n] suh that(15) p1 < · · · < ps = ps+1 = · · · = pr > pr+1 > · · · > pm(16) [w1 < · · · < wq = wq+1 = · · · = wt > wt+1 > · · · > wn].When Γ is a olumn-onvex [row-onvex℄ game, all the inequalities in (15)and (16) are reverse.Proof. To get (15) [(16)℄, it is enough to multiply (1) [and (2)℄ by γj [and
λi℄ and sum the resulting inequalities over all j = 1, . . . , n [all i = 1, . . . , m℄.The rest of the proof is the same as for the previous lemma.Lemma 4. Let Γ be a onave game and let Γ

ij
kl , 1 ≤ i < k ≤ m, 1 ≤

j < l ≤ n, be its subgame. If (µ∗, ν∗) = (λδs +(1−λ)δs+1, γδr +(1−γ)δr+1),
0 < λ, γ < 1, i ≤ s < k, j ≤ r < l, is a Nash equilibrium in Γ

ij
kl , then it isalso a Nash equilibrium in Γ .Proof. Sine 0 < λ, γ < 1 and (µ∗, ν∗) = (λδs + (1 − λ)δs+1, γδr +

(1−γ)δr+1) is a Nash equilibrium in Γ
ij
kl , by the standard optimality propertywe have

λbsr + (1 − λ)bs+1,r = λbs,r+1 + (1 − λ)bs+1,r+1(17)
≥ λbst + (1 − λ)bs,t+1 for j ≤ t ≤ land

γasr + (1 − γ)as,r+1 = γas+1,r + (1 − γ)as+1,r+1(18)
≥ γaqr + (1 − γ)aq,r+1 for i ≤ q ≤ k.But inequalities (15) and (16) imply that (17) and (18) remain true for

1 ≤ t ≤ n and 1 ≤ q ≤ m. Therefore (µ∗, ν∗) is a Nash equilibrium in theentire game Γ .Lemma 5. Let Γ be a onave game and let Γ
ij
kl , 1 ≤ i < k ≤ m,

1 ≤ j < l ≤ n, be its subgame. If a pair (µ∗, ν∗) = (δs, δr), i < s < k,



Nash equilibria in bimatrix games 79
j < r < l, is a Nash equilibrium in Γ

ij
kl , then it is also a Nash equilibriumin Γ .Proof. The proof is the same as for Lemma 4, with (15) and (16) replaedby (13) and (14).Lemma 6. Let Γ be a onave game. Assume that Γ

l−1,r
l+1,r+1

is its subgamesatisfying the following :(19) blr = bl,r+1and
(20) (a)

{

al−1,r < alr < al+1,r,

al−1,r+1 > al,r+1 > al+1,r+1,or
(b)

{

al−1,r > alr > al+1,r,

al−1,r+1 < al,r+1 < al+1,r+1.Then for every γ with γ
l−1,r
l,r+1

≤ γ ≤ γ
l−1,r
l,r+1

, there exists a Nash equilibrium
(µ∗, ν∗) in Γ

l−1,r
l+1,r+1

of the form µ∗ = δl, ν∗ = γδr + (1 − γ)δr+1, whih isalso a Nash equilibrium in the entire game Γ .Proof. First assume that ase (a) of (20) holds. Then, by (1), for some
θl−1, θl > 0,(21) θl−1(al,r − al−1,r) ≥ θl(al+1,r − alr) > 0and

0 > θl−1(al,r+1 − al−1,r+1) ≥ θl(al+1,r+1 − al,r+1).The last inequality an be rewritten as(22) θl(al,r+1 − al+1,r+1) ≥ θl−1(al−1,r+1 − al,r+1) > 0.But (21) and (22) lead to
θl−1(alr − al−1,r)

θl−1(al−1,r+1 − al,r+1)
≥

θl(al+1,r − al,r)

θl(al,r+1 − al+1,r+1)
> 0,or equivalently

al−1,r+1 − al,r+1 + al,r − al−1,r

al−1,r+1 − al,r+1

≥
al,r+1 − al+1,r+1 + al+1,r − al,r

al,r+1 − al+1,r+1

> 1.Hene, by (8), we easily get
0 < a

l−1,r
l,r+1

≤ alr
l+1,r+1 < 1.Now, �x any γ in the interval(23) a

l−1,r
l,r+1

≤ γ ≤ alr
l+1,r+1.



