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Abstra
t. The aim of this paper is to set di�erent lower bounds onthe 
hange of the expe
ted net 
ash �ow value at time H > 0 in generalterm stru
ture models, referring to the studies of Fong and Vasi£ek (1984),Nawalkha and Chambers (1996), and Balbás and Ibáñez (1998) among oth-ers. New immunization strategies are derived with new risk measures: gen-eralized duration and generalized M -absolute of Nawalkha and Chambers,and exponential risk measure. Furthermore, examples of spe
i�
 one-fa
torHJM models are provided and the problem of immunization is dis
ussed.1. Introdu
tion. Bondholders are subje
t to interest risk 
aused by
hanges in interest rates. Therefore the problem of bond investment im-munization against interest risk is an important issue for bond portfoliomanagers and resear
hers. This problem has persisted in the literature sin
eMa
aulay's de�nition of duration (1938), and it was shown independentlyby Samuelson (1945) and Redington (1952) that if the Ma
aulay durationsof assets and liabilities are equal, the portfolio is prote
ted against a lo-
al parallel 
hange in the yield 
urve. Fisher and Weil (1971) formalize thetraditional theory of immunization de�ning the 
onditions under whi
h thevalue of an investment in a bond portfolio is hedged against any parallelshifts in the forward rates. The main result of this theory is that immuniza-tion is a
hieved if the Fisher�Weil duration of the portfolio is equal to thelength of the investment horizon (see Rz¡dkowski and Zaremba, 2000). Un-fortunately, this traditional approa
h has serious limitations sin
e it implies2000 Mathemati
s Subje
t Classi�
ation: 62P20, 91B28.Key words and phrases: asset-liability portfolio, immunization, duration, M -absolute,one-fa
tor HJM models. [145℄



146 A. Kondratiuk-Janyska and M. Kaªuszkaarbitrage opportunity in
onsistent with the rules of modern �nan
e theory.To over
ome it, the pioneer work of Fong and Vasi£ek (1984) indi
ates anew dire
tion in studying immunization. They propose to determine a lowerbound of the 
hanges in a portfolio value whi
h lead to a risk 
ontrollingstrategy. Nawalkha and Chambers (1996), Balbás and Ibáñez (1998), Balbáset al. (2002), Nawalkha et al. (2003) and Kaªuszka and Kondratiuk-Janyska(2004) follow their approa
h by immunizing a single liability. However, inreality investors have to deal with multiple liabilities (see Hürlimann, 2002)under multiple sho
ks in the term stru
ture of interest rates (TSIR for short).Moreover, there is a demand for resear
h 
onsidering portfolio immunizationunder sto
hasti
 duration in the 
ase of a stream of liability out�ows, asover the last de
ade one of the 
ornerstones of interest risk management ismodeling the sto
hasti
 behavior of interest rates. Ag
a (2002) investigatesempiri
ally 
lassi
al and sto
hasti
 durations but does not dis
uss any port-folio value in 
onne
tion e.g. with a sto
hasti
 duration. To our knowledgethe �rst to study the lower bounds of the net present portfolio value underthe above 
onditions was Gajek (2005) (see also Gajek and Ostaszewski,2004). He 
onsidered the hedging problem at time 0 under random 
hangesof the basi
 TSIR 
orresponding to e.g. a supermartingale-like shift fa
torsstru
ture for an insuran
e 
ompany. The derived lower bounds in
lude assetand liability durations as a risk measure.We do not generalize Gajek's (2005) novel results but inspired by thisarti
le we fo
us on immunizing multiple liabilities, formulating the prob-lem from a di�erent standpoint (see also Kondratiuk-Janyska and Kaªuszka,2006), namely of prote
ted �xed in
ome asset in�ows (bonds) and randomliability out�ows. The aim of this paper is to set di�erent lower bounds onthe 
hange of the expe
ted net 
ash �ow value (di�eren
e between asset andliability stream) at time H > 0 whi
h is 
alled a rebalan
ed time in gen-eral term stru
ture models. New immunization strategies are derived withnew risk measures like generalized durations (Proposition 3) or generalized
M -absolute of Nawalkha and Chambers (Proposition 1) and a 
ompletelynew risk measure (Proposition 2).The remainder of this paper is organized as follows. Se
tion 2 de�nes ageneralized duration measure and presents examples of sto
hasti
 and poly-nomial durations as parti
ular 
ases. Se
tion 3 gives the notation and as-sumptions. Se
tions 4 presents immunization strategies based on single-riskmeasure or multiple-risk measure models. Se
tion 5 provides examples ofspe
i�
 one-fa
tor HJM models and dis
usses the problem of immunization.2. Generalized duration measures. Duration is unquestionably themost widely used risk measure with a long history. We introdu
e a general-ized duration with respe
t to a �xed fun
tion γ = γ(t), where parti
ular γ



