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Abstract. The aim of this paper is to set different lower bounds on
the change of the expected net cash flow value at time H > 0 in general
term structure models, referring to the studies of Fong and Vasi¢ek (1984),
Nawalkha and Chambers (1996), and Balbas and Ibanez (1998) among oth-
ers. New immunization strategies are derived with new risk measures: gen-
eralized duration and generalized M-absolute of Nawalkha and Chambers,
and exponential risk measure. Furthermore, examples of specific one-factor
HJM models are provided and the problem of immunization is discussed.

1. Introduction. Bondholders are subject to interest risk caused by
changes in interest rates. Therefore the problem of bond investment im-
munization against interest risk is an important issue for bond portfolio
managers and researchers. This problem has persisted in the literature since
Macaulay’s definition of duration (1938), and it was shown independently
by Samuelson (1945) and Redington (1952) that if the Macaulay durations
of assets and liabilities are equal, the portfolio is protected against a lo-
cal parallel change in the yield curve. Fisher and Weil (1971) formalize the
traditional theory of immunization defining the conditions under which the
value of an investment in a bond portfolio is hedged against any parallel
shifts in the forward rates. The main result of this theory is that immuniza-
tion is achieved if the Fisher—Weil duration of the portfolio is equal to the
length of the investment horizon (see Rzadkowski and Zaremba, 2000). Un-
fortunately, this traditional approach has serious limitations since it implies
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arbitrage opportunity inconsistent with the rules of modern finance theory.
To overcome it, the pioneer work of Fong and Vasi¢ek (1984) indicates a
new direction in studying immunization. They propose to determine a lower
bound of the changes in a portfolio value which lead to a risk controlling
strategy. Nawalkha and Chambers (1996), Balbas and Ibanez (1998), Balbas
et al. (2002), Nawalkha et al. (2003) and Katuszka and Kondratiuk-Janyska
(2004) follow their approach by immunizing a single liability. However, in
reality investors have to deal with multiple liabilities (see Hiirlimann, 2002)
under multiple shocks in the term structure of interest rates (T'SIR for short).
Moreover, there is a demand for research considering portfolio immunization
under stochastic duration in the case of a stream of liability outflows, as
over the last decade one of the cornerstones of interest risk management is
modeling the stochastic behavior of interest rates. Agca (2002) investigates
empirically classical and stochastic durations but does not discuss any port-
folio value in connection e.g. with a stochastic duration. To our knowledge
the first to study the lower bounds of the net present portfolio value under
the above conditions was Gajek (2005) (see also Gajek and Ostaszewski,
2004). He considered the hedging problem at time 0 under random changes
of the basic TSIR corresponding to e.g. a supermartingale-like shift factors
structure for an insurance company. The derived lower bounds include asset
and liability durations as a risk measure.

We do not generalize Gajek’s (2005) novel results but inspired by this
article we focus on immunizing multiple liabilities, formulating the prob-
lem from a different standpoint (see also Kondratiuk-Janyska and Kaluszka,
2006), namely of protected fixed income asset inflows (bonds) and random
liability outflows. The aim of this paper is to set different lower bounds on
the change of the expected net cash flow value (difference between asset and
liability stream) at time H > 0 which is called a rebalanced time in gen-
eral term structure models. New immunization strategies are derived with
new risk measures like generalized durations (Proposition 3) or generalized
M-absolute of Nawalkha and Chambers (Proposition 1) and a completely
new risk measure (Proposition 2).

The remainder of this paper is organized as follows. Section 2 defines a
generalized duration measure and presents examples of stochastic and poly-
nomial durations as particular cases. Section 3 gives the notation and as-
sumptions. Sections 4 presents immunization strategies based on single-risk
measure or multiple-risk measure models. Section 5 provides examples of
specific one-factor HJM models and discusses the problem of immunization.

