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MODELS FOR STOCHASTIC MORTALITY

Abstrat. This paper is an attempt to present and analyse stohastimortality models. We propose a ouple of ontinuous-time stohasti modelsthat are natural generalizations of the Gompertz law in the sense that theyredue to the Gompertz funtion when the volatility parameter is zero. Weprovide a statistial analysis of the available demographi data to show thatthe models �t historial data well. Finally, we give some pratial examplesfor the multidimensional models.1. Introdution. In the life insurane industry the problem of unpre-ditable mortality intensity is of importane. It is possible that in the futurethe mortality parameters of the soiety will be far from those assumed in theatuarial plan of an insurane produt. This an happen even if the assump-tions were very onservative. For example, a new virus or an environmentalthreat may emerge that will inrease the mortality of the whole population.On the other hand, a new mediine may be invented and the mortality inten-sity will derease. Suh hanges may a�et the population as a whole or onlyseleted age groups. Thus, a deeper onsideration of the future mortalitystruture is a must. This problem is ruial for both reserving and priing.The aim of this paper is to address this issue. Statistial analysis of theavailable demographi data is provided. We also propose ontinuous-timestohasti models that are natural generalizations of the Gompertz law inthe sense that they redue to the Gompertz funtion when the volatilityparameter is zero. These models have some interesting features. For example,they have a few parameters only, these parameters are not funtions of time,and at least one of these models an also be e�iently used for mortality2000 Mathematis Subjet Classi�ation: 62P05, 60H30.Key words and phrases: stohasti mortality, systemati mortality risk, mortality op-tion.Part of this work was done during the author's stay at Nationwide Insurane, USA.[53℄ © Instytut Matematyzny PAN, 2007



54 J. Iwanikoption-priing. Statistial multivariate tests for all three models are providedthat allow us to deide whih one �ts the empirial data best. Finally, wegive some pratial examples for our multidimensional model.The paper is organized as follows. An introdution of existing and newmodels is provided in Setion 2. Setion 3 ontains a reality-hek�the mod-els are tested against the demographi data. Finally, some appliations anbe found in Setion 4.2. Mortality models. Let us onsider a homogeneous ohort of peopleborn in year y. The standard atuarial notation T−tp
y
t is the probability thata (t− y)-year-old member of this ohort survives until T . If µy

t is the hazardrate of a single life, we have
T−tp

y
t = e−

TT
t

µy
s ds.2.1. Existing models. If the environment and living onditions do nothange over time, we an assume that the ohort's mortality intensity is afuntion of time only. In lassial atuarial theory and pratie, µy

t is oftenexpressed by the so alled Gompertz assumption (see any atuarial textbook,e.g. [1℄) as a funtion of t:
µy

t ≈ A + BeCtwhere A, B and C are onstants. This model provides a surprisingly aurateapproximation in many ases, it is ommonly aepted and has been exten-sively used by pratitioners for over a entury. Despite its obvious simpliityand usefulness, this method has a serious drawbak�it is deterministi andthus it annot aommodate future randomness. Hene the need for a non-deterministi model emerges and there are a few approahes toward suhmodels in the existing literature.Preditions of the survival probability px, mortality intensity µx (alsoalled: fore of mortality, mortality rate, hazard rate) as well as the entralmortality rate mx are possible. Among others, the Lee�Carter model pre-sented in [11℄ and further developed by many authors (e.g. [17℄, [18℄) andthe CMI reommendations [4℄ are broadly applied. The Lee�Carter methodprovides not only mortality preditions but also on�dene bounds. The fatthat it provides some insight into the random nature of future mortality isof ourse a useful and desirable feature.Sine the Lee�Carter method is based on time series analysis, it onlyprovides a disrete analysis of the problem. Continuous-time stohasti mor-tality models are presented in [15℄ and [5℄. The models there were seletedmainly to enable mortality-derivative priing, whih is the main objetive ofthose papers. In partiular the extended Cox�Ingersoll�Ross (CIR) model isused by Dahl in [5℄. The CIR model is important for the stohasti modeling



Models for stohasti mortality 55of interest rates. In this model the mortality intensity proess is desribedby the following SDE:
dµy

t = at(bt − µy
t )dt + ct

√
µy

t dB,where the parameters at, bt and ct are funtions of time. In this setup µy
tis a mean reverting proess with mean bt. Mean reversion is one of Dahl'simportant motivations for using this model for mortality intensity. Also [15℄uses a mean reverting proess to model the mortality intensity. Both paperssuggest that mean reversion is desired or even required for the mortalitymodel. It is ertainly important for interest rate models, whih John Hullexplains in [9℄ this way: There are ompelling eonomis arguments in favorof mean reversion. When rates are high, the eonomy tends to slow downand there is less requirement for funds on the part of borrowers. As a result,rates deline. When rates are low, there tends to be a high demand for fundson the part of borrowers. As a result rates tend to rise. This motivation doesnot seem to hold for the mortality intensity, though.Another argument against mean reversion is that usually it is di�ultto estimate the mean from the data. In a pratial appliation one wouldprobably have to assume a priori a partiular form of the mean funtion.One possibility is the elebrated Gompertz law.Sine there is no evidene that the demographi data are mean reverting,we want to show that there exist a few stohasti proesses that are not meanreverting but �t the data well, have nie analytial properties and have asimple struture.In the remainder of this setion, we will be omitting the supersripts in

