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A RECURSIVE ROBUST BAYESIAN ESTIMATION

IN PARTIALLY OBSERVED FINANCIAL MARKET

Abstract. I propose a nonlinear Bayesian methodology to estimate the
latent states which are partially observed in financial market. The distin-
guishable character of my methodology is that the recursive Bayesian esti-
mation can be represented by some deterministic partial differential equa-
tion (PDE) (or evolution equation in the general case) parameterized by
the underlying observation path. Unlike the traditional stochastic filtering
equation, this dynamical representation is continuously dependent on the
underlying observation path and thus it is robust to the modeling errors.
Moreover, its advantages in financial econometrics are also discussed.

1. Introduction. The cutting-edge works of Merton (1969, 1971) and
Black and Scholes (1973) open some frontiers of stochastic finance which
models the financial states by stochastic processes such as Markov processes,
or more specially, the Itô diffusion processes. Among them, the most canon-
ical example is the Black–Scholes formula where the stock price is assumed
to be some geometric Brownian motion (GBM). Through judicious choices
of its parameters, this model provides enough flexibility to accommodate
a wide range of dynamics of financial variables we are interested in. The
motivation of my work stems from the real-world phenomenon that in many
applications, the financial states of interest are often unobservable directly
from the market and corrupted with some noise. Such states bear the name
of “latent states”. For this reason, the parametric specification of the un-
derlying model is just the preliminary step while in the next step, it is of
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more importance to provide a reliable estimation of these latent variables,
which is the main objective of filtering theory.

The filtering for discrete-time observed diffusion processes has been ex-
tensively studied in a large number of papers, including Ionides (2004) for
the general case, and Nielsen and Vestergaard (2000), Durham and Gallant
(2002) and Pitt (2002) for financial applications in stochastic volatility (SV).

I consider an important problem which has not been discussed before: the
nonlinear robust filtering of a latent variable with continuous-time observa-
tions in financial market. In this paper, I develop an efficient PDE/evolution-
based continuously dependent estimator for the latent states which bears the
name of robust filter in filtering theory. My methodology offers a large num-
ber of theoretical and computational advantages which will be discussed
later in detail.

The academic contributions of my work are two-fold, in the fields of
econometrics and stochastic analysis: (1) The linear robust filter is already
widely applied in electronic engineering even though the nonlinear robust
filter is still under development. On the other hand, to the best of my know-
ledge, neither the linear nor nonlinear robust filter has been applied to fi-
nance research before. Therefore, this paper is the first one to discuss the
robust filtering methodology in finance research. For this reason, this paper
has more contributions to financial econometrics. (2) Besides its econometric
content, this paper also contributes to stochastic filtering theory. A path-
dependent probability change approach is introduced which explicitly char-
acterizes the distribution change of the underlying signal process and can
be applied in the more general martingale problem (MP) framework.

The rest of this paper is organized as follows: In Section 2, I provide the
basic setup and introduce the estimation problem with incomplete informa-
tion. Section 3 is devoted to deriving the continuously dependent estimator
with the help of a gauge transform and path-dependent probability change.
Some implications of my approach are summarized in Section 4. Section 5
contains the concluding remarks and potential extensions.

2. The basic setup. Without loss of generality, we consider a finite
time interval [0, T ] for given T > 0. Let (Ω,F , P, {Ft}t≥0) be a filtered
complete probability space on which all stochastic processes are defined and
adapted to {Ft}t≥0. Let N denote the collection of null sets in (Ω,F , P).
For any stochastic process K, define its augmented natural filtration as

FK
t , σ{Ku : 0 ≤ u ≤ t} ∨ N .

2.1. General incomplete information model. In stochastic finance, fil-
tration is used to represent information progressively released to the public
market. We use the term “incomplete information” to represent the fact that
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the information available to public market is a sub-filtration of {Ft}t≥0.

Following Duffie and Lando (2005), the financial signal we consider is an
n-dimensional latent variable V = (V1, . . . , Vn) which is characterized by

dVt = α(t, Vt)dt + σ(t, Vt)dWt,(2.1)

α = α(t, x) : [0, T ] × R
n → R

n,(2.2)

σ = σ(t, x) : [0, T ] × R
n → R

n×d.(2.3)

Here, Wt is a standard, d-dimensional Brownian motion.

