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DROUGHT MODELS BASED ON BURR XII VARIABLES

Abstract. Burr distributions are some of the most versatile distributions
in statistics. In this paper, a drought application is described by deriving
the exact distributions of U = XY and W = X/(X + Y ) when X and Y
are independent Burr XII random variables. Drought data from the State
of Nebraska are used.

1. Introduction. The Burr distribution is one of the most versatile
distributions in statistics. As shown by Rodriguez (1977) and Tadikamalla
(1980), the Burr distribution contains the shape characteristics of the nor-
mal, log-normal, gamma, logistic and exponential distributions as well as a
significant portion of the Pearson type I, II, V, VII, IX and XII families. It
has received applications in life testing (see Wingo (1983, 1993)) and many
other areas.

The aim of this paper is to provide a drought application by deriving
the exact distributions of U = XY and W = X/(X + Y ) when X and Y
are independent Burr XII random variables with the pdfs

fX(x) =
kcxc−1

(1 + xc)k+1
(1)

and

fY (y) =
ldyd−1

(1 + yd)l+1
,(2)

respectively, for x > 0, y > 0, k > 0, l > 0, c > 0 and d > 0.
Products and ratios of random variables arise naturally in many hydro-

logical problems. They arise in particular with respect to drought modeling.
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For example, if X and Y denote the drought intensity and the drought du-
ration then U = XY will represent the magnitude of drought. If X and
Y denote the drought duration and the successive non-drought duration
then W = X/(X + Y ) will represent the proportion of drought events (see
Section 4).

This paper is organized as follows. In Sections 2 and 3, explicit expres-
sions for the pdfs of U = XY and W = X/(X+Y ) are derived. In Section 4,
an application of the results to drought data from Nebraska is provided. The
calculations of this paper involve the generalized hypergeometric function
defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

k=0

(a1)k(a2)k · · · (ap)k

(b1)k(b2)k · · · (bq)k

xk

k!
,

where (c)k = c(c+1) · · · (c+k−1) denotes the ascending factorial. The prop-
erties of the generalized hypergeometric function can be found in Prudnikov
et al. (1986) and Gradshteyn and Ryzhik (2000).

2. Distribution of the product. Theorem 1 expresses the pdf of U =
XY as a finite linear combination of generalized hypergeometric functions.

Theorem 1. Suppose X and Y are independent Burr XII random vari-

ables with pdfs (1) and (2), respectively. If c/d = p/q (where p ≥ 1 and q ≥ 1
are co-prime integers) then the pdf of U = XY can be expressed as

fU (u) =

{
klcud−1(V +

1 + V +
2 ) if u ≤ 1,

klcud−1(V −

1 + V −

2 ) if u ≥ 1,
(3)

where

V +
1 =

q−1∑

j=0

(−1)j

j!
E+

1 uds
nFn−1(1, ∆(p, a1), ∆(q, b1); ∆(p, c1), ∆(q, 1 + j); z),

V +
2 =

p−1∑

h=0

(−1)h

h!
E+

2 udh
nFn−1(1, ∆(p, a2), ∆(q, b2); ∆(p, 1 + h), ∆(q, c2); z),

V −

1 =

p−1∑

h=0

(−1)h

h!
E−

1 udα
nFn−1(1, ∆(p, a3), ∆(q, b3); ∆(p, 1 + h), ∆(q, c3); 1/z),

V −

2 =

q−1∑

j=0

(−1)j

j!
E−

2 udβ
nFn−1(1, ∆(p, a4), ∆(q, b4); ∆(p, c4), ∆(q, 1 + j); 1/z),

E+
1 =

Γ (1 + k + j)Γ (l + c(1 + j)/d)Γ (1 − c(1 + j)/d)

Γ (1 + l)Γ (1 + k)
,
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E+
2 =

dΓ (1 − d(1 + h)/c)Γ (k + d(1 + h)/c)Γ (1 + l + h)

cΓ (1 + k)Γ (1 + l)
,

E−

1 =
dΓ (1 + d(l + h)/c)Γ (k − d(l + h)/c)Γ (1 + l + h)

cΓ (1 + k)Γ (1 + l)
,

E−

2 =
Γ (1 + j + k)Γ (l − c(j + k)/d)Γ (1 + c(j + k)/d)

Γ (1 + k)Γ (1 + l)
,

n = p + q + 1, s =
c(j + 1)

d
− 1, α = −l− 1− h, β = −1−

c(j + k)

d
,

a1 =
c(j + 1)

d
+ l, b1 = 1 + j + k, c1 =

c(j + 1)

d
,

a2 = 1 + l + h, b2 =
d(h + 1)

c
+ k, c2 =

d(h + 1)

c
,

a3 = l + 1 + h, b3 = 1 +
d(l + h)

c
, c3 =

d(l + h)

c
− k + 1,

a4 = l +
c(j + k)

d
, b4 = k + 1 + j, c4 =

c(j + k)

d
− l + 1

and

z = (−1)p+qupd.