µy
t and py

t if this does not lead to onfusion.2.2. New models. Beause there an be some reservations to the ideaof mean reverting mortality models, we propose to use a di�erent group ofmodels. These models are de�ned and desribed in this subsetion.2.2.1. One-dimensional models. We suggest using the following di�usionproesses for modeling mortality intensity:(1) dµt = aµtdt + µβ
t σdB, t ∈ [t0, T ],for β = 0, β = 0.5 and β = 1. Here µt0 > 0 is the starting value of theproess µt, a > 0 and σ are onstants, and Bt is the Brownian motion. Wealso de�ne G = aµt and H = µβ

t σ. Unique solutions exist for β = 0 and
β = 1 beause the Lipshitz ondition holds in these ases. For β = 0.5 wean apply a speial ase of the Yamada�Watanabe theorem and see that aweakened Lipshitz ondition holds.Models of suh type have many advantages over the mean reverting oreven over the Lee�Carter model. First, they are intuitive beause they are



56 J. Iwanikall natural generalizations of the Gompertz law. Next, they have a trans-parent struture and are easy to simulate and test. They also have only twoparameters (plus the starting value µt0) and these parameters are onstantover time, whih makes them easy to alibrate and �nally, apply.Note that µt as de�ned in (1) does not need to have the a�ne struture.If β = 0 then the dynamis of the proess is given by(2) dµt = aµtdt + σdB, t ∈ [t0, T ].If the famous Va²i£ek interest rate model dr = a′(b− r)dt+ σdB did notrequire a′ and b to be stritly positive, equation (2) ould have been viewedas a speial ase of the Va²i£ek model. Our model is no more mean reverting.The drawbak of the proess (2) is that it an be negative. This is un-desirable for the interest rates, and unaeptable for the mortality intensity.We an overome this problem by de�ning µ∗
t = max(ε, µt) for some small,positive ε.The seond model that we propose for modeling ontinuous-time mortal-ity intensity is given by the following SDE:(3) dµt = aµtdt + σ

√
µt dB, t ∈ [t0, T ].If µt follows (3), it is positive for any t with probability one. This modelould be viewed as a speial ase of the Cox�Ingersoll�Ross model, althoughformally the de�nition of CIR requires its oe�ients to be stritly positive.Beause here bt = 0 and at < 0, this model is no more mean reverting.Surprisingly, we will see that this model �ts the empirial data well andthere exist expliit formulas for some important funtionals of µt in thismodel.The last proposal (for β = 1) is to use the geometri Brownian motion asthe stohasti replaement for the Gompertz assumption. Let the behaviorof µt be desribed by the following SDE:(4) dµt = aµtdt + σµtdBt, t ∈ [t0, T ].Of ourse ln(µt) has the normal distribution with mean a − σ2/2 and vari-ane σ2. Hene µt is positive for any t. This model is well known as themodel for stok dynamis. In the interest rate literature (see e.g. [2, Ch.3.2℄) it is known as the Dothan model but is not extensively used due toobvious limitations�in this model, the interest rates onverge to in�nity,whih is undesirable. However, suh behavior is reasonable in the ase ofmortality intensity.Note that the mortality intensity modeling�unlike the usual interest ratemodeling�takes plae under the physial measure here.2.2.2. Multi-dimensional models. The models (2), (3) and (4) are one-dimensional�they desribe the mortality intensity of a single ohort only.



Models for stohasti mortality 57Albeit the one-dimensional models seem to be reasonable for eah singleohort, one expets that there must be some dependene between the mor-talities of people of di�erent ages. For example during a war or a pandemi,the mortality of the whole population inreases. The dependene betweenmortalities in people of like ages would be espeially strong. The inreaseof mortality in people aged say, 82 would�intuitively�be aompanied byan inrease in the mortality of those 83 years old, but not neessarily theinfants.To inorporate this ommon sense rule, the k-dimensional vetor of Brow-nian motions must be used as the soure of randomness in the models. Thisleads to vetor-valued equations analogous to (2)�(4) but where the variables
µt, a and µt0 are replaed with their k-dimensional versions. Then the multi-pliations between these variables are understood as multipliations for eahomponent separately. The volatility parameter σ is replaed with a k × kmatrix σ. The ovariane matrix is Σ = σσT .In this setup, we an not only desribe the behavior of an individualohort but also inorporate the dependenes between the mortality of peoplein di�erent ages. Suh e�ets an now be well modeled by the ovarianematrix Σ. The values Σij are expeted to derease with |i− j| but to alwaysstay non-negative.2.3. Probability of survival. Assuming we have a orret model for µt,we still need to be able to alulate some funtionals of this proess to applythe model. A funtional that an be espeially useful is the probability ofsurvival.2.3.1. Survival of a single ohort. Let {Ft}t∈[t0,T ] be a �ltration over theprobability spae (Ω, F, P ). Let µt be measurable w.r.t. Ft. The stohastiproess(5) p(t, T ) = E(e−