Remark 2.1. The deterministic trend of V is modeled by its drift func-
tion α while its randomness variance is captured by the diffusion function σ.

For sake of brevity and simplicity, throughout this paper, we only focus
on the following one-dimensional and time-invariant case:

(2.4) dVt = α(Vt)dt + σ(Vt)dWt.

All results can be generalized to the general multi-dimensional and time-
varying case (2.1) with parallel arguments. Moreover, to ensure the existence
and uniqueness of its strong solution, we invoke the following regularity
conditions.

A1. α and σ satisfy the Lipschitz and linear growth conditions, that is,
there exists some fixed constant K > 0 such that , for all x, y ∈ R,

(2.5) α2(x) + σ2(x) ≤ K(1 + x2),

(2.6) |σ(x1) − σ(x2)| + |α(x1) − α(x2)| ≤ K|x1 − x2|.

It is well known that V in (2.4) is the unique solution of the martingale
problem proposed by Stroock and Varadhan (1979):

Definition 2.1. Let D(A) = C2
0 (R), the space of twice continuously

differentiable functions with compact support, and

(2.7) Af(x) =
1

2
σ2(x)

d2f(x)

dx2
+ α(x)

df(x)

dx
.

Then for f ∈ D(A),

Mf (t) = f(Vt) −
t\
0

Af(Vs) ds

is an FV
t -martingale.

The latent variable V cannot be observed directly but is corrupted with
a Gaussian white noise. Therefore, the cumulative observation up to t is

(2.8) Yt =

t\
0

h(Vs) ds + Bt.
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Here, the observation noise B is a standard Brownian motion independent
of V and the sensor function h = h(x) is some known Borel measurable
function. To derive the continuously dependent estimator, we need further
assume

A2. h ∈ D(A).

Remark 2.2. Note that A2 implies the finite energy condition in stochas-
tic filtering theory:

E

T\
0

|h(Vt)|
2 dt < ∞.

The combined relations (2.4), (2.8) form a general incomplete informa-
tion model. Similar to the work of Duffie and Lando (2005), I do not consider
the insider-trading problem and the related asymmetric information in this
paper.

Remark 2.3. Consider the incomplete information model with unknown
parameter vector θ,

(2.9) dVt = α(Vt, θ)dt + σ(Vt, θ)dWt.

It can be shown easily that our approach still works by incorporating the
parameter θ into the augmented state space (θ, V ). The common example is
the SV model in which case θ itself can also be described by some diffusion
process.

For ease of notation, we define the Lie bracket for the operator A:

Definition 2.2. For f1, f2 ∈ D(A), the Lie bracket for A is defined as

(2.10) [f1, f2] , Af1f2 − f1Af2 − f2Af1.

For f1, f2 ∈ D(A), the cross variation 〈Mf1 , Mf2〉t is well defined and we
have

Proposition 2.1. For f1, f2 ∈ D(A),

(2.11) 〈Mf1 , Mf2〉t =

t\
0

[f1, f2](Vs) ds.

In particular , if A2 holds true, then

(2.12) 〈Mh, Mh〉t =

t\
0

[h, h](Vs) ds.

2.2. Incomplete information in credit spreads. The first example of in-
complete information again comes from Duffie and Lando (2005) where the
impact of accounting observation noise on the term structure of bond’s credit
spreads is investigated. In their model, the public market’s investors are not
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fully informed of the status of the firm with bond issuance. In other words,
the investor cannot observe the firm’s asset value V directly. Instead, the
cumulative observation Yt is

(2.13) Yt =

t\
0

lnVs ds + Bt.

That is just the case

h(x) = lnx for x > 0

of the incomplete information model (2.4), (2.8). The observation model
discussed by Nielsen and Vestergaard (2000) also fits into our framework
(2.4), (2.8) when setting the sensor function to be

h(x) = x.

Generally, when h(x) = Cx for some constant C, our problem reduces to
the well-known Kalman–Bucy filter with the state equation

(2.14) dVt = αVtdt + dWt

and the Gaussian observation

(2.15) dYt = CVtdt + dBt.

