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Abstra
t. The problem of estimating the mean of a normal distribution is
onsidered in the spe
ial 
ase when the data arrive at random times. Certain
lasses of Bayes sequential estimation pro
edures are derived under LINEXand re�e
ted normal loss fun
tion and with the observation 
ost determinedby a fun
tion of the stopping time and the number of observations up to thistime.1. Introdu
tion. The paper deals with the problem of estimating themean of a normal distribution in the 
ase when the observations be
omeavailable at random times.The problem of estimating an unknown parameter of a distribution on thebasis of randomly in
oming data 
an appear in many pra
ti
al situations.For example, in studying the e�e
tiveness of experimental safety devi
es,relevant data may be
ome available only as a result of a

idents. Medi
aldata 
an sometimes only be obtained when patients seek help or are somehowotherwise identi�ed and examined at random times.Consider the following model. Let Yi, i = 1, . . . , n, be independent iden-ti
ally distributed random variables having a normal distribution with un-known mean ϑ and known varian
e σ2. It is assumed that Yi is observedat time ti, i = 1, . . . , n, where t1, . . . , tn are the order statisti
s of positiveex
hangeable i.i.d. random variables U1, . . . , Un whi
h are independent of
Y1, . . . , Yn.Let

k(t) =
n

∑

i=1

I[0,t](Ui)
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276 A. Jokiel-Rokitadenote the number of observations made up to time t ≥ 0, and let Ft =
σ{k(s), s ≤ t, Y1, . . . , Yk(t)} be the information whi
h is available at time t.The problem is to estimate the parameter ϑ.If observation is stopped at time t, the loss in
urred is de�ned by

Lt(ϑ, d) = L(ϑ, d) + cAk(t) + c(t),(1)where L(ϑ, d) denotes the loss asso
iated with estimation when ϑ is thetrue value of the parameter and d is the 
hosen estimate. The fun
tion c(t)represents the 
ost of observing the pro
ess up to time t and it is supposedto be a di�erentiable and in
reasing 
onvex fun
tion su
h that c(0) = 0;moreover, cA ≥ 0 is the 
ost of taking one observation.Sequential estimation pro
edures of the form δ = (τ, d(τ)) for estimatingthe parameter ϑ of the normal distribution will be 
onsidered, where τ isa stopping time with respe
t to Ft, t ≥ 0, and d(τ) is an Fτ -measurablefun
tion.The estimation problem with delayed observations was investigated byStarr, Wardrop and Woodroofe (1976), who 
onsidered the 
ase of estimatingthe mean of normally distributed observations with known varian
e undersquared error loss. Some of their results were extended by Magiera (1982)to one-parameter exponential families of distributions (also under squarederror loss).In pra
ti
e we are often fa
ed with estimation problems in whi
h over-estimation is 
onsidered more serious than underestimation or vi
e versa.Then using squared error loss (symmetri
 loss) is not appropriate, and weshould use an asymmetri
 loss fun
tion. It has also been argued that un-boundedness is undesired in many statisti
al problems. (For a full dis
ussionof the obje
tions to unbounded loss fun
tions (espe
ially quadrati
 loss) seeLeon and Wu (1992) and Tribus and Szonyi (1989).)In Se
tion 2 of this paper a 
lass of Bayes sequential pro
edures forestimating the distribution parameter ϑ of the observations Y1, . . . , Yn withdelay will be derived under an asymmetri
 (LINEX) loss fun
tion given by(2) below. The result will be given in the 
ase when the 
ommon distributionof U1, . . . , Un is known exa
tly as well as when it is unknown but required tobe exponential. In Se
tion 3 analogous results will be presented for the 
aseof a bounded (re�e
ted normal) loss fun
tion given by (11).
2. The Bayes sequential pro
edures under a LINEX loss fun
-tion. Let us 
onsider the problem of the Bayes sequential estimation of theparameter ϑ under loss (1) with the LINEX loss fun
tion L(ϑ, d) of the form

L(ϑ, d) = b{exp[a(ϑ − d)] − a(ϑ − d) − 1},(2)



