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ON THE RATIO OF GAMMA

AND RAYLEIGH RANDOM VARIABLES

Abstract. The gamma and Rayleigh distributions are two of the most ap-
plied distributions in engineering. Motivated by engineering issues, the exact
distribution of the quotient X/Y is derived when X and Y are independent
gamma and Rayleigh random variables. Tabulations of the associated per-
centage points and a computer program for generating them are also given.

1. Introduction. The gamma and Rayleigh distributions are two of
the most applied distributions in engineering. There are many real situa-
tions where measurements could be modeled by these distributions. Some
examples are:

1. in communication theory, X and Y could represent the random noise
corresponding to two signals;

2. in ocean engineering, X and Y could represent distributions of navi-
gation errors;

3. in image and speech recognition, X and Y could represent “input”
distributions;

4. in chemical engineering, X and Y could represent the remission times
of two chemicals when they are administered to two kinds of mechan-
ical systems;

5. in civil engineering, X and Y could represent future observations on
the strength of an engineering design (e.g. the strength of a bridge);

6. in hydrology, X and Y could represent the extreme rainfall at two
stations.

In each of the examples above, it will be of interest to study the distri-
bution of the quotient X/Y . For example, in communication theory, X/Y
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could represent the relative strength of the two different signals. In ocean
engineering, X/Y could represent the relative safety of navigation. In me-
chanical engineering, X/Y could represent the relative effectiveness of the
two chemicals. In civil engineering, X/Y could represent some measure of
reliability of the engineering design. In hydrology, X/Y could represent the
relative extremity of rainfall at the two stations.

The distribution of the quotient X/Y has been studied by several au-
thors especially when X and Y are independent random variables and come
from the same family. For instance, see Marsaglia (1965) and Korhonen and
Narula (1989) for normal family, Press (1969) for Student’s t family, Basu
and Lochner (1971) for Weibull family, Shcolnick (1985) for stable family,
Hawkins and Han (1986) for non-central chi-squared family, Provost (1989)
for gamma family, and Pham-Gia (2000) for beta family.

However, there is relatively little work of the above kind when X and Y
belong to different families. In this note, we study the exact distribution of
X/Y when X and Y are independent random variables having the gamma
and Rayleigh distributions specified by the probability density functions
(pdfs)

fX(x) =
µαxα−1 exp(−µx)

Γ (α)
(1)

and

fY (y) = 2λ2y exp
{

−(λy)2
}

,(2)

respectively, for x > 0, y > 0, α > 0, λ > 0, and µ > 0.

The results of this note are organized as follows: exact expressions for
the pdf and the cumulative distribution function (cdf) of X/Y are given in
Section 2; moment properties of X/Y including its characteristic function
and moments are considered in Section 3; finally, tabulations of the per-
centile points of X/Y obtained by inverting the derived cdf are provided in
Section 4.

The calculations of this note involve several special functions, including
the error function defined by

erf(x) =
2√
π

x\
0

exp(−t2) dt,

the complementary error function defined by

erfc(x) = 1 − 2√
π

x\
0

exp(−t2) dt,
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the parabolic cylinder function defined by

Dp(x) =
exp(−x2/4)

Γ (−p)

∞\
0

exp{−(tx + t2/2)}t−(p+1) dt,

the Kummer function defined by

Ψ(a, b; x) =
1

Γ (a)

∞\
0

exp(−xt)ta−1(1 + t)b−a−1 dt,

the confluent hypergeometric function defined by

1F1(a; b; x) =

∞
∑

k=0

(a)k

(b)k

xk

k!
,

the 2F2 hypergeometric function defined by

2F2(a, b; c, d; x) =

∞
∑

k=0

(a)k(b)k

(c)k(d)k

xk

k!
,

the incomplete gamma function defined by

Γ (a, x) =

∞\
x

exp(−t)ta−1 dt,

and the modified Bessel function of the first kind defined by

Iν(x) =
xν

2νΓ (ν + 1)

∞
∑

k=0

1

(ν + 1)kk!

(

x2

4

)k

,

where (e)k = e(e + 1) · · · (e + k − 1) denotes the ascending factorial. The
properties of the above special functions can be found in Prudnikov et al.