2.3. Incomplete information in portfolio allocation. As mentioned in the
introduction, besides the asset value, our specification (2.4) is still general
enough to cover a large set of other financial quantities such as the exchange
rate, equity return rate or interest rate. Now we turn to another motivating
example of an incomplete information model (2.4), (2.8): estimation of the
equity return rate in an optimal portfolio allocation problem.

There are many research papers on optimal portfolio choice and mar-
ket equilibrium with incomplete information, including Detemple (1986),
Dothan and Feldman (1986) and Back (2003). In those works, the asset
price process satisfies

(2.16)
dS

S
= µtdt + σdWt

and the instantaneous equity return rate µt satisfies

(2.17) dµt = φ1(θ − µt)dt + φ2dBt,

where W and B are independent Brownian motions. In contrast to the
general setting of stochastic volatility, here we suppose that the investor
can observe S and the volatility σ is some known constant. Instead, he
cannot observe µ directly, which acts as the latent variable here. Based on
this, the filtration available to the investor is FS

t and his primary target is
to extract some estimation of the return rate from the observation S. Now
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introduce

Yt =
1

σ
lnSt.

Then from the Itô formula, we have

(2.18) dYt =

[
µt

σ
−

σ

2

]
dt + dWt.

Hence, the model (2.17), (2.18) is a special case of our general model (2.4),
(2.8) if we set

h(x) =
x

σ
−

σ

2
.

3. Continuous-dependence estimation with incomplete informa-

tion. We now consider the problem of estimating the latent states in the
incomplete information model (2.4), (2.8). This problem belongs to filtering
theory. In this case, the information reaching the market is {FY

t }t≥0 and
the minimal square variance estimation of V is equivalent to the conditional
distribution

(3.1) πt(·) , P[Vt ∈ · | FY
t ],

or the conditional expectation

(3.2) πt(f) , E[f(Vt) | F
Y
t ]

for a rich enough class of test functions f .

3.1. Stochastic filtering equation. One of the main results of stochastic
filtering theory, due to Fujisaki, Kallianpur and Kunita (1972), is the fol-
lowing Fujisaki–Kallianpur–Kunita (FKK) equation: for f ∈ D(A), πt(f)
satisfies

(3.3) dπt(f) = πt(Af)dt + [πt(hf) − πt(h)πt(f)][dYt − πt(h)dt].

The FKK equation links the optimal filter πt with some measure-valued
stochastic partial differential equation driven by the observation process.
However, the structure of the FKK equation is too complicated to apply,
both for the purposes of numerical computation and theoretical analysis.
One of the undesirable features is its nonlinearity with respect to f .

On the other hand, an equivalent but much more tractable equation is de-
veloped which bears the name of Duncan–Mortensen–Zakai (DMZ) equation
(see Zakai (1969)). The DMZ equation is a linear measure-valued stochastic
filtering equation and characterizes the dynamics of the unnormalized con-
ditional distribution σt which links to πt through the Kallianpur–Striebel–
Bayes formula. From A2 and (2.8), we know that

(3.4) Λt , exp

(
−

t\
0

h(Vs) dYs +
1

2

t\
0

|h(Vs)|
2 ds

)



Bayesian estimation in partially observed market 243

is an {Ft}t≥0 martingale with Ft , σ{Vs, Ys : 0 ≤ s ≤ t} ∨ N . Therefore,

dP

dP

∣∣∣∣
Ft

= (Λt)
−1

defines a probability measure P which is mutually absolutely continuous
with respect to P and as a standard result in filtering theory, we get

Proposition 3.1. Suppose A2 and (2.8) are true. Then under P, Y is

a Brownian motion independent of V and the law of V keeps unchanged.

Let B(R) denote the set of all bounded and measurable functions. Then
for f ∈ B(R), the Kallianpur–Striebel–Bayes formula links πt to the unnor-
malized filter σt by

(3.5) πt(f) =
σt(f)

σt(1)
,

where

(3.6) σt(f) , E(f(Xt)Λ
−1
t | FY

t ).