TT
t

µs ds | Ft)denotes the onditional probability that a person born in year y and aged
t will survive until the age of T . From Ito's lemma it follows that p(t, T ) isthe solution of the PDE:(6) ∂

∂t
p(t, T ) + G

∂

∂µ
p(t, T ) +

H2

2

∂2

∂µ2
p(t, T ) − µp(t, T ) = 0,with the ondition p(T, T ) = 1 (see for instane [8, Ch. VIII.5℄). Here G and

H are the appropriate oe�ients in the Ito equations (2), (3) and (4). Forinstane G = aµt and H = σ if β = 0. It is useful to give a simplest formulapossible for (5) and this is done in the followingTheorem 2.1. Let the fore of mortality be de�ned by (2), (3) or (4).Then the probability of survival is as follows:



58 J. Iwanik(i) if β = 0 then
p(t, T ) = eM(t,T )+N(t,T )µt,where

N(t, T ) =
1

a
(1 − ea(T−t)),

M(t, T ) =
σ2

4a3
(2a(T − t) − 4ea(T−t) + e2a(T−t) + 3),(ii) if β = 0.5 then

p(t, T ) = eN(t,T )µt ,where
N(t, T ) =

2(etd − eTd)

(d + a)etd + (d − a)eTd
, d =

√
a2 + 2σ2,(iii) if β = 1 then

p(t, T ) =
rp

π2

∞\
0

sin(2
√

r sinh y)

∞\
0

f(z) sin(yz) dz dy

+
2

Γ (2p)
rpK20(2

√
r),where Kq( ) is the modi�ed Bessel funtion of the seond kind oforder q and

f(x) = x exp
−σ2(4p2 + x2)(T − t)

8

∣∣∣∣Γ
(

i
x

2
− p

)∣∣∣∣
2

cosh
πx

2
,

r =
2µt

σ2
, p =

1

2
− a.Proof. The proof is similar to the orresponding proofs for the Va²i£ekand CIR models.(i) Assume the a�ne struture p(t, T ) = eM(t,T )+N(t,T )µt where M(T, T )

= N(T, T ) = 0. Making use of (6) and separating the terms that depend on
µ and those that do not, we get





∂

∂t
N(t, T ) + aN(t, T ) = 1,

∂

∂t
M(t, T ) +

σ2

2
N(t, T )2 = 0,so that N(t, T ) = 1

a(1 − ea(T−t)) and �nally
M(t, T ) = −σ2

2

\
N(t, T )2 dt + C

=
σ2(T − t)

2a2
− σ2(4ea(T−t) − e2a(T−t) − 3)

4a3
.



Models for stohasti mortality 59(ii) Again assume the a�ne struture as in (i). Making use of (6) yieldsthis time 



∂

∂t
N(t, T ) + aN(t, T ) +

σ2

2
N(t, T )2 = 1,

∂

∂t
M(t, T ) = 0.From the seond equation and the boundary ondition it follows that M(t, T )

= 0. In the �rst equation the transformation
N(t, T ) =

2Ñ(t)′

σ2Ñ(t)leads to the seond-order linear equation
Ñ ′′(t) + aÑ ′(t) − σ2

2
Ñ(t) = 0.Beause a2+2σ2 > 0, we an introdue an auxiliary variable d =

√
a2 + 2σ2.Now the general solution for N(t, T ) is

Ñ(t) = D1e
t(d−a)/2 + D2e

−t(d+a)/2,for onstants D1 and D2 do not depending on t. Hene
N(t, T ) =

D1(d − a)et(d−a)/2 − D2(d + a)e−t(d+a)/2

σ2D1et(d−a)/2 + σ2D2e−t(d+a)/2
.Applying the boundary ondition yields D2 = D1

d−a
d+aeTd so that we havethe expliit formula.(iii) The formal proof will be omitted, sine the same formula an befound in [2, Ch. 3℄ for the interest rates. The geometri Brownian motion asa model for interest rates was originally introdued in [7℄.Some pratial appliations of this theorem an be found in Setion 4.One ould also be interested in the onditional variane of the randomvariable e−

TT
t

µs ds. Sine
Var(e−

TT
t

µs ds | Ft) = E(e−
TT
t

2µs ds | Ft) − (E(e−
TT
t

µs ds | Ft))
2,only the expression E(e−

TT
t

2µs ds | Ft) is of interest in this ase. But basedon Ito's lemma we an say that if µt is de�ned by (1), then 2µt is given by
d(2µt) = (2aµtdt + 0 + 0µ2β

t σ2)dt + 2µβ
t σdB

= 2aµtdt + 2µβ
t σdB, t ∈ [t0, T ].So to give an expliit formula for E(e−

TT
t

2µs ds | Ft) it su�es to reapplyTheorem 2.1 for µt with modi�ed parameters G and H.