(1986) and Gradshteyn and Ryzhik (2000).

2. Exact distribution of X/Y . The following theorem expresses the
cdf of X/Y in terms of the confluent hypergeometric function.

Theorem. Suppose X and Y are independent random variables dis-

tributed according to (1) and (2), respectively. The cdf of Z = X/Y can be

expressed as

F (z) =
µαzα

αλαΓ (α)
Γ

(

α + 2

2

)

1F1

(

α

2
;
1

2
;
µ2z2

4λ2

)

(3)

− µα+1zα+1Γ ((α + 3)/2)

(α + 1)λα+1Γ (α)
1F1

(

α + 1

2
;
3

2
;
µ2z2

4λ2

)
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for z > 0. The corresponding pdf is

f(z) = α(α + 1)2−α/2λ−αµαzα−1 exp

(

µ2z2

8λ2

)

D−2−α

(

µz√
2λ

)

(4)

for z > 0. If α is an integer then

f(z) = −
√

πλ(−µ)αzα−1

Γ (α)

∂α+1

∂qα+1

[

exp

(

q2

4λ2

)

erfc

(

q

2λ

)]∣

∣

∣

∣

q=µz

(5)

for z > 0.

Proof. The cdf corresponding to (1) is 1−Γ (α, µx)/Γ (α). Thus, one can
write the cdf of X/Y as

Pr (X/Y ≤ z) =

∞\
0

FX(zy)fY (y) dy(6)

= 1 − 2λ2

Γ (α)

∞\
0

Γ (α, µyz)y exp(−λ2y2) dy

= 1 − 2λ2

Γ (α)
I.

Application of equation (2.10.3.9) in Prudnikov et al. (1986, Vol. 2) shows
that the integral I can be calculated as

I =
Γ (α)

2λ2 − (µz)α

2αλα+2 Γ

(

α + 2

2

)

2F2

(

α

2
,
α + 2

2
;
1

2
,
α

2
+ 1;

µ2z2

4λ2

)

(7)

+
(µz)α+1

2(α + 1)λα+3 Γ

(

α + 3

2

)

2F2

(

α + 1

2
,
α + 3

2
;
3

2
,
α + 3

2
;
µ2z2

4λ2

)

.

Note that the two hypergeometric terms in (7) simplify as

2F2

(

α

2
,
α + 2

2
;
1

2
,
α

2
+ 1;

µ2z2

4λ2

)

= 1F1

(

α

2
;
1

2
;
µ2z2

4λ2

)

and

2F2

(

α + 1

2
,
α + 3

2
;
3

2
,
α + 3

2
;
µ2z2

4λ2

)

= 1F1

(

α + 1

2
;
3

2
;
µ2z2

4λ2

)

.

The result in (3) follows by substituting (7) into (6). The pdf of X/Y in (4)
can be obtained by writing

f(z) =

∞\
0

yfX(zy)fY (y) dy(8)

=
2λ2µαzα−1

Γ (α)

∞\
0

yα+1 exp(−λ2y2 − µzy) dy
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and applying equation (2.3.15.3) in Prudnikov et al. (1986, Vol. 1) to the
integral in (8). The result in (5) follows by special properties of the parabolic
cylinder function.

Using special properties of the hypergeometric functions, one can derive
simpler forms for (3). This is illustrated in the corollaries below for integer
and half-integer values of α. Note that the forms of (3) involve the error
function for integer α and the Bessel function for half-integer α.