Estimation of a normal mean 277where a 6= 0, b > 0. The LINEX loss fun
tion was introdu
ed by Varian(1975). This 
onvex and asymmetri
 loss fun
tion is useful when overestima-tion is 
onsidered more serious than underestimation or vi
e versa.Sequential estimation pro
edures of the form δ = (τ, d(τ)) for estimatingthe parameter ϑ of the normal distribution will be 
onsidered, where τ is astopping time with respe
t to Ft, t ≥ 0, and d(τ) is an Fτ -measurable fun
-tion. The risk fun
tion asso
iated with a sequential pro
edure δ = (τ, d(τ))is de�ned by
R(ϑ, δ) = Eϑ[Lτ (ϑ, d(τ))] = Eϑ[L(ϑ, d(τ)) + cAk(τ) + c(τ)],where Eϑ means the expe
tation with respe
t to the 
onditional distributiongiven ϑ.Assume that the prior information about the parameter ϑ is that it hasthe normal distribution (the natural 
onjugate distribution to the normaldistribution in the 
ase when the varian
e is known) with parameters µand η2.The Bayes risk of the pro
edure δ 
onne
ted with the prior distribution

π is de�ned by
r(π, δ) = Eπ[R(ϑ, δ)] =

\
R

R(ϑ, δ)π(dϑ).De�ne
Xt =

k(t)
∑

i=1

Yi.The following lemma gives the form of the Bayes estimator of the parameter
ϑ for any stopping time τ .Lemma 1. For the loss fun
tion given by (2) and for any stopping time
τ , the Bayes estimator of ϑ with respe
t to a prior distribution π given Fτ is

d∗(τ) =
1

k(τ) + ε

(

Xτ + εµ +
1

2
aσ2

)

,(3)and the posterior expe
ted loss is
E[L(ϑ, d∗(τ)) | Fτ ] =

1

2
a2 σ2

k(τ) + ε
,where ε = σ2/η2.Proof. The posterior distribution πt of the parameter ϑ, given Ft, is thenormal distribution with parameters µt and η2

t , where
µt =

1

k(t) + ε
(Xt + εµ),(4)

η2
t =

σ2

k(t) + ε
.(5)



278 A. Jokiel-RokitaFor a given time t, the form of the Bayes estimator d∗(t) is obtained by usingthe general formula given in Zellner (1986), namely
d∗(t) =

1

a
ln{Eπt [exp(aϑ)]} = µt +

1

2
aη2

t .Straightforward 
al
ulations lead to the form of the posterior expe
ted loss.For a random observation time τ the lemma follows from the strong Markovproperty.It follows from Lemma 1 that the sequential pro
edure 
an be identi�edwith the stopping time. The Bayes estimation problem then redu
es to thefollowing optimal stopping problem. The total loss (
ost) of observing thepro
ess up to time τ is de�ned to be
L(k(τ), τ) =

1

2
a2 σ2

k(τ) + ε
+ cAk(τ) + c(τ).The problem is to �nd a stopping time τ∗ whi
h minimizes the expe
ted totalloss EL over all stopping times τ . Su
h a stopping time is 
alled the opti-mal stopping time and the 
orresponding sequential pro
edure (τ∗, d∗(τ∗))is 
alled the Bayes sequential pro
edure. In the next subse
tion su
h pro-
edures will be derived in the 
ase when the 
ommon distribution of therandom variables U1, . . . , Un is known exa
tly. In Subse
tion 2.2 the Bayessequential pro
edures will be given when the distribution of U1, . . . , Un isunknown but required to be exponential.2.1. The Bayes sequential pro
edures: known F . Assume that the ran-dom variables U1, . . . , Un are independent and have a 
ommon distributionfun
tion F . Suppose that F (0) = 0; F (t) > 0 for t > 0; F is absolutely
ontinuous with density f ; and f is the right hand derivative of F on (0,∞).Denote the 
lass of su
h F by G.Let ζ = sup{t : F (t) < 1}, and let ̺(t) = f(t)[1 − F (t)]−1, 0 ≤ t < ζ,denote the failure rate. The pro
ess k(t), 0 ≤ t ≤ ζ, is a nonstationaryMarkov 
hain with respe
t to Ft, 0 ≤ t ≤ ζ, and its in�nitesimal operator is