Generalized duration measures 147fun
tions yield well-known durations from di�erent models of interest ratebehavior, either deterministi
 or sto
hasti
. De�ne
(1) DA(γ) =

T\
0

t\
0

γ(s) ds dA(t),

where A(t) is an a

umulated value of assets des
ribed pre
isely in thenext se
tion. In the 
ase γ(t) ≡ 1, we get the 
lassi
al duration. When
γ(t) = tk, k ≥ 1, we obtain higher order duration risk measures derivedfrom polynomial models; see e.g. Chambers et al. (1988), Prisman and Shores(1988), Rz¡dkowski and Zaremba (2000). On the other hand, generalized du-rations appear in sto
hasti
 models of instantaneous forward rate behaviorwith appropriate γ fun
tions. The most popular arbitrage-free model for de-s
ribing the term stru
ture is the Heath, Jarrow and Morton (1992) model.This is a very general and popular approa
h due to its �exibility with respe
tto the number of random fa
tors used and di�erent volatility stru
tures that
an be assumed for di�erent maturity forward rates. When there is one sour
eof randomness, a multi-fa
tor HJM model be
omes a one-fa
tor model. Mostof the available short rate models are spe
i�
 
ases of one-fa
tor HJM mod-els. Given that short rate models are relatively simple 
ompared to theirmulti-fa
tor 
ounterparts and that about 90% of the variation in the yield
urve 
an be explained by only one fa
tor (see Litterman and S
heinkman,1991), we fo
us on one-fa
tor HJM models, where the evolution of the in-stantaneous forward rate on [0, T ] is spe
i�ed by the following sto
hasti
pro
ess:

df(t, T ) = α(t, T, ω)dt + σ(t, T, ω)dWt,where t ≤ T , α(t, T, ω) is the instantaneous forward rate drift fun
tion,
σ(t, T, ω) is the instantaneous forward rate volatility fun
tion and Wt is theBrownian motion on a probability spa
e (Ω,F , P) equipped with a �ltration
F = (Ft)0≤t≤T . Au and Thurston (1995) and Munk (1999) derive the dura-tion measures of 
ertain 
ontinuous time one-fa
tor HJMmodels generalizingthe previous result of Cox, Ingersoll and Ross (1979). Denote by P (t, m) thetime-t pri
e of a zero-
oupon bond maturing at time m and paying one unit
(t ≤ m ≤ T ). Write B(t, T ) for the time-t pri
e of a bond portfolio with
oupons C1, . . . , Cn at dates t1, . . . , tn, where t ≤ ti ≤ T for i = 1, . . . , n. Ina 
lassi
al approa
h, duration is a measure of the proportional per
entagein a bond's pri
e due to shifts in the term stru
ture. Basing on it, Au andThurston (1995) use the de�nition of duration at time t whi
h is a spe
ial
ase of (1),

DHJM = −∂B(t, T )

∂f(t, t)

/

B(t, T ),
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h yields
DHJM =

∑n
i=1 CiP (t, ti)

Tti
t

σ(t, s, ω) ds

σ(t, t, ω)

/

n
∑

i=1

CiP (t, ti).Some examples are given below for di�erent volatility fun
tions in one-fa
torHJM models:
• Constant volatility σ(t, T, ω) = σ (Merton, 1973; Ho-Lee, 1986),

DHJM =

∑n
i=1 Ci(ti − t)P (t, ti)
∑n

i=1 CiP (t, ti)
.

• Exponentially de
aying volatility σ(t, T, ω)=σe−b(T−t) (Vasi£ek, 1977),
DHJM =

∑n
i=1 CiP (t, ti)(1 − e−b(ti−t))

b
∑n

i=1 CiP (t, ti)
.