2. Generalized duration measures. Duration is unquestionably the
most widely used risk measure with a long history. We introduce a general-
ized duration with respect to a fixed function v = ~(t), where particular ~
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functions yield well-known durations from different models of interest rate
behavior, either deterministic or stochastic. Define

Tt

(1) Da(y) = | {(s) dsdA(1),
00

where A(t) is an accumulated value of assets described precisely in the
next section. In the case v(t) = 1, we get the classical duration. When
v(t) = t*, k > 1, we obtain higher order duration risk measures derived
from polynomial models; see e.g. Chambers et al. (1988), Prisman and Shores
(1988), Rzadkowski and Zaremba (2000). On the other hand, generalized du-
rations appear in stochastic models of instantaneous forward rate behavior
with appropriate v functions. The most popular arbitrage-free model for de-
scribing the term structure is the Heath, Jarrow and Morton (1992) model.
This is a very general and popular approach due to its flexibility with respect
to the number of random factors used and different volatility structures that
can be assumed for different maturity forward rates. When there is one source
of randomness, a multi-factor HJM model becomes a one-factor model. Most
of the available short rate models are specific cases of one-factor HJM mod-
els. Given that short rate models are relatively simple compared to their
multi-factor counterparts and that about 90% of the variation in the yield
curve can be explained by only one factor (see Litterman and Scheinkman,
1991), we focus on one-factor HIM models, where the evolution of the in-
stantaneous forward rate on [0,7]] is specified by the following stochastic
process:

df(t,T) = a(t, T,w)dt + o(t, T, w)dWr,

where ¢t < T, a(t,T,w) is the instantaneous forward rate drift function,
o(t,T,w) is the instantaneous forward rate volatility function and W is the
Brownian motion on a probability space ({2, F,P) equipped with a filtration
F = (F)o<t<r. Au and Thurston (1995) and Munk (1999) derive the dura-
tion measures of certain continuous time one-factor HJM models generalizing
the previous result of Cox, Ingersoll and Ross (1979). Denote by P(t,m) the
time-t price of a zero-coupon bond maturing at time m and paying one unit
(t < m < T). Write B(t,T) for the time-t price of a bond portfolio with
coupons C1,...,C, at dates t1,...,t,, where t <t; <T fori=1,...,n. In
a classical approach, duration is a measure of the proportional percentage
in a bond’s price due to shifts in the term structure. Basing on it, Au and
Thurston (1995) use the definition of duration at time ¢ which is a special
case of (1),

Dyym = —%/E(t,ﬂ,
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which yields
S CiP(t, t)S o(t,s,w)ds
Dyyv = = C; P t,t; )
o(t,t,w) / Zz;

Some examples are given below for different volatility functions in one-factor
HJM models:

e Constant volatility o(¢,T,w) = o (Merton, 1973; Ho-Lee, 1986),
> i1 Cilti — 1) P(t, 1)

Z?:l CiP(t7 ti) .
e Exponentially decaying volatility o(t, T, w) =ce T (Vasicek, 1977),

>y CiP(t t)(1 — e 1)
b, CiP(t, 1)

Dy =

Dyym =

e Constant decay volatility o (¢, T,w) = (Au and Thurston, 1995),

1+T t
Yo  CiP(t t) In(14+¢; — t)
Z?:l Cip(tvti) ‘

e Constant maturity o(¢,7,w) = 177 (Au and Thurston, 1995),

Y1 CiP(t, 1) In (£55)
> i1 GiP(t, i)
e Stochastic volatility (Cox, Ingersoll and Ross, 1985),

?a(t 5.w)ds — 20/ f(t,t)sinh(y(T —t))
27y cosh(y(T —t)) + bsinh(y(T —t))’

Dyym =

Dyym =

t
o(t, t,w) =0+ f(t,1),

n

_ 2C:P(t, ;) sinh(y(t; — 1)) "GP,
Duv = ; 2y cosh(y(t; — t)) + bsinh(y(¢; — t)) / ; CiPlts)

xZ

where 27 = V% + 202 and b,0 > 0, sinh(z) = “=f—, cosh(z) = £5—.