60 J. Iwanik2.3.2. Survival probability for many ohorts. Let y = (y0, y1, . . . , yk−1)and m = (m0, m1, . . . , mk−1) be vetor values. Then another point of interestis the formula for the expetation of the linear ombination:
pym(t, T ) = E(m · e−

TT
t

µs ds | Ft)(7)
= E(m0e

−
TT
t

µ
y0
s ds + · · · + mk−1e

−
TT
t

µ
yk−1
s ds | Ft).If the insurer has a portfolio of ∑k−1

i=0 mi pure endowment poliies, where
mi poliy holders were born in year yi, formula (7) will provide the expetednumber of laims from this portfolio at time T . This problem an be solvedusing the results from Theorem 2.1 for every ohort independently.A more interesting ase is if we are interested in the variane of
m · e−

TT
t

µs ds. We have
Var(m · e−

TT
t

µs ds | Ft) =

k−1∑

i=0

k−1∑

j=0

mimj Cov(e−
TT
t

µ
yi
s ds, e−

TT
t

µ
yj
s ds | Ft)(8)

=
k−1∑

i=0

k−1∑

j=0

mimj(E(e−
TT
t

µ
yi
s +µ

yj
s ds | Ft)

− E(e−
TT
t

µ
yi
s ds | Ft)E(e−

TT
t

µ
yj
s ds | Ft)).The only part of (8) that is problemati is E(e−

TT
t

(µ
yi
s +µ

yj
s ) ds | Ft). Sine

µyi
s + µ

yj
s is not an Ito proess any more (unless the ovariane matrix istrivial), we annot apply Theorem 2.1 to alulate this expetation. Hene,in the remainder of this paper the variane of a portfolio will be determinedusing Monte Carlo methods.3. Statistial analysis of demographi data. We examined the lifetables published by The Human Mortality Database (see [10℄) for the oun-tries providing onsistent datasets and su�ient long history, i.e. Austria,Belgium, Bulgaria, Canada, Czeh Republi, Denmark, England & Wales,Finland, Frane, Hungary, Italy, Japan, Latvia, Lithuania, Netherlands, Nor-way, Spain, Sweden, Switzerland and the USA.3.1. Preliminaries. Using these life tables, the mortality intensity wasreomputed from the qx's based on the assumption of the onstant mortal-ity intensity in frational ages. All the data were subjet to the followingpreliminary steps:1. All the data onerning youth (24 or younger) were removed.2. All the data onerning the elderly (76 or older) were removed dueto instabilities aused by the small size of the ohort (lx) and thepossibility of e�ets desribed in [13℄.3. Only ohorts urrently aged 25�75 were onsidered (most reent data).



Models for stohasti mortality 614. Only the most reent 15 or 40 observations for eah ohort (year ofbirth) were of onern.5. If su�iently long data were not available for a ohort, the ohort wasomitted.Finally, two datasets were obtained. The �rst one ontains the mortalityintensity of people urrently aged 39�75 (37 ohorts) in 15 subsequent al-endar years. Hene it is a 15 × 37 matrix for eah ountry. Eah row is oneobservation and eah olumn is one ohort. We have labeled this the �shorthistory data� set.The other dataset (the �long history data�) onsists of 12 ohorts observedin 40 subsequent alendar years. It onerns people urrently aged 64�75. Itis a 40 × 12 matrix for eah ountry.3.2. Extrating the white noise. We will test if the re�ned data �ts thedisretized SDE of the three models proposed in Setion 2.2. Note that theequations (9) and (11) are only Euler-type approximations of (2) and (3).This is due to the fat that we assume the transition probabilities to benormally distributed, whih is not exatly true. However, (9) and (11) anbe used as good approximations of the orresponding ontinuous models.For β = 0 the disretized version of (2), i.e.(9) µi+1 − µi = aµi + σ(Bi+1 − Bi)leads to the following:(10) xi = µi+1 − µi − aµi.For eah i, xi should be normally distributed with mean zero and variane
diag(Σ). We an now test if (xi) for i = t0, t0+1, . . . , T form a (multivariate)Gaussian white noise. To do this, we have to �rst estimate the parameter aby mathing the �rst moment of xi. Now, E(xi) = E(µi+1 − µi − aµi) = 0yields the following straightforward estimator:

a =

∑T−1
i=t0

(µi+1 − µi)
∑T−1

i=t0
µi

.Having a estimated, we further ompute (xi) and perform white-noise tests.For β = 0.5 we use a similar proedure. Hene we test if the disretizedversion of (3), i.e.(11) µi+1 − µi = aµi + σ
√

µi(Bi+1 − Bi),�ts the demographi data. In this model(12) xi =
µi+1 − µi − aµi√

µishould be normally distributed with mean zero and variane diag(Σ). Weestimate the parameter a by mathing the �rst moment of xi analogous