Corollary 1. If α = 1, 2, 3, 4, 5 then (3) can be reduced to the simpler

forms

F (z) =
√

πx exp(x){1 − erf(
√

x)},
F (z) = (x/λ){2λ + µz

√
π exp(x)erf(

√
x) + µz

√
π exp(x)},

F (z) = (x3/2/(2λ2)){2
√

π exp(x)λ2 +
√

π exp(x)µ2z2 + 2µzλ

+ 2
√

π exp(x)erf(
√

x)λ2 +
√

π exp(x)erf(
√

x)µ2z2},
F (z) = (x2/(6λ3)){8λ3 + 2µ2z2λ + 6µz

√
π exp(x)erf(

√
x)λ2

+ µ3z3√π exp(x)erf(
√

x) + 6µz
√

π exp(x)λ2 + µ3z3√π exp(x)},
F (z) = (x5/2/(24λ4)){12

√
π exp(x)µ2z2λ2 +

√
π exp(x)µ4z4

+ 12
√

π exp(x)λ4 + 20µzλ3 + 2µ3z3λ + 12
√

π exp(x)erf(
√

x)µ2z2λ2

+
√

π exp(x)erf(
√

x)µ4z4 + 12
√

π exp(x)erf(
√

x)λ4},
respectively , where x = µ2z2/(4λ2).

Corollary 2. If α = 1/2, 3/2, 5/2, 7/2, 9/2 then (3) can be reduced to

the simpler forms

F (z) =
√

πx exp(x){I
−1/4(x) + I1/4(x)},

F (z) = 4
√

πx3/2 exp(x){I1/4(x) + I
−3/4(x) + I

−1/4(x) + I3/4(x)},
F (z) = (4

√
π/(3λ2))x3/2 exp(x){µ2z2I

−1/4(x) + 2λ2I
−1/4(x) + µ2z2I3/4(x)

+ µ2z2I1/4(x) + 2λ2I1/4(x) + µ2z2I
−3/4(x)},

F (z) = (32
√

π/(15λ2))x5/2 exp(x){µ2z2I1/4(x) + 5λ2I1/4(x) + µ2z2I
−3/4(x)

+ 3λ2I
−3/4(x) + µ2z2I

−1/4(x) + 5λ2I
−1/4(x) + µ2z2I3/4(x)

+ 3λ2I3/4(x)},
F (z) = (32

√
π/(105λ4))x5/2 exp(x){10µ2z2λ2I

−1/4(x) + µ4z4I
−1/4(x)

+ 10λ4I
−1/4(x) + 8µ2z2λ2I3/4(x) + µ4z4I3/4(x) + 10µ2z2I1/4(x)

+ µ4z4I1/4(x) + 10λ4I1/4(x) + 8µ2z2λ2I
−3/4(x) + µ4z4I

−3/4(x)},

respectively , where x = µ2z2/(8λ2).
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Figure 1 illustrates possible shapes of the pdf of X/Y for selected values
of α. As expected, the densities are unimodal and the effect of the parameter
is evident.
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Fig. 1. Plots of the pdf of (3) for λ = 1, µ = 1 and α = 1, 2, 5, 10

3. Moment properties of X/Y . The moment properties of X/Y can
be derived by knowing the same for X and Y . It is well known (see, for
example, Johnson et al. (1994, 1995)) that

E(Xn) =
Γ (n + α)

µnΓ (α)
and E(Y n) =

Γ (1 + n/2)

λn .

Thus, the nth moment of Z = X/Y is

E(Zn) =
λnΓ (n + α)Γ (1 − n/2)

µnΓ (α)
.

In particular,

E(Z) =

√
π λα

µ
.

Note that moments of even order do not exist. Using the fact that the
characteristic function (chf) of X is

E[exp(itX)] =

(

µ

µ − it

)α

,
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where i =
√
−1 denotes the complex unit, the chf of X/Y can be expressed

as

E[exp(itX/Y )] = 2λ2
∞\
0

(

µ

µ − it/y

)α

y exp{−(λy)2} dy(9)

= 2λ2
∞\
0

yα+1 exp{−(λy)2}
(y − it/µ)α dy

= 2λ2
∞\
0

yα+1(y + it/µ)α exp{−(λy)2}
(y2 + t2/µ2)α dy.

If α is an integer then (9) can be simplified as

E[exp(itX/Y )] = 2λ2
α

∑

k=0

(

α

k

)(

it

µ

)α−k ∞\
0

yα+k+1 exp{−(λy)2}
(y2 + t2/µ2)α dy

= λ2
α

∑

k=0

(

α

k

)(

it

µ

)α−k ∞\
0

x(α+k)/2 exp{−λ2x}
(x + t2/µ2)α dx

=
λ2t2

µ2

α
∑

k=0

(

α

k

)

iα−kΓ

(

α + k

2
+ 1

)

Ψ

(

α + k

2
+ 1,

k − α

2
+ 2;

λ2t2

µ2

)

,

where the last step follows by equation (2.3.6.9) in Prudnikov et al. (1986,
Vol. 1).

