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THE BAYES SEQUENTIAL ESTIMATION OF
A NORMAL MEAN FROM DELAYED OBSERVATIONS

Abstract. The problem of estimating the mean of a normal distribution is
considered in the special case when the data arrive at random times. Certain
classes of Bayes sequential estimation procedures are derived under LINEX
and reflected normal loss function and with the observation cost determined
by a function of the stopping time and the number of observations up to this
time.

1. Introduction. The paper deals with the problem of estimating the
mean of a normal distribution in the case when the observations become
available at random times.

The problem of estimating an unknown parameter of a distribution on the
basis of randomly incoming data can appear in many practical situations.
For example, in studying the effectiveness of experimental safety devices,
relevant data may become available only as a result of accidents. Medical
data can sometimes only be obtained when patients seek help or are somehow
otherwise identified and examined at random times.

Consider the following model. Let Y;, i = 1,...,n, be independent iden-
tically distributed random variables having a normal distribution with un-
known mean ¢ and known variance o2. It is assumed that Y; is observed

at time t;, ¢ = 1,...,n, where t1,...,t, are the order statistics of positive
exchangeable i.i.d. random variables Uy, ..., U, which are independent of
Yi,..., Y,

Let

k() = Tioy(Uh)
=1
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denote the number of observations made up to time ¢ > 0, and let F; =
o{k(s), s <t, Y1,..., Yy} be the information which is available at time ¢.
The problem is to estimate the parameter 9.

If observation is stopped at time t, the loss incurred is defined by
(1) Li(0¥,d) = L(Y,d) + cak(t) + c(t),

where L(9,d) denotes the loss associated with estimation when 9 is the
true value of the parameter and d is the chosen estimate. The function ¢(t)
represents the cost of observing the process up to time ¢ and it is supposed
to be a differentiable and increasing convex function such that ¢(0) = 0;
moreover, ¢4 > 0 is the cost of taking one observation.

Sequential estimation procedures of the form § = (7,d(7)) for estimating
the parameter ¥ of the normal distribution will be considered, where 7 is
a stopping time with respect to F;, ¢ > 0, and d(7) is an F,-measurable
function.

The estimation problem with delayed observations was investigated by
Starr, Wardrop and Woodroofe (1976), who considered the case of estimating
the mean of normally distributed observations with known variance under
squared error loss. Some of their results were extended by Magiera (1982)
to one-parameter exponential families of distributions (also under squared
error loss).

In practice we are often faced with estimation problems in which over-
estimation is considered more serious than underestimation or vice versa.
Then using squared error loss (symmetric loss) is not appropriate, and we
should use an asymmetric loss function. It has also been argued that un-
boundedness is undesired in many statistical problems. (For a full discussion

of the objections to unbounded loss functions (especially quadratic loss) see
Leon and Wu (1992) and Tribus and Szonyi (1989).)

In Section 2 of this paper a class of Bayes sequential procedures for
estimating the distribution parameter 9 of the observations Yi,...,Y, with
delay will be derived under an asymmetric (LINEX) loss function given by
(2) below. The result will be given in the case when the common distribution
of Uy,...,U, is known exactly as well as when it is unknown but required to
be exponential. In Section 3 analogous results will be presented for the case
of a bounded (reflected normal) loss function given by (11).

2. The Bayes sequential procedures under a LINEX loss func-
tion. Let us consider the problem of the Bayes sequential estimation of the
parameter ¢ under loss (1) with the LINEX loss function L(?J, d) of the form

(2) L(9,d) = b{expla(d) — d)] — a(¥ — d) — 1},
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where a # 0, b > 0. The LINEX loss function was introduced by Varian
(1975). This convex and asymmetric loss function is useful when overestima-
tion is considered more serious than underestimation or vice versa.

Sequential estimation procedures of the form 6 = (7,d(7)) for estimating
the parameter 9 of the normal distribution will be considered, where 7 is a
stopping time with respect to F;, t > 0, and d(7) is an F -measurable func-
tion. The risk function associated with a sequential procedure § = (7, d(7))
is defined by

R(9,0) = Ey[L:(9,d(7))] = Ey[L(9,d(T)) + cak(r) + c(7)],
where Ey means the expectation with respect to the conditional distribution
given .

Assume that the prior information about the parameter ¥ is that it has
the normal distribution (the natural conjugate distribution to the normal
distribution in the case when the variance is known) with parameters p
and 72

The Bayes risk of the procedure § connected with the prior distribution
7 is defined by

r(r,8) = E"[R(Y,0)] = | R(Y,5) m(dv).
R
Define

k(t)
X, = Z Y.
=1

The following lemma gives the form of the Bayes estimator of the parameter
¥ for any stopping time 7.