• Constant de
ay volatility σ(t, T, ω) = σ
1+T−t

(Au and Thurston, 1995),
DHJM =

∑n
i=1 CiP (t, ti) ln(1 + ti − t)

∑n
i=1 CiP (t, ti)

.

• Constant maturity σ(t, T, ω) = σ
1+T

(Au and Thurston, 1995),
DHJM =

∑n
i=1 CiP (t, ti) ln

(

1+ti
1+t

)

∑n
i=1 CiP (t, ti)

.

• Sto
hasti
 volatility (Cox, Ingersoll and Ross, 1985),
T\
t

σ(t, s, ω)ds =
2σ

√

f(t, t) sinh(γ(T − t))

2γ cosh(γ(T − t)) + b sinh(γ(T − t))
,

σ(t, t, ω) = σ
√

f(t, t),

DHJM =

n
∑

i=1

2CiP (t, ti) sinh(γ(ti − t))

2γ cosh(γ(ti − t)) + b sinh(γ(ti − t))

/

n
∑

i=1

CiP (t, ti),

where 2γ =
√

b2 + 2σ2 and b, σ > 0, sinh(x) = ex−e−x

2 , cosh(x) = ex+e−x

2 .Although a 
lass of duration measures for the HJM interest rate modelhas been 
onstru
ted (Cox, Ingersoll and Ross, 1979; Au and Thurston, 1995;Munk, 1999), there are no studies determining the lower bound of the 
hangein a bond portfolio value in this model. Therefore, the aim of this paper is tointrodu
e arbitrage-free models setting di�erent lower bounds on the 
hangeof the expe
ted net 
ash �ow value (di�eren
e between asset and liabilitystream) where a generalized duration is an immunization measure.



Generalized duration measures 1493. Preliminary notations. Denote by [0, T ] the time interval with t=0the present moment, and let H be an investor planning horizon, 0<H <T ,when the portfolio is rebalan
ed. The portfolio 
onsists of bond in�ows
At ≥ 0 o

urring at �xed time t ≤ T (t = t1, . . . , td) to 
over multipleliabilities Lt due at dates t ≤ T (t = t1, . . . , td), where td = T . This is a typ-i
al situation e.g. when an insuran
e 
ompany has to dis
harge its randomliabilities and invests the money by a
quiring an immunized bond portfolio.Denote the set of available bonds by A. Generally, this is an arbitrary subsetof [0,∞)d that might be non
onvex sin
e we do not assume that the marketis 
omplete and bonds are in�nitely divisible. Additionally, we assume thatliabilities are nonnegative random variables. Consequently, Nt = At − Lt isthe net 
ash �ow at time t. Let f(t, s) be an instantaneous forward rate overthe time interval [t, s]; investing 1 at time t in a zero 
oupon-bond we get
exp(

Ts
t
f(t, u) du) at time s. The set of instantaneous forward rates {f(t, s) :

0 < t ≤ s} determines a random term stru
ture of interest rates. Hen
e
• at = At exp(

TH
t

f(0, u)du) is the time-H value of At,
• lt = Lt exp(

TH
t

f(0, u)du) is the time-H value of Lt,
• nt = at − lt is the time-H value of net worth,
• A(t) =

∑

s≤t as is an a

umulated value of assets,
• L(t) =

∑

s≤t ls is an a

umulated value of liabilities,
• N(t) = A(t) − L(t),
• V (0) = E

∑

t nt = EN(T ) is the time-H average value of the portfolioof asset and liability �ows if forward rates equal future spot rates.A de
ision problem for an investor is to design a stream of bonds to
over the stream of liabilities. If among available bonds there are su
h that
Nt = 0 for all t, then the portfolio is immunized. In reality, the market isin
omplete, whi
h ex
ludes an ideal adjustment of assets to liabilities. Aninvestor 
onstru
ting a bond portfolio meets two kinds of risks: reinvestmentand pri
e. The �rst one is 
onne
ted with the way of reinvesting 
ouponspaid before the investment horizon. The other appears by pri
ing bondsbefore their expiry dates. Sin
e the portfolio value at time H depends on thereinvestment strategy, we require the following open-loop strategy:(a) If t < H then the value of Nt at time H is equal to

Nt exp
(

H\
t

f(t, s) ds
)

.