62 J. Iwanikto the previous example. Now, E(xi) = E(µi+1−µi−aµi√
µi

) = 0 leads to thefollowing estimator:
a =

T−1∑

i=t0

µi+1 − µi√
µi

/
T−1∑

i=t0

µi√
µi

.We further ompute (xi) and perform white-noise tests.If β = 1, the disretized version of (4) are tested against the demographidata. The logarithm of the sequene (µi) is taken and di�erentiated. Thisway we get another sequene(13) xi = log µi+1 − log µithat should form a Gaussian white noise. We will test if this is indeed thease.3.3. Hypothesis testing for one-dimensional models. We will performone-dimensional analysis of (xi) de�ned in (10), (12) and (13). For eahountry and for eah ohort the null hypothesis is that the sequene (xi) isa one-dimensional Gaussian white noise.To test normality, we use the one-dimensional Shapiro�Wilk test. To testthe independene of eah sample, a Box�Ljung small sample test is performedfor the auto ovariane funtion with lag 1 (see [14℄). Espeially for the dataof length 15, the results of the Box�Ljung test an be used for orientationpurposes only beause this is an asymptoti test and it is reommended forlarge samples only. Therefore, an additional turning point test was done foreah ohort.Assuming that the null hypothesis is true for eah ohort and that the testfor eah ohort is an independent experiment, the number of passing ohortsfor eah test should follow the binomial model with a 95% probability ofsuess and 5% probability of failure (probability of a type I error). Thenumber of trials equals the number of ohorts examined in eah ountry.For example if there were 12 ohorts examined, the number of rejeted testsshould not exeed 2 (with a 5% signi�ane level). If there were 37, thenumber of rejeted tests should not exeed 4.For the short history data and β = 0 at least one test was not rejetedfor a reasonably large set of ountries. However, only Lithuania passed bothindependene and normality tests. The number of ountries where the testswere not rejeted may seem small, but note that our hypothesis is that all 37ohorts follow the model. In the rejeted ountries, only some of the ohortsdo not.We an see that the model for β = 0.5 an be applied to the short historydata of Hungary, Latvia and Lithuania. This is a reasonably large set and itmakes this model the best of all three onsidered.



Models for stohasti mortality 63We an see that the geometri Brownian model (β = 1) an be appliedto the Hungarian and Lithuanian short history data. This model is alsoappliable for not all, but for most ohorts in the short history data for eahountry.For the long history data the model with β = 0 or β = 1 annot beapplied to any ountry as a model for all generations. However, it still �ts afair fration of generations in all these ountries.The model with β = 0.5 an be �tted to all the ohorts in two ountries,Hungary and Latvia. In addition it still �ts half the generations in all otherountries as well.The results may seem disappointing at �rst, but it is important to re-member that we were testing the hypothesis that all 37 or all 12 ohortsexamined follow the three models. It is possible that in some ountries oneor two ohorts behave in a di�erent way. This will ause that the hypothesisis rejeted but it does not mean that the models annot be used for some oreven most of the ohorts in those ountries.3.4. Hypothesis testing for multi-dimensional models. After a one-dimen-sional introdution, it is time to test the proper multi-dimensional model. Wewant to hek if the vetor sequene (xi) de�ned for our three models formsa multivariate Gaussian white noise. Most multivariate tests are designedfor samples of large sizes and low dimensions. In our ase dimension is thenumber of ohorts in eah ountry examined. Therefore, we will restrit our37-dimensional and 12-dimensional data to three dimensions only. We willexamine the ohorts that are urrently 70, 71 and 72 years old. We willrestrit ourselves to the long history data beause the multivariate tests forthe short data (of length 15) would not make muh sense.If xi = (x1
i , x

2
i , . . . , x

k
i ), the matrix auto ovariane funtion of the series

(xi) is de�ned by Γ (h) = (γij), where
γij(h) = E((xi

t − E(xi
t))(x

j
t−h − E(xj

t−h))).Two things have to be tested to deide if (xi) forms a white noise: inde-pendene and normality. We will test the multivariate normality using themultivariate Shapiro�Wilk test (see e.g. [6℄, [19℄). For independene we willtest the null hypothesis that the auto ovariane funtion Γ (h) is zero for
h = 1, . . . , [n/4], where n is the size of the sample. To do so, the portman-teau χ2 ross-orrelation test is alulated (see [14, Ch. 4.4℄). Beause oflittle power of this test for small samples, [14℄ suggests an adjustment forshort data. So, additionally, the small-sample χ2 test is also alulated andits p-values are summarized.The Shapiro�Wilk test and the small-sample portmanteau χ2 test showthat the β = 0 model seems to �t Japan only. The β = 0.5 model, however,



64 J. Iwanikdoes a better job and an be applied to Belgium, Bulgaria, Czeh Repub-li, Italy, Japan and Switzerland. If β = 1, the model �ts Austria and theNetherlands.The p-values of the portmanteau test suggest that in some ases theresiduals do not form a white noise but do form some self-dependent se-quene, maybe an autoregressive time series. However, the results provethat all three models are worth onsidering. In general, for almost 50% ofthe ountries examined, at least one of the multivariate models onsidered�ts.3.5. Correlation between ohorts in multi-dimensional models. We willontinue with only those ountries where a model was suessfully �tted.We will try to determine if a simple form of the orrelation matrix betweenthe inrements of the Brownian motions driving two ohorts i and j anbe assumed. As already disussed, we would expet this matrix to havenon-negative values only. We also expet that values losest to the matrix'sdiagonal are higher. In our three-dimensional ase we will test a simple hy-pothesis:
Cor(xi

t, x
j
t) =





1 for |i − j| = 0,

0.3 for |i − j| = 1,

0 for |i − j| = 2.