80 W. PoªowzukClearly, 0 < γ < 1. By (8) we an rewrite the seond inequality in (23) inthe form
γ(al,r+1 − al+1,r+1 + al+1,r − alr) ≤ al,r+1 − al+1,r+1,whih is equivalent to(24) γalr + (1 − γ)al,r+1 ≥ γal+1,r + (1 − γ)al+1,r+1.Similarly, the �rst inequality of (23) implies(25) γal−1,r + (1 − γ)al−1,r+1 ≤ γalr + (1 − γ)al,r+1.From inequalities (24) and (25) we know that µ∗ = δl is the best strategy forPlayer I against the strategy ν∗ = γδr + (1− γ)δr+1 of Player II in Γ

l−1,r
l+1,r+1

,and beause of (19), ν∗ is also the best strategy for Player II against Player I'sstrategy µ∗ in Γ
l−1,r
l+1,r+1

. Therefore (µ∗, ν∗) is a Nash equilibrium in Γ
l−1,r
l+1,r+1

,whene, by Lemmata 2 and 3, it is also a Nash equilibrium in Γ . To end ase(a) notie that (23) is equivalent to(26) γ
l−1,r
l,r+1

≤ γ ≤ γ
l−1,r
l,r+1

.Case (b) of (20) is symmetri to ase (a), in the sense that one of thembeomes the other after interhanging l − 1 with l + 1. Consequently, wean repeat the onsiderations of ase (a), getting inequality (23) in the form
a

l+1,r
l,r+1

≤ γ ≤ alr
l−1,r+1

. But this is also equivalent to (26), sine, by (8),
a

l+1,r
l,r+1

= alr
l+1,r+1

and alr
l−1,r+1

= a
l−1,r
l,r+1

.Lemma 7. Assume that Γ is a onave bimatrix game whih does notsatisfy the assumptions of Cases 1 and 2 of Theorem 6. Then this game hasa (k×2)-subgame of type Γ sr
s+k−1,r+1

or a (2×k)-subgame of type Γ sr
s+1,r+k−1without pure Nash equilibria.Proof. This is an immediate onsequene of [4, Theorem 6℄ and Lem-ma 2.Lemma 8. Let Γ = Γ (A, B)m×n be any bimatrix game. Then there is aNash equilibrium (µ∗, ν∗) in Γ with supports of µ∗ and ν∗ onsisting of atmost min(m, n) elements.Proof. This follows from the well known theorem of Vorob'ev�Kuhn forbimatrix games (see [2, Lemmata 1 and 2℄ or [9℄).5. Proof of the theoremsProof of Theorem 6. Assume that there is no pure Nash equilibrium in Γ .We will show the validity of the statements in the remaining three Cases 2�4.Proof of the statement in Case 2. It follows diretly from Lemma 4 andRemark 3.



Nash equilibria in bimatrix games 81Proof of the statement in Case 3. Assume that a (k × 2)-subgame
Γ sr

s+k−1,r+1
of Γ satis�es (9) and does not have any pure Nash equilibrium.Suppose that atr = at+1,r for some t with s ≤ t < s + k − 1. Then by (13),we easily onlude that

asr ≤ as+1,r ≤ · · · ≤ atr = at+1,r ≥ at+2,r ≥ · · · ≥ as+k−1,r.But this together with (9) implies that (t, r) and (t + 1, r) are pure Nashequilibria of Γ sr
s+k−1,r+1

, whih ontradits the assumption. Therefore,(27) atr 6= at+1,r for all t with s ≤ t < s + k − 1.Now assume that asr < as+1,r. Then, in view of (13) and (27), only twosubases an happen:(28) asr < as+1,r < · · · < as+k−1,ror, for some i with s < i < s + k − 1,(29) asr < as+1,r < · · · < air > ai+1,r > · · · > as+k−1,r.But (29) is not possible, beause then (i, r) would be a pure Nash equilibriumin Γ sr
s+k−1,r+1