Note that by (3.3), (3.5) and

(3.7) σt(1) = σ0(1) +

t\
0

σs(h) dYs,

from the Itô formula, it follows that the unnormalized filter is characterized
by the following DMZ equation: for f ∈ D(A),

(3.8) σt(f) = σ0(f) +

t\
0

σs(Af) ds +

t\
0

σs(hf) dYs.

Moreover, if we assume that the unnormalized conditional distribution σt

admits a density process qt, then it turns out to satisfy the following Kushner
equation (Kushner (1964, 1967)):

(3.9) dqt(x) = A∗qt(x)dt + h(x)qt(x)dYt,

where

A∗f(x) ,
1

2

∂

∂x

(
σ2(x)

∂f(x)

∂x

)
−

∂

∂x
(α(x)f(x))

is the Fokker–Planck operator associated with A in (2.7).

Before making the filter computation, it is important to make sure the
FKK and DMZ equations admit a unique solution. The interested readers
may refer to Rozovskii (1991) for the results on uniqueness.

It is remarkable that the Zakai and Kushner equations are superior to the
FKK equation in that they are linear with respect to f . However, they still
require some stochastic integrations to be performed. As explained by Clark
(1978, 2005), these stochastic filtering equations are actually impractical to
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implement in real life. This is because the stochastic integrations involved
are not consistent with modeling errors which seem to be unavoidable and
ubiquitous. Meanwhile, the above filtering equations are not continuously
dependent on the underlying observation process. Empirical results con-
ducted in engineering show that the continuously dependent filter does in-
deed perform well in real data problems. This is especially the case when
the assumption of Brownian observation noise is unrealistic. We will present
a detailed discussion of this point in a later section.

As explained above, to estimate the latent variables with incomplete in-
formation, we need to derive some recursive representation of the filter πt

which should be continuously dependent on the underlying observation and
avoid stochastic integration. We solved this problem in two different but
related directions: (1) The PDE filtering equation corresponding to the
Kushner equation. (2) The evolution filtering equation corresponding to the
DMZ equation. The filters derived along these two directions are essentially
equivalent while the latter is more general as it holds true for the general
martingale problem setup.

3.2. Filtering equation based on PDE. Let us hereafter denote by y =
{yt, 0 ≤ t ≤ T} an arbitrary but fixed observation trajectory. In other words,
yt = Y (t, ω) for all t ≥ 0 and some ω ∈ Ω. As the first direction, we will
derive some PDE parameterized by the observation path using the elegant
tools originally due to Krylov and Rozovskii (1981) as well as Pardoux (1979)
based on the following “gauge transform” to density process.

Definition 3.1. The gauge transform of qt(x) in (3.9) is defined as

(3.10) q̂t(x) , qt(x) · exp(κt(x)),

where
κt(x) , e−h(x)Yt .

Remark 3.1. q̂t(x) and qt(x) are equivalent as we can recover qt(x) once
q̂t(x) is given. The converse also holds true.

The main result of this part is

Theorem 3.1. Assume A1, A2 and suppose α, σ are continuously dif-

ferentiable. Then the gauge transform q̂t(x) satisfies the following linear

second-order partial differential equation:

∂q̂t(x)

∂t
=

1

2
σ2(x)

∂2

∂x2
q̂t(x) + Φ1(t, x, Yt)

∂

∂x
q̂t(x) + Φ2(t, x, Yt)q̂t(x),(3.11)

where

(3.12) Φ1(t, x, y) , yσ2(x)h′(x) + σ(x)σ′(x) − α(x),
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Φ2(t, x, y) ,
1

2
σ2(x)(h′′(x)y + (h′(x)y)2)(3.13)

+ yh′(x)(σ(x)σ′(x) − α(x)) −

(
α′(x) +

1

2
h2(x)

)
.

Moreover , q̂t(x) is continuously dependent on Yt.

Proof. First, κt satisfies the equation

dκt(x) = κt(x)

(
−h(x)dYt +

1

2
h2(x)dt

)
.