Although a class of duration measures for the HJM interest rate model
has been constructed (Cox, Ingersoll and Ross, 1979; Au and Thurston, 1995;
Munk, 1999), there are no studies determining the lower bound of the change
in a bond portfolio value in this model. Therefore, the aim of this paper is to
introduce arbitrage-free models setting different lower bounds on the change
of the expected net cash flow value (difference between asset and liability
stream) where a generalized duration is an immunization measure.
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3. Preliminary notations. Denote by [0, 7] the time interval with ¢=0
the present moment, and let H be an investor planning horizon, 0 < H < T,
when the portfolio is rebalanced. The portfolio consists of bond inflows
A¢ > 0 occurring at fixed time ¢t < T (¢t = t1,...,t;) to cover multiple
liabilities L; due at dates t < T (t = t1,...,tq), where t; = T. This is a typ-
ical situation e.g. when an insurance company has to discharge its random
liabilities and invests the money by acquiring an immunized bond portfolio.
Denote the set of available bonds by A. Generally, this is an arbitrary subset
of [0, 00)? that might be nonconvex since we do not assume that the market
is complete and bonds are infinitely divisible. Additionally, we assume that
liabilities are nonnegative random variables. Consequently, Ny = A; — L; is
the net cash flow at time ¢. Let f(t, s) be an instantaneous forward rate over
the time interval [t, s]; investing 1 at time ¢ in a zero coupon-bond we get
exp(§; f(t,u) du) at time s. The set of instantaneous forward rates {f(¢, s) :
0 <t < s} determines a random term structure of interest rates. Hence

o a; = A eXp(Sf f(0,u)du) is the time-H value of Ay,

ly = Ly exp(Sf{ f(0,u)du) is the time-H value of L,

ng = a¢ — Iy is the time-H value of net worth,

A(t) =), as is an accumulated value of assets,

L(t) = ., s is an accumulated value of liabilities,

V(0) =E) , ny = EN(T) is the time-H average value of the portfolio
of asset and liability flows if forward rates equal future spot rates.

A decision problem for an investor is to design a stream of bonds to
cover the stream of liabilities. If among available bonds there are such that
N; = 0 for all ¢, then the portfolio is immunized. In reality, the market is
incomplete, which excludes an ideal adjustment of assets to liabilities. An
investor constructing a bond portfolio meets two kinds of risks: reinvestment
and price. The first one is connected with the way of reinvesting coupons
paid before the investment horizon. The other appears by pricing bonds
before their expiry dates. Since the portfolio value at time H depends on the
reinvestment strategy, we require the following open-loop strategy:

(a) If t < H then the value of N; at time H is equal to

H
Ny exp(& f(t,s) ds).
t

That means that if N; = A; — Ly > 0 for 0 < ¢t < H, the investor
purchases (H —t)-year strip bonds. Otherwise, he sells short (H —t)-
year strip bonds.
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(b) If t > H, the value of N; at H equals
t H
Ntexp<— S f(H,s) ds) = Ntexp(x f(H,s) ds),
H t

which means that at time H the portfolio priced according to the
TSIR is sold by the investor.

As a consequence, the value of the net cash flow at H equals
H

ZNtexp(S f(tNH,s) ds) = Zntexp(k(t)),

where
H

(2) k(t) = \[f(t A H.s) = f(0,5)] ds

is a shock in the instantaneous forward rate and a A b = min(a,b). From
the investor’s standpoint, the average time-H value of Ny under the scenario
(a)—(b) is given by

T
(3) Vik) = E(g exp(k(t)) dN(t)).

0
The classical immunization problem is to find a portfolio such that V' (k) >
V(0) for all k € K, where K stands for a feasible class of shocks. Our aim is
to find a lower bound on infiex V (k) which depends only on bond portfolio
proportions. Next, we select at ¢ = 0 a portfolio among available bonds on
the market such that this lower bound is maximal.

4. Risk measure models

M-absolute as a risk measure. The linear cash flow dispersion measure,
called the M -absolute, defined by Nawalkha and Chambers (1996),

{01t — H|dA(t)
T
§o dA(t)
is an immunization risk measure designed to build immunized bond portfolios
in the case of a single liability. In the case of multiple liabilities, we define
the generalized M-absolute by
T
M = {|A(t) — A(T) + B(L(T) — L(t))| dt.
0

It is easily seen that M = A(T)Mycy in the case of a single nonrandom
liability at time H.

Mycn =
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The following assumptions will be needed throughout the paper:

A1l. A random variable [; is independent of the TSIR for every ¢ > 0.
A2. (Ee*M) is continuous on [0, T7.