(14)
Asterisks in Table 1 denote those ountries where all three hypothesesfrom (14) hold. We an see that e.g. for β = 0.5, the hypotheses were aeptedfor all the ountries exept Italy and Japan.This result, together with the ones desribed in previous subsetions, pro-vides a simple and transparent framework for modeling stohasti mortality.Randomness of ohorts is based on a multivariate Gaussian distribution andthere is also a simple form of the orrelation matrix between the ohorts.

Table 1. Three-dimensional model: orrelation tests
β = 0 β = 0.5 β = 1Austria * * *Belgium *Bulgaria * *Czeh Rep. * *ItalyJapanNetherlands *Switzerland *



Models for stohasti mortality 654. Appliations. In this setion we will provide numerial examples ofhow the systemati mortality risk models an be applied in pratie.4.1. Evaluating Theorem 2.1. First, we review the expliit formula for
p(t, T ) given by (2). We numerially evaluate the formula based on parame-ters estimated from the 40-year-long Austrian data, the same as used in Se-tion 3. The ohort of the 70-year-olds is used. Using the estimation methodgiven in the previous setion for β = 0, we ome up with a = 0.06637 and
σ = 0.00056.By Theorem 2.1, we use the formula p(t, T ) = eM(t,T )+N(t,T )µt , where
N(t, T ) =

1

a
(1−ea(T−t)), M(t, T ) =

σ2

4a3
(2a(T−t)−4ea(T−t)+e2a(T−t)+3)for T ∈ [t, t + 5]. Calulation based on these simple equations is omparedwith the numbers obtained from 40 thousand Monte Carlo simulations. Thisis summarized in Figure 1.
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Fig. 1. The top diagram shows the exat probability of survival (the light line in the middleof the hart) and 10 possible realizations of the stohasti proess (blak surroundingpoints). The bottom diagram shows the exat probability of survival obtained from theanalytial formula vs. the probability based on 40 thousand Monte Carlo simulations(blak dots). The identity line is also inluded in the graph.Both graphs show that the formula given by the theorem is on�rmedby the Monte Carlo simulations. The �rst graph shows the exat probability



66 J. Iwanikof survival and 10 possible realizations of the stohasti proess e−
TT
0

µs ds.The other plot shows the expeted value of this proess obtained from thesimulations vs. the expeted value obtained from the analytial formula. Thesixty points (denoting the probabilities for di�erent T ) lay exatly on theline y = x, as expeted. The simpliity of the formula given by Theorem 2.1is obvious and it makes the expliit formula advantageous over the time-onsuming proess of multiple Monte Carlo simulations.4.2. Pure endowment portfolio. Consider an insurer that at time 0 sold
3n pure endowment ontrats to people of age 70, 71 and 72. Assume that theontrats were equally distributed among the ages, i.e. eah of the three agegroups onsists of n people. Using the notation from the previous subsetion,
m = (n, n, n). In addition, eah ontrat is supposed to pay 1/n if thepoliyholder is still alive at time T . We also assume that n is large, so thatonly the systemati risk is an issue for the insurer.The atuary responsible for the pure endowment produt will typiallybe interested in estimating the value pym(0, T ) as de�ned in (7). Most prob-ably, he will also be interested in the 95% on�dene interval for the value
E(m · e−

TT
0

µs ds | F0).We will model the mortality of this insurer's lients using the modelde�ned by (11), so here β = 0.5. The parameter a and varianes for individualohorts will be estimated from the Austrian data, used in Setion 3. The 40-year-long dataset will be used for the estimation. We examine two separatesenarios and then ompare the results. First, we assume that the threeohorts in question are desribed by three independent stohasti proesses.In the seond senario, we assume that the orrelation matrix is not anidentity matrix.Figure 2 presents the results of the analysis where the quantile lines werealulated with the Monte Carlo methods based on 40 thousand simulationswith variane redution tehniques. Of ourse the value of p(0, T ) for T = 0is three and it falls with time. What is essential is that for T = 3 the expetedvalue of laims is 2.11 and the 95% on�dene interval is (2.05, 2.17) so thelevel of unertainty is remarkable. A onservative atuary would typiallywant to set an additional reserve to over the risk introdued by the relativelywide on�dene intervals.The 95% on�dene interval gets even wider if the mortalities of theohorts are related. If we assume the orrelation matrix to have the form
(15) 