That means that if Nt = At − Lt > 0 for 0 < t < H, the investorpur
hases (H− t)-year strip bonds. Otherwise, he sells short (H− t)-year strip bonds.



150 A. Kondratiuk-Janyska and M. Kaªuszka(b) If t > H, the value of Nt at H equals
Nt exp

(

−
t\
H

f(H, s) ds
)

= Nt exp
(

H\
t

f(H, s) ds
)

,whi
h means that at time H the portfolio pri
ed a

ording to theTSIR is sold by the investor.As a 
onsequen
e, the value of the net 
ash �ow at H equals
∑

t

Nt exp
(

H\
t

f(t ∧ H, s) ds
)

=
∑

t

nt exp(k(t)),where(2) k(t) =

H\
t

[f(t ∧ H, s) − f(0, s)] dsis a sho
k in the instantaneous forward rate and a ∧ b = min(a, b). Fromthe investor's standpoint, the average time-H value of Nt under the s
enario(a)�(b) is given by(3) V (k) = E

(

T\
0

exp(k(t)) dN(t)
)

.The 
lassi
al immunization problem is to �nd a portfolio su
h that V (k) ≥
V (0) for all k ∈ K, where K stands for a feasible 
lass of sho
ks. Our aim isto �nd a lower bound on infk∈K V (k) whi
h depends only on bond portfolioproportions. Next, we sele
t at t = 0 a portfolio among available bonds onthe market su
h that this lower bound is maximal.4. Risk measure modelsM-absolute as a risk measure. The linear 
ash �ow dispersion measure,
alled the M -absolute, de�ned by Nawalkha and Chambers (1996),

MNCh =

TT
0 |t − H| dA(t)TT

0 dA(t)
,is an immunization risk measure designed to build immunized bond portfoliosin the 
ase of a single liability. In the 
ase of multiple liabilities, we de�nethe generalized M-absolute by

M =

T\
0

|A(t) − A(T ) + E(L(T ) − L(t))| dt.It is easily seen that M = A(T )MNCh in the 
ase of a single nonrandomliability at time H.



Generalized duration measures 151The following assumptions will be needed throughout the paper:A1. A random variable lt is independent of the TSIR for every t > 0.A2. (Eek(t))′ is 
ontinuous on [0, T ].De�ne the generalized durations of assets and liabilities
DA(γ) =

T\
0

t\
0

γ(s) ds dA(t), DL(γ) = E

T\
0

t\
0

γ(s) ds dL(t),respe
tively, where γ = γ(t) is a �xed fun
tion.Proposition 1. Under assumptions A1�A2, a lower bound on the post-shifts 
hange in the value of the net 
ash �ow at H is given by(4) inf
k∈K1

V (k) − V (0) ≥ −kM + DA(γ) − DL(γ),where K1 = {k(·) : |(Eek(t))′ − γ(t)| ≤ k for all t ∈ [0, T ]}, k being anonnegative number.Proof. From assumption A1, we get
V (k) =

∑

t

E[nte
k(t)] =

T\
0

Eek(t) dEN(t)

= Eek(T )
EN(T ) −

T\
0

EN(t)(Eek(t))′ dt

=

T\
0

(EN(T ) − EN(t))(Eek(t))′ dt + EN(T )

=

T\
0

(EN(T ) − EN(t))((Eek(t))′ − γ(t)) dt

+

T\
0

γ(t)(EN(T ) − EN(t)) dt + EN(T ).Sin
e EN(T ) = V (0), for all k(·) ∈ K1 we have
V (k) − V (0) ≥ −k

T\
0

|EN(t) − EN(T )| dt +

t\
0

γ(s) ds (EN(T ) − EN(t))
∣

∣

∣

T

0

+

T\
0

t\
0

γ(s) ds dEN(t),as desired.