Define the generalized durations of assets and liabilities

Tt Tt
Da(y) =\ {1(s)dsdA(t), Dp(y)=E|{y(s)dsdL(t),
00 00

respectively, where v = ~(¢) is a fixed function.

PROPOSITION 1. Under assumptions A1-A2, a lower bound on the post-
shifts change in the value of the net cash flow at H is given by

®) inf V(k) = V(0) > ~kM + Da(7) - Du().

where K1 = {k(-) : [(BeF®) — (t)] < k for all t € [0,T]}, k being a

nonnegative number.

Proof. From assumption A1, we get

Z E[ nte S dEN
°T
. 0
= | (EN(T) - EN(1))(Ee*")' dt + EN(T)
0
T
= | (EN(T) — EN()) (Ee"®Y —~(t)) dt
0

T
+ | 7()(EN(T) — EN(1)) dt + EN(T).
0

Since EN(T') = V(0), for all k(-) € K1 we have

T t
V(k) — —k | [EN(t) = EN(T)| dt + | 4(s) ds (EN(T) — EN(t)) j
TOt ’
+ [ {(s) dsdEN (1),
00

as desired. =
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As a corollary of Proposition 1 we get the following immunization strat-
egy:
T
i A(T) — A(t) + E(L(t) — L(T))| dt
amin - §LA(T) = A() + BLE) - L(D)

subject to  Da(vy) — Dr(vy) =d,

where d is a fixed nonnegative value of a duration gap.

EXAMPLE 1. Suppose that three kinds of zero-coupon bonds are avail-
able on the market. The face value of the bond at the maturity datet = 1,2,4
is B; and the investor is to discharge fixed liabilities P, at t = 3,5. Take
T =5 and let the planning horizon be H = 3. The time-3 value of B; and
P, is denoted by b; and p;, respectively. Consider the situation when the
expenditure-income plan is such that N(5) = 0, v(¢) = v and d is a non-
negative real number. Denoting by x; the amount of purchased t-year bond
units, the immunization problem should be solved according to the model:

(5) mln ‘Z (xsbs — ps)

0 s<t

subject to thbt = Zpt, ’YZt(l’tbt —p) =d,
t ¢

t
by >0 fort=1,2, 4.

Solving problem (5) we obtain

0 ! d ! + 3ps + — d
xr] = T —pP5 — — T
1 ) 2 = 2b b3 —DPs ~ ) 4 = 2b D3 D5 5

under the condition ps > ps+d/v. If p3 < ps+d/~, then the set of constraints
is empty. If we take y(t) = ~t, we get

0 1 /7 +3 1d 1/5 +1 +1d
€r1 = Tro = —| — — _ = = Tyg = - —
1 ) 2 bQ 12 p3 4]95 6 ~y ) 4 = b 12 5 P3 4p5 6 ~y

when p3 > & —p Otherwise, the set of constraints is empty.

Ezxponential risk measure. In this subsection we present a lower bound
on the change of the expected net cash flow value based on an exponential
risk measure. Let us introduce an entropy function

T T T

H(f) =\ fe)Inft)dat— | f(¢) dtln(S £(t) dt).

0 0 0
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PROPOSITION 2. Let assumptions A1-A2 hold. Then

T
(6) inf V(k)—V(0) = =k — ko 1n<§ BN =N@)I dt)
keKs 0

+Da(vy) — Di(v),
where Kz = {k() : H((BeHOY —1()]) < by, [ [(BHOY —1(0)]dt < ko),

and ki and ko are nonnegative numbers.

Proof. By the proof of Proposition 1 we get

T
V(k) =V (0) = | E(N(T) - N(t))(E¢*D) at
0T
> - | IB(WV N(0)|[(BFD) —4(t)| dt
T
+§7 T) — N(t))) dt.

Applying the Young 1nequahty we obtain

V(k) = V(0) > —H(|(Ee"V) —~()])
T

T

— (1RO — ()] dt In( ] BN =N )
OT 0

+ [1(O)@EN(T) - EN(1)) dt,
0

which completes the proof of (6). =
Inequality (6) implies the following immunization problem:
. . e T
(7) find a portfolio which minimizes {; exp [E(N(T) — N(t))| dt
subject to Da(y) — Dr(y) =d,
where d is a fixed nonnegative value of a duration gap.