. Therefore (28) must hold if asr < as+1,r.In the seond subase asr > as+1,r, we see diretly from (13) that(30) asr > as+1,r > · · · > as+k−1,rExatly in the same way we an show that there are only two other possi-bilities, desribed by (28) or (30) with r replaed by r + 1.Summarizing, we easily onlude that one of the following two onditionsmust be satis�ed:
(31)

{

asr < as+1,r < · · · < as+k−1,r,

as,r+1 > as+1,r+1 > · · · > as+k−1,r+1or
{

asr > as+1,r > · · · > as+k−1,r,

as,r+1 < as+1,r+1 < · · · < as+k−1,r+1.Otherwise all the inequalities in one of them would be of the same type,�<� or �>�, easily implying the existene of a pure Nash equilibrium in
Γ sr

s+k−1,r+1
.Now, take any l with s < l < s + k − 1. Then (9), (31) and Lemma 6immediately imply the validity of the statement in Case 3.Proof of the statement in Case 4. This ase is symmetri to Case 3 andis omitted.To omplete the proof of Theorem 6, it should be shown that only Cases1�4 are possible. Assume then that Cases 1 and 2 do not hold.By Lemma 7, we an assume that Γ has a minimal (k × 2)-subgameof the form Γ sr

s+k−1,r+1
without pure Nash equilibria (the other possibility



82 W. Poªowzukwith a (2 × k)-subgame Γ sr
s+1,r+k−1

is symmetri). Therefore, all the propersubgames of Γ sr
s+k−1,r+1

of size k′ × 2 have pure Nash equilibria.For any l with s < l < s + k − 1, onsider two proper subgames of
Γ sr

s+k−1,r+1
, namely Γ sr

l,r+1
and Γ lr

s+k−1,r+1
. Both should have pure Nash equi-libria. If the �rst of them has one outside its last row, then, by (13), it is alsoa pure Nash equilibrium in Γ sr

s+k−1,r+1
, ontraditing the assumption. Thesame arguments imply that Γ lr

s+k−1,r+1
annot have a pure Nash equilibriumoutside its �rst row. Hene, Γ sr

l,r+1
and Γ lr

s+k−1,r+1
have pure Nash equilibriain the lth row of Γ . It is easy to onlude now that they have di�erent pureequilibria, (l, r) and (l, r+1) (otherwise, Γ sr

s+k−1,r+1
would have a pure Nashequilibrium). However, this implies blr = bl,r+1 for s < l < s + k − 1, whihends the proof of Theorem 6.Proof of Theorem 7. We begin by showing that one of Cases 1�3 mustour. Assume that Cases 1 and 2 do not hold. Sine Γ is a olumn-onavegame, the part of Lemma 2 with (13) holds.Therefore eah subgame Γ l1

l+1,n, 1 ≤ l < m, has a pure Nash equilib-rium, say (x(l), y(l)). If x(1) = 1 or x(m − 1) = m, then (x(1), y(1)) or
(x(m− 1), y(m− 1)), respetively, would be a pure Nash equilibrium in theentire game Γ , beause of (13). Therefore x(1) = 2 and x(m − 1) = m − 1.Consequently, there exists 1 ≤ l < m suh that x(l − 1) = x(l) = l. Set
y(l− 1) = r and y(l) = u. Then, beause (l, r) is a pure Nash equilibrium in
Γ

l−1,1
ln and (l, u) is a pure Nash equilibrium in Γ l1

l+1,n, we have(32) blr = blu ≥ blj for all 1 ≤ j ≤ n,and
alr ≥ al−1,r and alu ≥ al+1,u.But, beause Case 1 does not hold, neither (l, r) nor (l, u) an be a pureNash equilibrium in the entire game Γ . Hene, using (32) and (13), we easilydedue(33) al−1,r < alr < al+1,r and al−1,u > alu > al+1,u.If r < u then (33) is equivalent to (12)(a), while if u < r then (33) isequivalent to (12)(b). Therefore only Cases 1, 2 or 3 an hold.Now we will show the validity of the statements in Cases 2 and 3 of thetheorem.Proof of the statement in Case 2. Let the assumptions of this ase besatis�ed and onsider the subgame Γ s1