152 A. Kondratiuk-Janyska and M. KaªuszkaAs a 
orollary of Proposition 1 we get the following immunization strat-egy:
min

(At)∈A

T\
0

|A(T ) − A(t) + E(L(t) − L(T ))| dtsubje
t to DA(γ) − DL(γ) = d,where d is a �xed nonnegative value of a duration gap.
Example 1. Suppose that three kinds of zero-
oupon bonds are avail-able on the market. The fa
e value of the bond at the maturity date t = 1, 2, 4is Bt and the investor is to dis
harge �xed liabilities Pt at t = 3, 5. Take

T = 5 and let the planning horizon be H = 3. The time-3 value of Bt and
Pt is denoted by bt and pt, respe
tively. Consider the situation when theexpenditure-in
ome plan is su
h that N(5) = 0, γ(t) ≡ γ and d is a non-negative real number. Denoting by xt the amount of pur
hased t-year bondunits, the immunization problem should be solved a

ording to the model:

min
(xt)

T\
0

∣

∣

∣

∑

s≤t

(xsbs − ps)
∣

∣

∣
dt(5)

subje
t to ∑

t

xtbt =
∑

t

pt, γ
∑

t

t(xtbt − pt) = d,

bt ≥ 0 for t = 1, 2, 4.Solving problem (5) we obtain
x1 = 0, x2 =

1

2b2

(

p3 − p5 −
d

γ

)

, x4 =
1

2b4

(

p3 + 3p5 +
d

γ

)

under the 
ondition p3 ≥ p5+d/γ. If p3 < p5+d/γ, then the set of 
onstraintsis empty. If we take γ(t) = γt, we get
x1 = 0, x2 =

1

b2

(

7

12
p3 +

3

4
p5 −

1

6

d

γ

)

, x4 =
1

b4

(

5

12
p3 +

1

4
p5 +

1

6

d

γ

)

when p3 ≥ 2
7

d
γ
− 9

7p5. Otherwise, the set of 
onstraints is empty.Exponential risk measure. In this subse
tion we present a lower boundon the 
hange of the expe
ted net 
ash �ow value based on an exponentialrisk measure. Let us introdu
e an entropy fun
tion
H(f) =

T\
0

f(t) ln f(t) dt −
T\
0

f(t) dt ln
(

T\
0

f(t) dt
)

.



Generalized duration measures 153Proposition 2. Let assumptions A1�A2 hold. Then
inf

k∈K2

V (k) − V (0) ≥ −k1 − k2 ln
(

T\
0

e|E(N(T )−N(t))| dt
)(6)

+DA(γ) − DL(γ),where K2 = {k(·) : H(|(Eek(·))′ − γ(·)|) ≤ k1,
TT
0 |(Eek(t))′ − γ(t)| dt ≤ k2},and k1 and k2 are nonnegative numbers.Proof. By the proof of Proposition 1 we get

V (k) − V (0) =

T\
0

E(N(T ) − N(t))(Eek(t))′ dt

≥ −
T\
0

|E(N(T ) − N(t))| |(Eek(t))′ − γ(t)| dt

+

T\
0

γ(t)(E(N(T ) − N(t))) dt.Applying the Young inequality we obtain
V (k) − V (0) ≥ −H(|(Eek(·))′ − γ(·)|)

−
T\
0

|(Eek(t))′ − γ(t)| dt ln
(

T\
0

e|E(N(T )−N(t))| dt
)

+

T\
0

γ(t)(EN(T ) − EN(t)) dt,whi
h 
ompletes the proof of (6).Inequality (6) implies the following immunization problem:�nd a portfolio whi
h minimizes TT0 exp |E(N(T ) − N(t))| dt(7) subje
t to DA(γ) − DL(γ) = d,where d is a �xed nonnegative value of a duration gap.
Example 2. Under the assumptions as in Example 1 in the 
ase γ(t)

≡ γ, strategy (7) leads to the following optimization problem:
min
(xt)

T\
0

exp
∣

∣

∣

∑

s≤t

(xsbs − ps)
∣

∣

∣
dt(8)

subje
t to ∑

t

xtbt =
∑

t

pt, γ
∑

t

t(xtbt − pt) = d,

bt ≥ 0 for t = 1, 2, 4.