4. Percentiles of X/Y . In this section, we provide tabulations of per-
centage points zp associated with the cdf of Z = X/Y . These values are
obtained by numerically solving the equation

µαzα
p

αλαΓ (α)
Γ

(

α + 2

2

)

1F1

(

α

2
;
1

2
;
µ2z2

p

4λ2

)

−
µα+1zα+1

p Γ ((α + 3)/2)

(α + 1)λα+1Γ (α)
1F1

(

α + 1

2
;
3

2
;
µ2z2

p

4λ2

)

= p.

Table 1. Percentage points of Z = X/Y

α p = 0.01 p = 0.05 p = 0.1 p = 0.9 p = 0.95 p = 0.99

0.1 0.000 0.000 0.000 0.365 0.847 2.908

0.2 0.000 0.000 0.000 0.867 1.612 4.573

0.3 0.000 0.000 0.000 1.310 2.253 5.960

0.4 0.000 0.001 0.003 1.717 2.834 7.223

0.5 0.000 0.002 0.010 2.102 3.380 8.416

0.6 0.000 0.007 0.022 2.471 3.903 9.565

0.7 0.001 0.014 0.039 2.829 4.410 10.685
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Table 1 (cont.)

α p = 0.01 p = 0.05 p = 0.1 p = 0.9 p = 0.95 p = 0.99

0.8 0.003 0.026 0.062 3.179 4.906 11.782

0.9 0.007 0.040 0.089 3.522 5.394 12.864

1 0.011 0.058 0.121 3.861 5.875 13.933

1.1 0.018 0.079 0.155 4.196 6.350 14.992

1.2 0.026 0.104 0.193 4.528 6.821 16.043

1.3 0.036 0.130 0.233 4.857 7.289 17.088

1.4 0.048 0.159 0.276 5.183 7.754 18.128

1.5 0.061 0.190 0.321 5.508 8.217 19.163

1.6 0.076 0.223 0.367 5.832 8.677 20.194

1.7 0.093 0.258 0.415 6.154 9.136 21.222

1.8 0.111 0.294 0.464 6.475 9.593 22.248

1.9 0.130 0.331 0.514 6.794 10.048 23.270

2 0.151 0.370 0.565 7.113 10.503 24.291

2.1 0.173 0.410 0.618 7.431 10.957 25.310

2.2 0.196 0.451 0.671 7.748 11.409 26.328

2.3 0.220 0.492 0.725 8.065 11.861 27.343

2.4 0.245 0.535 0.779 8.381 12.312 28.358

2.5 0.271 0.578 0.835 8.697 12.763 29.371

2.6 0.298 0.623 0.890 9.012 13.213 30.384

2.7 0.326 0.667 0.947 9.326 13.662 31.395

2.8 0.354 0.713 1.004 9.641 14.111 32.406

2.9 0.383 0.759 1.061 9.954 14.559 33.415

3 0.413 0.806 1.119 10.268 15.007 34.424

3.1 0.444 0.853 1.177 10.581 15.455 35.433

3.2 0.475 0.900 1.236 10.894 15.902 36.441

3.3 0.507 0.948 1.294 11.207 16.349 37.448

3.4 0.539 0.996 1.354 11.519 16.796 38.455

3.5 0.572 1.045 1.413 11.832 17.243 39.461

3.6 0.605 1.094 1.473 12.144 17.689 40.467

3.7 0.638 1.144 1.533 12.456 18.135 41.472

3.8 0.672 1.193 1.593 12.767 18.581 42.477

3.9 0.707 1.243 1.653 13.079 19.026 43.482

4 0.742 1.294 1.714 13.390 19.472 44.486

4.1 0.777 1.344 1.775 13.702 19.917 45.490

4.2 0.812 1.395 1.836 14.013 20.362 46.494

4.3 0.848 1.446 1.897 14.324 20.807 47.498

4.4 0.885 1.497 1.959 14.635 21.252 48.501

4.5 0.921 1.549 2.020 14.945 21.697 49.504

4.6 0.958 1.601 2.082 15.256 22.141 50.507

4.7 0.995 1.653 2.144 15.567 22.586 51.509

4.8 1.032 1.705 2.206 15.877 23.030 52.512

4.9 1.070 1.757 2.268 16.187 23.474 53.514

5 1.108 1.809 2.330 16.498 23.918 54.516
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Evidently, this involves computation of the confluent hypergeometric func-
tion and routines for this are widely available. We used the function hy-