s+1,n. From Lemma 8 it follows thatin this subgame there exists a Nash equilibrium (µ∗, ν∗) of the form µ∗ =
λδs + (1 − λ)δs+1 and ν∗ = γδr + (1 − γ)δu for some 0 ≤ λ, γ ≤ 1 and
1 ≤ r < u ≤ n. Suppose that λ = 0 or λ = 1. Then, using the properties ofNash equilibrium, we easily dedue that Γ s1

s+1,n has a pure Nash equilibrium,



Nash equilibria in bimatrix games 83ontraditing the assumption. Therefore 0 < λ < 1. Hene, by the optimalityof Nash equilibrium we have
γasr + (1 − γ)asu = γas+1,r + (1 − γ)as+1,u,whih together with (15) implies that µ∗ is the best strategy for Player Iagainst ν∗ of Player II in the entire game Γ . The Nash optimality of ν∗against µ∗ in Γ follows diretly from its optimality in Γ s1

s+1,n. Thus (µ∗, ν∗)is a Nash equilibrium in Γ .Proof of the statement in Case 3. The game Γ ′ is olumn-onave andhas only two olumns, hene it is onave. Sine (11) holds, Lemma 6 anbe applied to onlude that the pair (µ∗, ν∗) desribed in Case 3 of thetheorem is a Nash equilibrium in Γ ′. The fat that (µ∗, ν∗) is an equlibriumin the entire game Γ (A, B) follows easily from (11) and (15) taken for pk =
γakr + (1 − γ)aku, k = 1, . . . , m. The simple details are omitted.Proof of Theorem 8. We apply Lemma 8 to get the existene of a Nashequilibrium (µ∗, ν∗) in Γ 1

m of the form µ∗ = λδ1 + (1 − λ)δm and ν∗ =
γδs + (1 − γ)δr for some λ, γ, s and r with 0 ≤ λ, γ ≤ 1 and 1 ≤ s ≤ r ≤ n.By optimality of (µ∗, ν∗), we easily get

λb1s + (1 − λ)bms = λb1r + (1 − λ)bmr(34)
≥ λb1j + (1 − λ)bmj for all 1 ≤ j ≤ n.Now, if we put pi = γais + (1 − γ)air, i = 1, . . . , m, then, by the �onvex�part of Lemma 3, for some t and u we have

p1 > · · · > pt = pt+1 = · · · = pu < pu+1 < · · · < pm.But the last inequalities, (34) and the de�nition of (µ∗, ν∗) immediately im-ply that (µ∗, ν∗) is a Nash equilibrium in Γ . If it is a pure Nash equilibrium,then we have Case 1 of the theorem, otherwise we have Case 2, ompletingthe proof.Proof of Theorem 9. In the game Γ ′ there is a Nash equilibrium (µ∗, ν∗)with µ∗ = λδ1 +(1−λ)δm and ν∗ = γδ1 +(1−γ)δn, where 0 ≤ λ, γ ≤ 1. Let
pi = γai1 +(1−γ)ain, i = 1, . . . , m, and wj = λb1j +(1−λ)bmj , j = 1, . . . , n.Then, by the �onvex� part of Lemma 3, for some r, s, t and u we have(35) p1 > p2 > · · · > pr = pr+1 = · · · = ps < ps+1 < · · · < pm,(36) w1 > w2 > · · · > wt = wt+1 = · · · = wu < wu+1 < · · · < wn.But (35) implies that µ∗ is the best strategy for Player I against the strategy
ν∗ of Player II in the entire game Γ . Similarly (36) implies that ν∗ is the beststrategy for Player II against µ∗ of Player I in Γ . Hene, (µ∗, ν∗) is also aNash equilibrium in Γ . If it is a pure Nash equilibrium, then we have Case 1of the theorem, otherwise Case 2 holds.
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