Integration by parts yields

dq̂t(x) = qt(x)dκt(x) + κt(x)dqt(x) + d〈q(x), κ(x)〉t(3.14)

= qt(x)κt(x)

(
−h(x)dYt +

1

2
h2(x)dt

)

+ κt(x)(h(x)qt(x)dYt + A∗qt(x)dt)

+ 〈h(x)qt(x)dYt, κt(−h(x))dYt〉

=
1

2
qt(x)κt(x)h2(x)dt + κt(x)A∗qt(x)dt − qt(x)κt(x)h2(x)dt

= κt(x)A∗qt(x)dt −
1

2
qt(x)κt(x)h2(x)dt

= κt(x)A∗

(
q̂t(x)

κt(x)

)
dt −

1

2
q̂t(x)h2(x)dt.

That is,

∂q̂t(x)

∂t
= κt(x)A∗

(
q̂t(x)

κt(x)

)
−

1

2
q̂t(x)h2(x).(3.15)

Rearranging the resulting terms, we get the representation of Φ1 and Φ2 im-
mediately. Since α, σ are continuously differentiable, the solution of (3.11)–
(3.13) is continuously dependent on its coefficients. This implies the contin-
uous dependence on the observations. This completes the proof.

An important example will be the case when h(x) = x and α(x) = αx,
σ(x) = σx as in Nielsen and Vestergaard (2000). In this case, we have

Φ1(t, x, y) , yσ2x2 + σ2x − αx,(3.16)

Φ2(t, x, y) ,
1

2
σ2x2y2 + y[σ2x − αx] −

(
α +

1

2
x2

)
.(3.17)

3.3. Filtering equation based on an evolution equation. As another di-
rection, we now derive some evolution equation parameterized by the obser-
vation path yt. This evolution equation is another continuously dependent
representation of the optimal filter with respect to the latent variables. My
proof relies on the path-dependent probability change and the following
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“gauge transform” for σt(f). The papers of Davis (1980, 1981) discuss the
semigroup approach to nonlinear robust filter.

Definition 3.2. For f ∈ B(R), the gauge transform of V is defined as

(3.18) νt(f) , E[f(Vt)Λ
−1
t exp(−Yth(Vt)) | F

Y
t ]

and it is equivalent to σt because

(3.19) νt(f) = σt(f exp(−Yth)) and σt(f) = νt(f exp(Yth)).

The main result of this part is

Theorem 3.2. Assume A1 and A2 hold true. Then νt(f) satisfies the

evolution equation

(3.20)
d

dt
νt(f) = νt(Â

yf) + νt

(
f

{
−YtAh −

1

2
h2 +

Y 2
t

2
[h, h]

})

for all f ∈ D(Ây
t ) = D(A) where Â

y
t f = Af − Yt[h, f ] and A is defined

in (2.7).

To prove it, we need the following preliminary results.

Proposition 3.2. For a given observation path yt,

νt(f) = E[f(Vt)A
y
t Ξt],

where

Ay
t , exp

(
−

t\
0

ys dMh
s −

t\
0

y2
s

2
[h, h](Vs) ds

)
,(3.21)

Ξt , exp

(t\
0

{
−ysAh(Vs) −

1

2
h2(Vs) +

y2
s

2
[h, h](Vs)

}
ds

)
.(3.22)

Proof. From the independence of B, V and integration by parts, we have

(3.23)

t\
0

h(Vs) dYs = Yth(Vt) −
t\
0

Ys dh(Vs).

It follows that

Λ−1
t = exp

(t\
0

h(Vs) dYs −
1

2

t\
0

h2(Vs) ds

)

= exp

(
Yth(Vt) −

t\
0

Ys dh(Vs) −
1

2

t\
0

h2(Vs) ds

)
.

Consequently,

(3.24) νt(f) = E

[
f(Vt) exp

(
−

t\
0

Ys dh(Vs) −
1

2

t\
0

h2(Vs) ds

) ∣∣∣∣F
Y
t

]
.
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Therefore, for a given observation path yt,

(3.25) νt(f) = E

[
f(Vt) exp

(
−

t\
0

ysAh(Vs) ds −
1

2

t\
0

h2(Vs) ds −
t\
0

ys dMh
s

)]
.