Ath(k) = (n − k)̺(t)[h(k + 1) − h(k)]for k ∈ En = {0, 1, . . . , n} and all real-valued fun
tions h on En (see Starr,Wardrop and Woodroofe (1976)).Let h be a given real-valued fun
tion on En su
h that 0 ≤ h(k) < ∞ forea
h k ∈ En, and let
Lh(t) = Lh(k(t), t) = h(k(t)) + c(t),(6)

t ≥ 0, be the loss in
urred if the pro
ess is stopped at time t. Supposethat h(k) − h(k + 1) is nonin
reasing for k ≤ n − 1 and that F ∈ G has anonin
reasing failure rate. Under the assumptions 
on
erning the fun
tions
̺(t), h(k) and c(t) the so-
alled monotone 
ase holds: on
e the in�nitesimal
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t of the loss Lh for the future be
omes bad (greater than zero), itremains bad. If the loss Lh is in the monotone 
ase, then using Dynkin'sidentity we �nd that the stopping time
τh = inf{t ≥ 0 : Ath(k(t)) + c′(t) ≥ 0}

= inf{t ≥ 0 : [n − k(t)]̺(t)[h(k(t)) − h(k(t) + 1)] ≤ c′(t)}is optimal.This method has been used to derive expli
itly optimal sequential pro-
edures in other models (see, for example, Ross (1971), Chen and Wardrop(1980), Shapiro and Wardrop (1980)). We will also use this method to provethe following result.Theorem 1. Suppose that F ∈ G has nonin
reasing failure rate ̺. Thenthe Bayes sequential pro
edure with respe
t to π is δ∗ = (τ∗, d∗(τ∗)), where
τ∗= inf

{

t≥ 0 : [n − k(t)]̺(t)

[

a2σ2

2[k(t) +1 +ε][k(t) + ε]
− cA

]

≤ c′(t)

}(7)and
d∗(τ∗) =

1

k(τ∗) + ε

(

Xτ∗ + εµ +
1

2
aσ2

)

.Proof. Under the assumptions 
on
erning the fun
tions ̺(t) and c(t) andtaking in (6)
h(k(t)) =

1

2
a2 σ2

k(t) + ε
+ cAk(t),whi
h is asso
iated with the model 
onsidered, we infer that the 
ost Lh(t) isin the monotone 
ase. Thus, by Dynkin's identity, the stopping time given by(7) is optimal. The form of the Bayes estimator d∗ follows from Lemma 1.2.2. The Bayes sequential pro
edures: unknown F . Let us now 
onsiderthe problem of sequential estimation of the parameter ϑ in the 
ase when

U1, . . . , Un are 
onditionally independent and exponentially distributed withparameter w, given W = w, where W is a random variable having the gammadistribution G(α, β), where α, β > 0 are known. That is, the random variable
W has the density fun
tion

f(w) = Γ (α)−1βαwα−1e−βw(8)for w > 0. The posterior distribution of W given Ft is G(αt, βt) with
αt = α + k(t), βt = β +

k(t)
∑

j=1

tj + [n − k(t)]t.Denote the prior parameters of (8) by α0 and set β0, and m = α0 + n. Itis easy to 
he
k that the pro
ess (αt, βt), t ≥ 0, with values in the produ
t
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{α0, α0 + 1, . . . , α0 + n} × (0,∞), is a stationary Markov pro
ess with thein�nitesimal operator

AH(α, β) = αβ−1(m − α)[H(α + 1, β) − H(α, β)] + (m − α)H ′(α, β),where ′ denotes di�erentiation with respe
t to β (for the proof see Stadje(1990)). The domain ofA in
ludes all H whi
h are 
ontinuously di�erentiablein β for ea
h α.Let the loss asso
iated with the observation of the pro
ess (αt, βt), t ≥ 0,up to time t be of the form
L(t) = L(αt, βt, t) = H(αt, βt) + c(t) = h(αt) + c(t),where h(α) is a fun
tion on {α0, α0 +1, . . . , α0 +n} su
h that 0 ≤ h(α) < ∞for α ≥ α0. If the fun
tion α(m − α)[h(α) − h(α + 1)] is nonin
reasingfor α = α0, α0 + 1, . . . , α0 + n − 1, then using the same methods as inSubse
tion 2.1 one shows that the stopping time