LEMMA 1. For the loss function given by (2) and for any stopping time
T, the Bayes estimator of ¥ with respect to a prior distribution w given F is
1 1
| X, +ep+ - ac®
k(r)+e ( TTERT ’

and the posterior expected loss is

(3) d*(r) =

PLL. (7)) | 7] = 50 5

where & = o2 /n?.

Proof. The posterior distribution 7; of the parameter 9, given F;, is the
normal distribution with parameters j; and 77, where

1

(4) pe = 7k(t)+€(Xt+6,u),
o2

(5) n; = O
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For a given time ¢, the form of the Bayes estimator d*(¢) is obtained by using
the general formula given in Zellner (1986), namely
1 1
d'(t) = — In{E™[exp(a?)]} = e + 5 an;.
Straightforward calculations lead to the form of the posterior expected loss.
For a random observation time 7 the lemma follows from the strong Markov
property. m

It follows from Lemma 1 that the sequential procedure can be identified
with the stopping time. The Bayes estimation problem then reduces to the
following optimal stopping problem. The total loss (cost) of observing the
process up to time 7 is defined to be

Lk Lp_o k
(k(r),7) = 3¢ B Te + cak(T) + c(7).

The problem is to find a stopping time 7% which minimizes the expected total
loss EL over all stopping times 7. Such a stopping time is called the opti-
mal stopping time and the corresponding sequential procedure (7*,d*(7%))
is called the Bayes sequential procedure. In the next subsection such pro-
cedures will be derived in the case when the common distribution of the
random variables Uy, ..., U, is known exactly. In Subsection 2.2 the Bayes
sequential procedures will be given when the distribution of Uy, ..., U, is
unknown but required to be exponential.

2.1. The Bayes sequential procedures: known F. Assume that the ran-
dom variables Uy, ..., U, are independent and have a common distribution
function F. Suppose that F(0) = 0; F(t) > 0 for ¢ > 0; F' is absolutely
continuous with density f; and f is the right hand derivative of F' on (0, c0).
Denote the class of such I’ by G.

Let ¢ =sup{t: F(t) < 1}, and let o(t) = f()[1 = F(t)]7', 0 <t < ¢,
denote the failure rate. The process k(t), 0 < t < (, is a nonstationary
Markov chain with respect to F;, 0 < ¢ < (, and its infinitesimal operator is

Aih(k) = (n — k)o(t)[h(k + 1) — h(k)]
for k € E, = {0,1,...,n} and all real-valued functions h on E,, (see Starr,
Wardrop and Woodroofe (1976)).

Let h be a given real-valued function on E,, such that 0 < h(k) < oo for
each k € E,,, and let

(6) Li(t) = L (k(t), 1) = h(k(t)) + c(t),
t > 0, be the loss incurred if the process is stopped at time ¢. Suppose
that h(k) — h(k + 1) is nonincreasing for £ < n — 1 and that F' € G has a

nonincreasing failure rate. Under the assumptions concerning the functions
o(t), h(k) and ¢(t) the so-called monotone case holds: once the infinitesimal
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prospect of the loss £, for the future becomes bad (greater than zero), it
remains bad. If the loss Lp is in the monotone case, then using Dynkin’s
identity we find that the stopping time

7, = inf{t > 0: Ah(k(t)) + ' (t) > 0}
= inf{t > 0: [n — k(t)]o(t) [h(k(t)) — h(k(t) + 1)] < ()}
is optimal.
This method has been used to derive explicitly optimal sequential pro-
cedures in other models (see, for example, Ross (1971), Chen and Wardrop

(1980), Shapiro and Wardrop (1980)). We will also use this method to prove
the following result.

THEOREM 1. Suppose that F' € G has nonincreasing failure rate 0. Then
the Bayes sequential procedure with respect to 7 is 6* = (7*,d*(7*)), where

a’o?

(7)  71*=inf {tZO: [n — k(t)]o(t) [Z[k(t) 1) £ —CA:| Sc/(t)}

and

k(%) +e
Proof. Under the assumptions concerning the functions o(t) and ¢(t) and
taking in (6)

1
d*(r (XT* +ep+ 3 a02> .