pergeom ([·],[·],·) in the algebraic manipulation package MAPLE. Table 1
provides the numerical values of zp for λ = 1, µ = 1 and α = 0.1, 0.2, . . . , 5.

Tables of this kind will be of use to the practitioners mentioned in Sec-
tion 1. Similar tabulations could be easily derived for other values of p, λ, µ
and α by using the hypergeom (·) function in MAPLE. A sample program
is shown in the Appendix below.

Appendix. The following procedure in MAPLE can be used to generate
tables similar to that presented in Section 4.

percent:=proc(p,lambda,mu,alpha)

local c1,c2,f1,f2,z;

c1:=((mu*z)**alpha)*GAMMA((alpha+2)/2);

c1:=c1/(alpha*(lambda**alpha)*GAMMA(alpha));

c2:=((mu*z)**(alpha+1))*GAMMA((alpha+3)/2);

c2:=c2/((alpha+1)*(lambda**(alpha+1))*GAMMA(alpha));

f1:=hypergeom([alpha/2],[1/2],(mu*z)**2/(4*lambda*lambda));

f2:=hypergeom([(alpha+1)/2],[3/2],(mu*z)**2/(4*lambda*lambda));

fsolve(c1*f1-c2*f2=p,z=0..10000);

end proc;

References

A. P. Basu and R. H. Lochner (1971), On the distribution of the ratio of two random

variables having generalized life distributions, Technometrics 13, 281–287.
I. S. Gradshteyn and I. M. Ryzhik (2000), Tables of Integrals, Series, and Products, 6th

ed., Academic Press, San Diego, CA.
D. L. Hawkins and C.-P. Han (1986), Bivariate distributions of some ratios of independent

noncentral chi-square random variables, Comm. Statist. Theory Methods 15, 261–277.
N. L. Johnson, S. Kotz and N. Balakrishnan (1994), Continuous Univariate Distributions,

Vol. 1, 2nd ed., Wiley, New York.
N. L. Johnson, S. Kotz and N. Balakrishnan (1995), Continuous Univariate Distributions,

Vol. 2, 2nd ed., Wiley, New York.
P. J. Korhonen and S. C. Narula (1989), The probability distribution of the ratio of the

absolute values of two normal variables, J. Statist. Comput. Simul. 33, 173–182.
G. Marsaglia (1965), Ratios of normal variables and ratios of sums of uniform variables,

J. Amer. Statist. Assoc. 60, 193–204.
T. Pham-Gia (2000), Distributions of the ratios of independent beta variables and appli-

cations, Comm. Statist. Theory Methods 29, 2693–2715.
S. J. Press (1969), The t ratio distribution, J. Amer. Statist. Assoc. 64, 242–252.
S. B. Provost (1989), On the distribution of the ratio of powers of sums of gamma random

variables, Pakistan J. Statist. 5, 157–174.
A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev (1986), Integrals and Series, Vols.

1–3, Gordon and Breach, Amsterdam.



382 S. Nadarajah

S. M. Shcolnick (1985), On the ratio of independent stable random variables, in: Stabil-
ity Problems for Stochastic Models (Uzhgorod, 1984), Lecture Notes in Math. 1155,
Springer, Berlin, 349–354.

School of Mathematics
University of Manchester
Manchester M60 1QD, UK
E-mail: saralees.nadarajah@manchester.ac.uk

Received on 17.4.2007;

revised version on 6.9.2007 (1868)