154 A. Kondratiuk-Janyska and M. KaªuszkaSolving problem (8) we obtain the same results as in the previous example,i.e. x1 = 0, x2 = 1
2b2

(p3 − p5 − d/γ), x4 = 1
2b4

(p3 + 3p5 + d/γ) under the
ondition p3 ≥ p5 + d/γ. If p3 < p5 + d/γ, then the set of 
onstraints isempty.Generalized duration as a risk measure. An appropriate strategy wouldbe to hold a portfolio of assets whose s
hedule of 
ash �ow 
overs the patternof liabilities under a 
onstant TSIR. Thus, it is worth 
onsidering immuniza-tion among portfolios satisfying a weak version of the Axiom of Solven
y(Gajek, 2005):(9) A0 = {A(·) : A(t) ≥ E(N(T ) + L(t)) for all t ∈ [0, T ]}.Proposition 3. Under assumptions A1�A2 and for all A(·) ∈ A0,
inf

k∈K3

V (k) − V (0) ≥ DA(γ) − DL(γ),(10)where K3 = {k(·) : (Eek(t))′ ≤ γ(t) for all t ∈ [0, T ]}.Proof. By the proof of Proposition 1 we get
V (k) − V (0) =

T\
0

(EN(T ) − EN(t))(Eek(t))′ dt

≥
T\
0

(EN(T ) − EN(t))γ(t) dt,whi
h 
ompletes the proof.As a 
onsequen
e of Proposition 3 we obtain the strategy:�nd a portfolio whi
h maximizes DA(γ) − DL(γ)subje
t to A(t) ≥ E(N(T ) + L(t)) for all t ∈ [0, T ].5. Nonstandard sele
tion of γ fun
tions in sto
hasti
 models.To apply Propositions 1�3 we need a γ fun
tion. Obviously, one may take
γ(t) = 1 or γ(t) = 2t for 0 ≤ t ≤ T , whi
h gives the well-known traditionalduration or 
onvexity, respe
tively. But su
h a 
hoi
e is justi�ed only if we
annot model the TSIR be
ause of the la
k of data or an unexpe
ted event.In the 
ase when we use sto
hasti
 models of the TSIR, the main questionis what a sho
k 
on
erns. We will say that a sho
k appears when a model isin
orre
tly �tted to the reality or when the assumed model parameters di�erfrom real ones. A

ording to the above remark we require in Proposition 1this deviation to be within a band of width k. Hen
e and by the de�nitionof K1 we 
on
lude that1. If k = 0, then a model is perfe
tly �tted and (Eek(t))′ = γ(t) for

0 ≤ t ≤ T .



Generalized duration measures 1552. If k > 0, the model under the assumed parameters is unadjusted and
k measures the deviation of γ(·) from the unknown real (Eek(·))′.Therefore we propose to take γ su
h that

(Eek(t))′ = γ(t) for 0 ≤ t ≤ T.In parti
ular, in the HJM model we have the following examples where
(Eek(t))′ is not a 
onstant fun
tion. In the Merton model, where f(t, t) =
r0 + at + σW ∗

t , and r0, a, σ are positive 
onstants, we have
(Eek(t))′

=



















σ2

2 (2(t−H)2−2t(t−H)−t2) exp
(

σ2

6 ((t−H)3+3t(t−H)2+H3−t3)
)for t ≤ H,

σ2

2 ((t−H)2+2H(t−H)−t2) exp
(

σ2

6 ((t−H)3+3H(t−H)2+H3−t3)
)for t > H.In the Vasi£ek model des
ribed by df(t, t) = (a − bf(t, t))dt + σdW ∗

t where
a, b, σ are positive 
onstants, we get
(Eek(t))′

=











































σ2

2b2
(−3e−b(H−t) + 2e−2b(H−t) − e−b(H+t) + 2e−bt)

×exp
(

σ2

2b3
(−3e−b(H−t)+e−2b(H−t)+e−b(H+t)+2(e−bH−e−bt)−e−2bH+2)

)for t ≤ H,
σ2

2b2
(−e−b(t−H) − e−b(H+t) + 2e−bt)

× exp
(

σ2

2b3
(e−b(t−H) + e−b(H+t) + 2(e−bH − e−bt) − e−2bH − 1)

)for t > H.In the above models W ∗ is a one-dimensional standard Brownian motionunder the spot martingale measure P
∗. This is our suggestion of a γ sele
tiondi�erent from standard fun
tions derived in sto
hasti
 models (see Au andThurston, 1995; Munk, 1999). The 
omparison of their e�e
tiveness demandsa huge empiri
al resear
h, whi
h ex
eeds the s
ope of this paper.
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