Hence the result.

Lemma 3.1. Ay
t is a continuous martingale.

Proof. It is easy to see that Ay
t is a continuous process and

(3.26) dAy
t = −Ay

t ytdMh
t ,

which implies Ay
t is a local martingale. Moreover, from A2,

E exp

(
1

2

t\
0

[h, h](Vs) ds

)
< ∞, ∀t ∈ [0, T ]. (1)

Then from the Novikov criterion, Ay
t is a martingale.

Now, we are ready to introduce the path-dependent probability trans-
form.

Definition 3.3. For given yt, introduce the path-dependent probability
measure P̂

y by

dP̂
y

dP

∣∣∣∣
Ft

= Ay
t .

After the first measure change to P, the law of the signal process V

remains unchanged. In contrast, with the second path-dependent measure
change, the law of V will be changed and characterized by some observation-
dependent martingale problem. The gauge transform ν(·) then takes the
form of the Feynman–Kac multiplicative functional

νt(f) = Ê
y[f(Vt)Ξt],

where

(3.27) Ξt = exp

(t\
0

(
−ysAh(Vs) −

1

2
h2(Vs) +

y2
s

2
[h, h](Vs)

)
ds

)
.

Lemma 3.2. Assume A1–A2. Then under P̂
y, V is the unique solution

to the Â
y
t martingale problem

(3.28) df(Vt) = Â
y
t f(Vt)dt + dM̂

f
t ,

where D(Ây
t ) = D(A) and for f ∈ D(Ây

t ),

Â
y
t f , Af − yt[h, f ],(3.29)

dM̂
f
t , dM

f
t + yt[h, f ](Xt)dt.(3.30)

(1) Equivalently, E exp( 1

2

T
T

0
[h, h](Vs) ds) <∞.
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Proof. For f ∈ D(A), it is obvious that

(3.31) df(Vt) = Â
y
t f(Vt)dt + dM̂

f
t

and we only need to show M̂
f
t is a martingale. By the continuity of Ay, we

have

〈Mf , Ay〉t =

t\
0

−Ay
sys[f, h] ds

and

dM̂
f
t = dM

f
t −

1

Ay
t

d[Mf , Ay]t.(3.32)

Thus, from the Girsanov–Meyer theorem, M̂
f
t is a local martingale under

P̂
y. Moreover, from A2,

Ê
y[M̂f , M̂f ]t = E([Mf , Mf ]Ay)t < ∞.

It follows that M̂
f
t is a martingale under P̂

y. This completes the proof.

Proof of Theorem 3.2. From Proposition 3.2, we have

νt(f) = Ê
y(f(Vt)Ξt).

From Lemma 3.2 and integration by parts,

(3.33) d(f(Vt)Ξt)

= Â
y
t f(Vt)Ξtdt+f(Vt)Ξt

{
−ytAh(Vt)−

1

2
h2(Vt)+

y2
t

2
[h, h](Vt)

}
dt+ΞtdM̂

f
t .

Note that
Tt
0 Ξs dM̂

f
s is a P̂

y-martingale under A1 and A2. Hence taking the

expectation under P̂
y, we get

νt(f) = ν0(f) +

t\
0

νs(Â
y
sf) ds +

t\
0

νs

(
f

{
−ysAh −

1

2
h2 +

y2
s

2
[h, h]

})
ds.

Replace the fixed observation path yt with the observation process Yt to get
the result.

4. Implications of the continuous-dependence estimator. Our
continuously dependent estimation approach, summarized by the PDE (3.11)
and evolution equation (3.20), distinguishes itself from other extant estima-
tion methods in two theoretical features:

Remark 4.1. The equations (3.11), (3.20) are well defined for all obser-
vation trajectories yt ∈ C[0, T ] whereas the FKK, DMZ or Kushner equa-
tions are only defined on a subset of C[0, T ] with Wiener measure 1. Here,
C[0, T ] is the set of all continuous functions on [0, T ].
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Remark 4.2. The equation (3.11) is a parabolic second-order partial
differential equation which is continuously dependent on the observation
trajectory yt; the evolution equation (3.20) is also continuously dependent
on the observation trajectory yt.