BOO) = 2?1 T+ eakt
=—-a" ———+c ,

2" k(t)+e
which is associated with the model considered, we infer that the cost Ly, (t) is
in the monotone case. Thus, by Dynkin’s identity, the stopping time given by
(7) is optimal. The form of the Bayes estimator d* follows from Lemma 1. =

2.2. The Bayes sequential procedures: unknown F. Let us now consider
the problem of sequential estimation of the parameter ¥ in the case when
Ui, ..., U, are conditionally independent and exponentially distributed with
parameter w, given W = w, where W is a random variable having the gamma
distribution G(a, 3), where a, 8 > 0 are known. That is, the random variable
W has the density function

®) Fw) = F(a)™ g e B
for w > 0. The posterior distribution of W given F; is G(ay, 8;) with

k(t)
a=a+k(t), Bi=B+Y tj+[n—k)t
j=1

Denote the prior parameters of (8) by ag and set Gy, and m = ag + n. It
is easy to check that the process (ay, ), t > 0, with values in the product
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{ag, a0+ 1,...,ap +n} x (0,00), is a stationary Markov process with the
infinitesimal operator

AH (e, §) = af™ (m — a)[H(a + 1, 8) — H(a, B)] + (m — a) H'(a, B),

where ’ denotes differentiation with respect to 3 (for the proof see Stadje
(1990)). The domain of A includes all H which are continuously differentiable
in 3 for each a.

Let the loss associated with the observation of the process (ay, 5¢), t > 0,
up to time t be of the form

L(t) = L(ay, Br, t) = H(a, Br) + c(t) = h(ow) + ¢(t),

where h(a) is a function on {ag, a9 +1,...,ap+n} such that 0 < h(a) < o0
for a« > «p. If the function a(m — «a)[h(a) — h(a + 1)] is nonincreasing
for @« = ag,a9 + 1,..., a0 + n — 1, then using the same methods as in
Subsection 2.1 one shows that the stopping time

(9) ™ =inf{t > 0: AH (a4, B;) + ¢ (t) > 0}
— inf{t > 0: ayf; " (m — ag)[hlar) — hlaz +1)] < ¢(0)}
is optimal. Notice that
™ =inf{t > 0 : wi(m — o) [h(as) — h(ar +1)] < ()},
where
(10) we = ouff; = E(W|F)

is the Bayes estimate of w at time ¢ with respect to a prior distribution given
by (8) under squared error loss.

In particular, for
2

1 o? 1 o
—a? ———— +ealay —ap) = - a®

h =
(o) 2 a—ap+e 2 ¢ k(t)+e

+ cak(t),
which is associated with the model considered, the following theorem holds.

THEOREM 2. Let the distribution of Uy, ...,Uy, be as described above and
a > n— 1. Then the sequential procedure (7%,d*(7*)), where

() 1+ k(D) + 4 CA] = Cl(t)}

7 = inf {t >0 wiln — k(t)] [
and

1 1
d* * - - XT* - 2
(T) k‘(T*)—I—E( +6M+2a0)

1s Bayes with respect to m. m
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3. The Bayes sequential procedures under a reflected normal
loss function. Let us now consider the problem of the Bayes sequential
estimation of the parameter 9 under loss (1) with the reflected normal loss
function L(1,d) of the form

an b0.0 = {1 - o[-0

where v > 0, K > 0, and K is the maximum loss parameter. The reflected
normal (Spiring’s) loss function is symmetric and bounded. It was employed
by Spiring (1993) for location parameter estimation. This loss function is a
monotone function of the squared error loss.

The following lemma gives the form of the Bayes estimator of the pa-
rameter ¥ with respect to a prior normal distribution with parameters u
and 7?.

LEMMA 2. For the loss function given by (11) and for any stopping

time T, the Bayes estimator of ¥ with respect to a prior distribution w given
Fr is
() = oo (Kt en)
k(r)4+¢e 7 ’

and the posterior expected loss is

EMWJ“ﬂHfJ:KP—W<H§%z+7ﬁ;wy

Proof. For a given time t straightforward calculations lead to the form
of the Bayes estimator d* and the form of the posterior expected loss. For
a random observation time 7 the lemma follows from the strong Markov
property. =

The following results can be obtained using the same arguments as in
Section 2.

THEOREM 3. Suppose that F' € G has nonincreasing failure rate o. Then
the sequential procedure 0* = (1*,d*(1*)), where

o2 ) -1/2
*:' > : —
T 1nf{t_0 [k(7)+1+5+7}

0.2

—-1/2
N 2 JE—
[Mﬂ+e+”] A

¢(1)
Swam—Mm}

and

1s Bayes with respect to w. =
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THEOREM 4. Let the distribution of Uy, ..., U, be as described in Sub-
section 2.2 and o > n — 1. Then the sequential procedure (7*,d*(7*)), where

2 ~1/2 2 ~1/2
T =inf{t>0: U——l—’yQ - U—+’y2 —ca
- E(t)+14¢ k(t)+e

S
< Kvun — k(0]
with wy giwven by (10) and

d*(r%) = ﬁ (Koo +ep),

18 Bayes with respect to m. m
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