1 2/3 1/3

2/3 1 2/3

1/3 2/3 1


 ,

the interval beomes (2.03, 2.20) so it is over 40% wider than in the unor-
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Fig. 2. The solid line is p(0, T ) for T ∈ [0, 10]. The dashed lines are the 95% on�deneintervals if the ohorts are independent, and the dependent ase is marked with dottedlinesrelated ase. Of ourse, the higher the orrelation of mortalities between theohorts, the larger the amount of the systemati mortality risk the ompanyfaes. If the ohorts are strongly orrelated, the insurer annot diversify sys-temati risk by selling insurane to people of di�erent ages. Sine there aregood reasons to believe that the ohorts' mortalities are in fat orrelated(see Setion 3.5), we onlude that the systemati risk embedded in the pureendowment insurane may be signi�ant.4.3. Mortality options. In the stohasti mortality environment, bothmortality inrease and derease an be dangerous for a ompany that has anunbalaned, large portfolio of life insuranes. In the �rst situation (mortalityinreases) the portfolio of life insuranes with the bene�t payable at thetime of death will ause unexpeted losses. In the seond, the portfolio ofpure endowments will ause high losses. The problem with this �systemati�mortality risk is that it annot be handled in the usual way�by inreasingthe number of poliies sold.If T−tpt denotes a stohasti proess
T−tpt = e−

TT
t

µu duthen the (atuarial) prie of the underlying T−tpt at time s ∈ [t, T ] based onthe equivalene rule under the physial probability measure P is
S(s) = e−r(T−s)EP (T−tpt | Fs) = e−r(T−s)

s−tptE
P (T−sps | Fs).(16)
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Fig. 3. Sample trajetories of the underlying mortality instrument S(s) and the mortalityall option C(s) for T = 61 and b = 0.03The easiest way to protet against the systemati mortality risk is tobuy an European all option that pays (S(T ) − K)+ at time T . Figure 3shows sample trajetories of both the underlying asset and the orrespondingtrajetory of the option. In addition both diagrams show the 0.05 and 0.95quantile lines. The interest rate r was set to zero.In this example we will use a modi�ation of the model de�ned in (4). Let
Yt be the geometri Brownian motion. De�ne a martingale Yt with expetedvalue one,(17) Yt =

Yt

E(Yt)
= Yte

−ta,and set µt = (A + BeCt)Yt. It is easy to hek that µt satis�es the followingIto stohasti di�erential equation:
dµt =

(
µt

(
BCetC

A + BetC
− a

)
+ a

A + BetC

eta

)
dt + b

A + BetC

eta
dBt.Now, sine the disounted prie of the underlying asset S(s) is an Ito proessand an Fs-martingale, there is no arbitrage on the market and there existsa unique repliation strategy for the derivatives. So the fair market prie ofthe options exists and the prie of the all option is

C(s) = e−r(T−s)EQ(S(T ) − K)+ = e−r(T−s)EP (S(T ) − K)+.To prie the mortality all option, we will onentrate on the probabilitydistribution of (T−tpt −K)+ or simply the probability distribution of T−tpt:
P (T−tpt < x | Fs) = P

(
T−sps <

x

s−tpt

∣∣∣∣Fs

)

= P

(
e−

TT
s

µu du <
x

s−tpt

∣∣∣∣Fs

)
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= P

( T\
s

Yuµue−ua du > − ln
x

s−tpt

∣∣∣∣Fs

)

= P

( T\
s

Yu−sµue−(u−s)a du >
eus

Ys
ln

s−tpt

x

∣∣∣∣Fs

)

= P

(
A(s, T ) >

eus

Ys
ln

s−tpt

x

∣∣∣∣Fs

)
,where(18) A(s, T ) =

T−s\
0

Y ′
ue−uaµu+s duand Y ′

u is an independent opy of Yu. The problem is that suh an integralusually has an unknown distribution (in partiular it is not log-normallydistributed). The methods used in this subsetion to bypass this problemare similar to the methods used in the average Asian or weighted averageAsian option priing. A omprehensive study of Asian options and the waysto prie them an be found, for example, in [16℄, [9℄.The Levy approximation was proposed in [12℄. It was originally designedfor priing Asian average options. Here we will use a modi�ation of thismethod that an be applied both to the weighted average options and to ourpurposes.The fundamental idea is to approximate the distribution of A(s, T ) givenin (18) with the log-normal distribution. Hene we assume that lnA(s, T ) isnormally distributed with mean α(s, T ) and variane β(s, T )2 and then usethese parameters in Proposition 4.2. This approximation was proved to beaurate at least for the standard average options. Comparing the �rst twomoments of the log-normal distribution with the �rst two moments of thereal distribution of A(s, T ), we obtain
α(s, T ) = 2 lnE(A(s, T )) − lnE(A(s, T )2)

2
,

β(s, T )2 = lnE(A(s, T )2) − 2 lnE(A(s, T )).It remains to give the formulas for E(A(s, T )) and E(A(s, T )2) and thisis done in the followingLemma 4.1. For A(s, T ) de�ned in (18),
E(A(s, T )) =

T−s\
0

µu+s du,

E(A(s, T )2) =

T−s\
0

T−s\
0

µu+sµv+se
(u∧v)b2 dv du.