The symbol ∆(k, a) denotes the sequence a/k, (a + 1)/k, . . . , (a + k − 1)/k.

Proof. Transform (X, U) = (X, XY ). Under this transformation, the
joint pdf of (X, U) can be expressed as

f(x, u) = (1/x)fX(x)fY (u/x) =
klcdud−1xc+dl−1

(1 + xc)k+1(xd + ud)l+1
.

Thus, the pdf of U can be expressed as

fU (u) = klcdud−1
∞\
0

xc+dl−1(1 + xc)−k−1(xd + ud)−l−1dx(4)

= klcud−1
∞\
0

yl+c/d−1(1 + yc/d)−k−1(y + ud)−l−1dy,

which follows by setting y = xd. The result of the theorem follows by using
equation (2.2.2.6) in Prudnikov et al. (1986, Volume 1) to calculate the
integral in (4).

3. Distribution of the ratio. Theorem 2 expresses the pdf of W =
X/(X + Y ) as a finite linear combination of generalized hypergeometric
functions.
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Theorem 2. Suppose X and Y are independent Burr XII random vari-

ables with pdfs (1) and (2), respectively. If c/d = p/q (where p ≥ 1 and q ≥ 1
are co-prime integers) then the pdf of W = X/(X + Y ) can be expressed as

fW (w) =

{
kldw−ck−1(1 − w)ck−1(V +

1 + V +
2 ) if w ≥ 1/2,

kldw−ck−1(1 − w)ck−1(V −

1 + V −

2 ) if w ≤ 1/2,
(5)

where

V +
1 =

q−1∑

j=0

(−1)j

j!
E+

1

(
1 − w

w

)sc

× nFn−1(1, ∆(p, a1), ∆(q, b1); ∆(p, c1), ∆(q, 1 + j); z),

V +
2 =

p−1∑

h=0

(−1)h

h!
E+

2

(
1 − w

w

)hc

× nFn−1(1, ∆(p, a2), ∆(q, b2); ∆(p, 1 + h), ∆(q, c2); z),

V −

1 =

p−1∑

h=0

(−1)h

h!
E−

1

(
1 − w

w

)αc

× nFn−1(1, ∆(p, a3), ∆(q, b3); ∆(p, 1 + h), ∆(q, c3); 1/z),

V −

2 =

q−1∑

j=0

(−1)j

j!
E−

2

(
1 − w

w

)βc

× nFn−1(1, ∆(p, a4), ∆(q, b4); ∆(p, c4), ∆(q, 1 + j); 1/z),

E+
1 =

Γ (1 + l + j)Γ (1 + d(1 + j)/c)Γ (k − d(1 + j)/c)

Γ (1 + l)Γ (1 + k)
,

E+
2 =

cΓ (1 − c(k + h)/d)Γ (l + c(k + h)/d)Γ (1 + k + h)

dΓ (1 + k)Γ (1 + l)
,

E−

1 =
cΓ (1 + c(1 + h)/d)Γ (l − c(1 + h)/d)Γ (1 + k + h)

dΓ (1 + k)Γ (1 + l)
,

E−

2 =
Γ (1 + j + l)Γ (1 − d(j + l)/c)Γ (k + d(j + l)/c)

Γ (1 + k)Γ (1 + l)
,

n = p+ q +1, s =
d(j + 1)

c
−k, α = −k− 1−h, β = −k−

d(j + l)

c
,

a1 =
d(j + 1)

c
+ 1, b1 = 1 + j + l, c1 =

d(j + 1)

c
− k + 1,

a2 = 1 + k + h, b2 =
c(h + k)

d
+ l, c2 =

c(h + k)

d
,

a3 = 1 + k + h, b3 = 1 +
c(1 + h)

d
, c3 =

c(1 + h)

d
− l + 1,
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a4 = k +
d(j + l)

c
, b4 = 1 + l + j, c4 =

d(j + l)

c

and

z = (−1)p+q

(
1 − w

w

)pc

.

The symbol ∆(k, a) denotes the sequence a/k, (a + 1)/k, . . . , (a + k − 1)/k.

Proof. Transform (R, W ) = (X + Y, X/R). Under this transformation,
the joint pdf of (R, W ) can be expressed as

f(r, w) = rfX(rw)fY (r(1 − w)) =
klcdrc+d−1wc−1(1 − w)d−1

{1 + (rw)c}k+1{1 + (r(1 − w))d}l+1
.