τ∗ = inf{t ≥ 0 : AH(αt, βt) + c′(t) ≥ 0}(9)
= inf{t ≥ 0 : αtβ

−1
t (m − αt)[h(αt) − h(αt + 1)] ≤ c′(t)}is optimal. Noti
e that

τ∗ = inf{t ≥ 0 : wt(m − αt)[h(αt) − h(αt + 1)] ≤ c′(t)},where
wt = αtβ

−1
t = E(W | Ft)(10)is the Bayes estimate of w at time t with respe
t to a prior distribution givenby (8) under squared error loss.In parti
ular, for

h(αt) =
1

2
a2 σ2

αt − α0 + ε
+ cA(αt − α0) =

1

2
a2 σ2

k(t) + ε
+ cAk(t),whi
h is asso
iated with the model 
onsidered, the following theorem holds.Theorem 2. Let the distribution of U1, . . . , Un be as des
ribed above and

α ≥ n − 1. Then the sequential pro
edure (τ∗, d∗(τ∗)), where
τ∗ = inf

{

t ≥ 0 : wt[n − k(t)]

[

a2σ2

2[k(t) + 1 + ε][k(t) + ε]
− cA

]

≤ c′(t)

}

and
d∗(τ∗) =

1

k(τ∗) + ε

(

Xτ∗ + εµ +
1

2
aσ2

)

is Bayes with respe
t to π.
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edures under a re�e
ted normalloss fun
tion. Let us now 
onsider the problem of the Bayes sequentialestimation of the parameter ϑ under loss (1) with the re�e
ted normal lossfun
tion L(ϑ, d) of the form
L(ϑ, d) = K

{

1 − exp

[

−
(d − ϑ)2

2γ2

]}

,(11)where γ > 0, K > 0, and K is the maximum loss parameter. The re�e
tednormal (Spiring's) loss fun
tion is symmetri
 and bounded. It was employedby Spiring (1993) for lo
ation parameter estimation. This loss fun
tion is amonotone fun
tion of the squared error loss.The following lemma gives the form of the Bayes estimator of the pa-rameter ϑ with respe
t to a prior normal distribution with parameters µand η2.Lemma 2. For the loss fun
tion given by (11) and for any stoppingtime τ , the Bayes estimator of ϑ with respe
t to a prior distribution π given
Fτ is

d∗(τ) =
1

k(τ) + ε
(Xτ + εµ),and the posterior expe
ted loss is

E[L(ϑ, d∗(τ)) | Fτ ] = K

[

1 − γ

(

σ2

k(τ) + ε
+ γ2

)

−1/2]

.Proof. For a given time t straightforward 
al
ulations lead to the formof the Bayes estimator d∗ and the form of the posterior expe
ted loss. Fora random observation time τ the lemma follows from the strong Markovproperty.The following results 
an be obtained using the same arguments as inSe
tion 2.Theorem 3. Suppose that F ∈ G has nonin
reasing failure rate ̺. Thenthe sequential pro
edure δ∗ = (τ∗, d∗(τ∗)), where
τ∗ = inf

{

t ≥ 0 :

[

σ2

k(τ) + 1 + ε
+ γ2

]

−1/2

−

[

σ2

k(τ) + ε
+ γ2

]

−1/2

− cA

≤
c′(t)

Kγ̺(t)[n − k(t)]

}

and
d∗(τ∗) =

1

k(τ∗) + ε
(Xτ∗ + εµ),is Bayes with respe
t to π.



282 A. Jokiel-RokitaTheorem 4. Let the distribution of U1, . . . , Un be as des
ribed in Sub-se
tion 2.2 and α ≥ n− 1. Then the sequential pro
edure (τ∗, d∗(τ∗)), where
τ∗ = inf

{

t ≥ 0 :

[

σ2

k(τ) + 1 + ε
+ γ2

]

−1/2

−

[

σ2

k(τ) + ε
+ γ2

]

−1/2

− cA

≤
c′(t)

Kγwt[n − k(t)]

}

with wt given by (10) and
d∗(τ∗) =

1

k(τ∗) + ε
(Xτ∗ + εµ),is Bayes with respe
t to π.
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