EXAMPLE 2. Under the assumptions as in Example 1 in the case ()
= ~, strategy (7) leads to the following optimization problem:

(8) min exp‘z (xsbs — ps)

(@) s<t

subject to Zl“tbt = th ’th(l“tbt —p) =d,
t t t

by >0 fort=1,24.
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Solving problem (8) we obtain the same results as in the previous example,
ie.x1 =0, x90 = ﬁ(pg —ps —d/y), T4 = ﬁ(pg + 3ps + d/~) under the
condition p3 > ps + d/v. If p3 < ps + d/7, then the set of constraints is
empty.

Generalized duration as a 7isk measure. An appropriate strategy would
be to hold a portfolio of assets whose schedule of cash flow covers the pattern
of liabilities under a constant T'SIR. Thus, it is worth considering immuniza-
tion among portfolios satisfying a weak version of the Axiom of Solvency
(Gajek, 2005):

(9) Ao ={A() : A(t) > E(N(T) + L(t)) for all t € [0,T}.
PROPOSITION 3. Under assumptions A1-A2 and for all A(-) € Ay,
(10) inf V(k) ~ V(0) > Da(y) - Dy(7),
keKs

where Kz = {k(-) : (Ee*®) < ~(t) for all t € [0,T7]}.

Proof. By the proof of Proposition 1 we get
T
V(k) - V(0) = | (EN(T) — EN(t))(E*D) dt

>\ (EN(T) = EN(t))y(t) dt,

Ot N Ot

which completes the proof. m
As a consequence of Proposition 3 we obtain the strategy:

find a portfolio which maximizes D4(vy) — Dr(7)
subject to  A(t) > E(N(T') + L(t)) for all ¢t € [0,T.

5. Nonstandard selection of v functions in stochastic models.
To apply Propositions 1-3 we need a v function. Obviously, one may take
v(t) =1 or y(t) = 2t for 0 <t < T, which gives the well-known traditional
duration or convexity, respectively. But such a choice is justified only if we
cannot model the TSIR because of the lack of data or an unexpected event.
In the case when we use stochastic models of the TSIR, the main question
is what a shock concerns. We will say that a shock appears when a model is
incorrectly fitted to the reality or when the assumed model parameters differ
from real ones. According to the above remark we require in Proposition 1
this deviation to be within a band of width k. Hence and by the definition
of IC; we conclude that

1. If k = 0, then a model is perfectly fitted and (Ee*®)) = ~(t) for
0<t<T.
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2. If k£ > 0, the model under the assumed parameters is unadjusted and
k measures the deviation of y(-) from the unknown real (Eef()Y’.

Therefore we propose to take v such that
(Be*®) = 4(t) for 0<t<T.

In particular, in the HIM model we have the following examples where
(Ee*®) is not a constant function. In the Merton model, where f(t,t) =
ro + at + ocW;, and rg, a, o are positive constants, we have

(Eek(t))/
G (2(t—H)? =20(t— H) —1?) exp (% ((t—H)* +3t(t — H)? + H* ~1%))
_ for t < H,
| S EP 2 (- ) 2) exp(% (¢ H)* +3H (1~ H)> 4+ HP %))
for t > H.

In the Vasi¢ek model described by df (¢,t) = (a — bf(¢,t))dt + odW;* where

a, b, o are positive constants, we get

(Eek(t))/
%(_364(5{%) 4+ 2~ 2b(H—t) _ o—b(H+t) 4 Qefbt)
XeXp(%(_3e—b(H—t)_|_e—2b(H—t)+e—b(H+t)+2(e—bH_e—bt)_e—2bH+2))
B fort < H,
%(_e—b(t—l{) — e b(HA+Y) 4 2e—bt)
X eXp(%(efb(tfH) + e b(H+) 4 Q(efbH _ efbt) _ e 2bH _ 1))
{ fort > H.

In the above models W* is a one-dimensional standard Brownian motion
under the spot martingale measure P*. This is our suggestion of a 7y selection
different from standard functions derived in stochastic models (see Au and
Thurston, 1995; Munk, 1999). The comparison of their effectiveness demands
a huge empirical research, which exceeds the scope of this paper.
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