Thus, the pdf of W can be expressed as

(6) fW (w)

= klcdwc−1(1 − w)d−1
∞\
0

rc+d−1{1 + (rw)c}−k−1{1 + (r(1 − w))d}−l−1 dr

= kldw−ck−1(1 − w)ck−1
∞\
0

yd/c(1 + yd/c)−l−1

(
y +

(
1 − w

w

)c)−k−1

y,

which follows by setting y = (rw)c. The result of the theorem follows by
using equation (2.2.2.6) in Prudnikov et al. (1986, Volume 1) to calculate
the integral in (6).

4. Application. Here, we return to the drought problem discussed in
Section 1 and provide an application of the model given by (1)–(2). We
use the drought data from the State of Nebraska. The data consists of the
monthly modified Palmer Drought Severity Index (PDSI) from the period
from January 1895 to December 2004. A drought is said to have happened
when PDSI is below 0 and is defined by the theory of runs (Yevjevich, 1967).
The State of Nebraska is divided into eight climate divisions numbered 1, 2,
3, 5, 6, 7, 8 and 9—there is no climate division 4 for Nebraska. Some statistics
of the observed drought for the eight climatic divisions are summarized in
Table 1.

Using the PDSI data, data on drought duration, non-drought duration
and drought intensity were obtained for each climate division. The interest
is in determining the distributions of

1. the magnitude of droughts (U) = drought intensity × drought dura-
tion;

2. the proportion of droughts (W ) = drought duration/(drought dura-
tion + non-drought duration).
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Table 1. Basic drought statistics for Nebraska PDSI data

Climate division No of droughts Drought frequency Mean drought
(number/year) duration (months)

1 83 0.75 6.0
2 66 0.60 8.6
3 89 0.81 6.3
5 81 0.74 6.3
6 90 0.82 6.3
7 81 0.74 6.1
8 76 0.69 6.5
9 74 0.67 7.5

The distribution of U was determined by fitting the model given by (1) and
(2) to the observed values of drought duration (X) and non-drought du-
ration (Y ), respectively, and using equation (3) to compute the fitted pdf.
The distribution of W was determined by fitting (1) and (2) to the observed
values of drought intensity (X) and drought duration (Y ), respectively, and
using equation (5) to compute the fitted pdf. The fitting of (1) and (2) was
performed by the method of maximum likelihood. The quasi-Newton algo-
rithm nlm in the R software package (Dennis and Schnabel, 1983; Schnabel et
al, 1985; Ihaka and Gentleman, 1996) was used to maximize the likelihood.
The parameter estimates of (1)–(2) for data on drought intensity, drought
duration and non-drought duration are shown in Tables 2–4.

Table 2. Parameter estimates of (1)–(2)
for drought intensity data

Climate division k̂ (l̂) ĉ (d̂)

1 0.608 1.135
2 0.579 0.992
3 0.669 1.046
5 0.631 1.066
6 0.587 1.216
7 0.567 1.289
8 0.527 1.337
9 0.504 1.208

The fitted pdfs of U and W for the eight climate divisions are shown in
Figures 1 and 2. The pdfs f̃U (u) were computed using (3) with the parameter
values specified by Tables 2 and 3 while the pdfs f̃W (w) were computed using
(5) with the parameter values specified by Tables 3 and 4. The fitted pdfs
are overlayed with the histograms of the observed data on U and W . It
is evident from both the figures that there is little difference between the
climate divisions. This is what one would expect given the geography of the
State of Nebraska.
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Fig 1. Fitted values of the pdf (3) of U = XY in the eight climate divisions of Nebraska
(X = drought intensity and Y = drought duration)

Table 3. Parameter estimates of (1)–(2) for
drought duration data divided by 100

Climate division k̂ (l̂) ĉ (d̂)

1 15.612 0.932
2 10.944 0.896
3 13.812 0.894
5 15.801 0.949
6 15.726 0.951
7 15.070 0.915
8 14.866 0.926
9 13.015 0.941
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Fig. 2. Fitted values of the pdf (5) of W = X/(X + Y ) in the eight climate divisions of
Nebraska (X = drought duration and Y = successive non-drought duration)

Table 4. Parameter estimates of (1)–(2) for
non-drought duration data divided by 100

Climate division k̂ (l̂) ĉ (d̂)

1 8.135 0.768
2 7.847 0.827
3 10.457 0.861
5 8.935 0.846
6 10.885 0.894
7 8.904 0.855
8 9.458 0.943
9 8.901 0.872
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