70 J. IwanikProof. Reall that
A(s, T ) =

T−s\
0

µu+se
−uaYu du.The equality for the �rst moment is apparent. As for the seond moment of

A(s, T ), if n < m, we have
E(YnYm) = E(Y 2

n )E(Ym/Yn) = E(Y 2
n )E(Ym−n) = e2na+nb2e(m−n)a

= e(n+m)a+nb2,otherwise
E(YnYm) = e(n+m)a+mb2.So

E(A(s, T )2) =

T−s\
0

T−s\
0

µu+sµv+se
−(u+v)aE(YuYv) dv du

=

T−s\
0

T−u\
0

µu+sµv+se
−(u+v)ae(u+v)a+ub2 dv du

+

T−s\
0

T−s\
0

µu+sµv+se
−(u+v)ae(u+v)a+vb2 dv du

=

T−s\
0

T−s\
0

µu+sµv+se
(u∧v)b2 dv du.

Now, we an formulateProposition 4.2. Assume that A(s, T ) is log-normally distributed. Thenthe prie at time s of a mortality all option issued at t and maturing at Twith strike prie K an be expressed by
e−r(T−s)EP ((T−tp

∗
t − K)+ | Fs)

=





e−r(T−s)
s−tp∗t\

K

Φ

(
ln

(
eas

Ys
ln s−tp∗t

u

)
− α(s)

β(s)

)
du if K < s−tp

∗
t ,

0 otherwise.Proof. If s−tp
∗
t ≤ K then the assertion is obvious. For K < s−tp

∗
t we have

EP ((T−tp
∗
t − K)+ | Fs) = EP ((s−tp

∗
t T−sp

∗
s − K)+ | Fs)

=

∞\
K

P

(
e−

TT
s

µ∗

v dv >
u

s−tp∗t

∣∣∣∣Fs

)
du
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=

s−tp∗t\
K

P

(
e−

TT
s

µ∗

v dv >
u

s−tp∗t

∣∣∣∣Fs

)
du

=

s−tp∗t\
K

P

(
A(s, T ) <

eas

Ys
ln

s−tp
∗
t

u

∣∣∣∣Fs

)
du

=

s−tp∗t\
K

P

(
lnA(s, T ) < ln

(
eas

Ys
ln

s−tp
∗
t

u

) ∣∣∣∣Fs

)
du

≈
s−tp∗t\

K

Φ

(
ln

(
eas

Ys
ln s−tp∗t

u

)
− α(s)

β(s)

)
du.Note that the prie of the mortality all option is always less than one.The auray of this approximation was heked against the result ob-tained with the Monte Carlo method for di�erent volatility parameters b.The parameters were estimated from the Polish mortality table for men forthe year 2003 (see [3℄), where A = −2.4366 · 10−5, B = 7.5436 · 10−5 and

C = 0.0794. Here a = 0. We prie the options at issue time, i.e. t = s, andthey mature at T = 61. For t = s the strike prie is K(t) = E(T−tpt) and
Yt = 1. The interest rate r is zero. The exat values and the ratio Levy price

exact priceare summarized in Table 2. Figure 4 shows the prie surfaes and the om-parison between the exat Monte Carlo prie and the approximate one.Table 2. Exatness of the Levy-like approximation. m: Monte Carlo results, l: Levy-likeapproximation, r: ratio = l/m

t = 26 t = 36 t = 46 t = 56l m r l m r l m r l m r
b = 0.1 0.016 0.017 0.983 0.012 0.012 0.965 0.007 0.007 0.922 0.001 0.002 0.704
b = 0.4 0.043 0.037 1.144 0.039 0.035 1.114 0.025 0.025 1.026 0.005 0.007 0.730
b = 0.7 0.027 0.021 1.325 0.035 0.027 1.319 0.034 0.028 1.214 0.009 0.011 0.803
b = 1.1 0.010 0.007 1.393 0.018 0.012 1.433 0.027 0.019 1.398 0.013 0.140 0.932As an be expeted, the option prie falls with t and grows with b, at leastfor small b. Suh properties are known from the traditional options on the�nanial market, pried with the Blak�Sholes formula. The option priefalls again for b > 0.5, whih may be surprising. This is beause for large b theprie of a single underlying instrument falls and hene so does the derivative'sprie. The approximation seems to be su�iently exat in the ritial regionswhere the option prie reahes its maximum. The approximation does not�t well for very large volatility (overestimates) and for very short time toexpiration (underestimates). However, in the latter ase, the exat prie ofthe option is lose to zero so the systemati risk an anyway be negleted.Moreover, even in those ases the Levy-like approximation an be used as a�rst order approximation for the mortality all option prie.
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Monte Carlo Levy-like
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Ratio Levy/Monte Carlo Di�erene Levy−Monte CarloFig. 4. Prie of the mortality all option for di�erent volatilities and issue times. Exat(Monte Carlo) results, Levy-like approximations and their omparison5. Conlusion. We have proposed a few stohasti mortality modelsand proved them to �t the historial data relatively well. We have alsoshown how widely these models an be applied in life insurane. Mortalityderivatives are good examples: they an help fully protet against systematimortality risk. This way insurers an prie their produt not worrying aboutthe future mortality parameters and do business on the basis of determin-isti mortality models. Other appliations inlude more reliable mortalityprojetions and on�dene intervals for future payments from a portfolio ofrisk in life insurane.
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