Our approach also provides some computational and practical advan-
tages which are demonstrated as follows:

4.1. Particle filter and PDE. One advantage of our continuously depen-
dent estimation (3.11), (3.20) is its computational efficiency which becomes
the first concern in real-time online computation. It is worthwhile to point
out that the numerical methods for computing the nonlinear filter in stochas-
tic filtering equations are poorly developed. The widely employed approach
to solving the stochastic filtering equation is to make some Monte-Carlo
simulation based on the transition distribution which naturally leads to the
development of a particle filter algorithm.

However, the real-time computation outcomes demonstrate that the con-
vergence rate of the particle filter is not always satisfactory and reliable,
except for a few cases such as the finite-dimensional linear, Gaussian state
space model (the Kalman–Bucy filter). On the other hand, it is remarkable
that our continuously dependent estimations (3.11), (3.20) have no stochas-
tic integration involved. Thus these equations can be solved without the
introduction of Monte Carlo simulation and the associated particle filter.
As a result, the nonlinear estimation of latent variables with incomplete
information can be solved using only the finite difference or finite element
methods, which turns out to be more computationally effective and reli-
able. Some numerical computations are in progress and will be included in
companion papers.

4.2. Discrete and continuous-time observation. Another advantage of
our continuously dependent estimation is as follows. Stemming from the
background of practical finance, there has been a dichotomy between mod-
els with discrete-time observations and those with continuous-time obser-
vations. Note that while the former models gain popularity due to their
favorable statistical properties (see Gordon, Salmond and Smith (1993)),
the latter are more elegant and powerful in theoretical analysis (see Lipster
and Shiryaev (2001)).

Although our continuously dependent estimator is derived on the basis of
continuous-time observation, it can be shown that our method still provides
some sustainable and consistent estimation of the underlying latent variable
under some mild conditions, whether the observations are discrete-time or
continuous-time.

We consider the filtering problem in which the observation sampling in-
tervals converge to zero. An illustrating example is the high frequency data.
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Of course, we can relax this assumption using the technique of “filling-in-
the-missing-data” by Johannes, Polson and Stroud (2000). Suppose we are
given a discrete-time observation model. That means the available observa-
tion stream can only take some discrete-time form, for example, the discrete
time instances

0 = t0 < t1 < · · · < tn = t

instead of continuous-time observation. Correspondingly, the observation
time series will be {Yti}

n
i=1. However, we can get some continuous-time ob-

servation path Ŷ[0,t] from the linear interpolation of {Yti}
n
i=1. The derived

path Ŷ[0,t] carries the same information on the latent state variable. It is
also close to the observation path Y[0,t] which is implied in our observation
model (2.8) in the sup-norm defined on C[0, T ]. Consequently, due to the
continuity of the observation path Y[0,t], the continuously dependent estima-
tor provides a sensible approximation to the true conditional distribution
and it can still be adapted to handle the discrete-time observation case. In
particular, this is always the case for high frequency sampling.

4.3. Color noise added. When using the filtering method, a problem nat-
urally arising is how to quantify or calibrate the estimation error caused by
the modeling inaccuracy. The most common modeling inaccuracy is caused
by the popular use of Brownian motion as the idealized observation noise
in filtering framework. In fact, the additive white noise observation model
(2.8) is an idealization of the realistic observation mechanism. Empirical
research demonstrates it is more appropriate to impose the colored noise
(e.g. Ornstein–Uhlenbeck process) instead of white noise (Brownian mo-
tion) on the observation. Unlike the traditional filtering algorithm which is
more susceptible to modeling errors, our continuously dependent estimator
is “immune” to such errors (see Clark (2005) for details).

5. Concluding remarks. The proposed continuously dependent esti-
mators, which are the solutions of (3.11), (3.20), also allow some stimulating
generalizations such as the Markov state process or the more general martin-
gale problem setup of Ethier and Kurtz (1986). This paper also motivates
some innovative viewpoints on the existing financial research topics (e.g.
the SV problem) which are studied in our parallel work. Some simulation
works providing computational evidence for our proposed approach will be
presented in some companion papers with J. Li.
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