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ON A STOCHASTIC SIR MODEL

Abstract. We consider a stochastic SIR system and we prove the exis-
tence, uniqueness and positivity of solution. Moreover the existence of an
invariant measure under a suitable condition on the coefficients is studied.

1. Introduction. In [15] we analyzed the stability of the disease free
equilibrium of the stochastic SIR model











dS(t) = (µ − βS(t)I(t) − µS(t))dt − σS(t)I(t)dW (t),

dI(t) = (βS(t)I(t) − (λ + µ)I(t))dt + σS(t)I(t)dW (t),

dR(t) = (λI(t) − µR(t))dt,

(1)

where S(t), I(t) and R(t) denote the number of individuals susceptible to the
disease, infected and removed from the possibility of infection through full
immunity, respectively. The constant β is the contact rate that represents
the average number of contacts per infective per day, λ is the recovery rate
of infected people, µ is the death and birth rate, σ is a positive constant and
W (t) is a real Wiener process defined on a stochastic basis (Ω,F , (Ft)t≥0, P).
We suppose that all newborns are susceptible and, of course, µ, λ, σ, β ∈ R+.

In particular, by using a suitable Lyapunov function, we proved the sta-
bility of the disease free equilibrium E0 = (1, 0, 0) of the system (1) under
the condition 0 < β < min{µ+λ−σ2/2, 2µ}. A numerical simulation showed
that the disease free equilibrium E0 is stable also if min{µ+λ−σ2/2, 2µ} <
β < µ + λ + σ2/2, while if β > µ + λ + σ2/2 then E0 is unstable and the
solution of system (1) fluctuates around the endemic equilibrium

E+ =

(

λ + µ

β
,
µ

β

(

β

λ + µ
− 1

)

,
λ

β

(

β

λ + µ
− 1

))

of the corresponding deterministic system (see Figure 1).
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Fig. 1. Number of susceptible and infected individuals in the deterministic and stochastic
SIR model when: λ = 0, 1, µ = 0, 2, σ = 0, 15, β = 0, 2 (0 < β < min{µ + λ − σ2/2, 2µ});
λ = 0, 1, µ = 0, 2, σ = 0, 2, β = 0, 31 (min{µ + λ − σ2/2, 2µ} < β < µ + λ + σ2/2) and
λ = 0, 1, µ = 0, 2, σ = 0, 2, β = 0, 37 (β > µ + λ + σ2/2) respectively

In the present paper we will prove the existence, uniqueness and posi-
tivity of solution of the system (1) (see Figure 2). Furthermore, under the
condition β > µ + λ + σ2/2 we will prove the existence and uniqueness of
the invariant measure.

2. Existence and uniqueness of solution. In order to prove the ex-
istence, uniqueness and positivity of solution of the system (1) we introduce
the notation

R
3
+ = {x ∈ R

3 : xi > 0 for all i = 1, 2, 3}
and we study system (1) with initial conditions

(S(0), I(0), R(0)) ∈ R
3
+, S(0) + I(0) + R(0) = 1.(2)

Since the coefficients of the system (1) are locally Lipschitz the following
result on the local existence of solutions holds:

Theorem 2.1 ([4, Theorem 1.1, p. 98]). For any given initial condi-

tion (S(0), I(0), R(0)) ∈ R
3
+ there exists τ > 0 and a unique solution

(S(t), I(t), R(t)) to the system (1) for t ∈ [0, τ).

By using (2) we can consider an integer k0 > 2 sufficiently large such
that

(S(0), I(0), R(0)) ∈ [1/k0, 1 − 1/k0]
3.

For each integer k > k0 we define the stopping time

τk(ω) = inf{t ∈ [0, τ) : (S(t, ω), I(t, ω), R(t, ω)) /∈ [1/k, 1 − 1/k]3}(3)

where we set inf ∅ = ∞. We shall show that the solution of (1) satisfying (2)
is positive and global using the idea of [9] (see also [3]).

Theorem 2.2. There exists a unique solution (S(t), I(t), R(t)) to the

system (1) with the condition (2) for all t ≥ 0, and the solution remains

in R
3
+ with probability 1, that is, (S(t), I(t), R(t)) ∈ R

3
+ for all t ≥ 0 a.s.
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For the proof of the theorem we need the following lemma.

Lemma 2.1. Let (S(t), I(t), R(t)) be the solution of the system (1) with

the condition (2). Then

E(log2 S(τk(ω) ∧ t) + log2 I(τk(ω) ∧ t) + log2 R(τk(ω) ∧ t)) ≤ C(t)(4)

where C(t) is the solution of the Cauchy problem
{

y′(t) = 3β + 9µ + 3λ + 5σ2 + (β + 3µ + λ + σ2)y(t),

y(0) = log2 S(0) + log2 I(0) + log2 R(0).

Proof. We consider the C2-function Υ : R
3
+ → R+ defined by

Υ (x1, x2, x3) = log2 x1 + log2 x2 + log2 x3.(5)

If (S(t), I(t), R(t)) ∈ R
3
+ the Ito formula shows that

d(log2 S(t) + log2 I(t) + log2 R(t)) = 2

[(

µ

S
− βI(t)− µ− σ2

2
I2(t)

)

log S(t)

+

(

βS(t) − (λ + µ) − σ2

2
S2(t)

)

log I(t) +

(

λ
I(t)

R(t)
− µ

)

log R(t)

+
σ2

2
(I2(t) + S2(t))

]

dt + 2σ(−I(t) log S(t) + S(t) log I(t))dW.

In virtue of the definition (3), for all t < τk(ω) we have (S(t), I(t), R(t)) ∈
[1/k, 1 − 1/k]3, so

(6) log2 S(τk(ω) ∧ t) + log2 I(τk(ω) ∧ t) + log2 R(τk(ω) ∧ t)

= log2 S(0) + log2 I(0) + log2 R(0)

+ 2

τk(ω)∧t\
0

[(

µ

S(t′)
− βI(t′) − µ − σ2

2
I2(t′)

)

log S(t′)

+

(

βS(t′) − (λ + µ) − σ2

2
S2(t′)

)

log I(t′)

+

(

λ
I(t′)

R(t′)
− µ

)

log R(t′)

]

dt′ + σ2

τk(ω)∧t\
0

(I2(t′) + S2(t′)) dt′

+ 2σ

τk(ω)∧t\
0

(−I(t′) log S(t′) + S(t′) log I(t′)) dW.

We neglect the terms

τk(ω)∧t\
0

µ

S(t′)
log S(t′) dt′,

τk(ω)∧t\
0

βS(t′) log I(t′) dt′,

τk(ω)∧t\
0

λ
I(t′)

R(t′)
log R(t′) dt′
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and estimate the terms of the right-hand side by

∣

∣

∣

∣

2

τk(ω)∧t\
0

[(

−βI(t′) − µ − σ2

2
I2(t′)

)

log S(t′)

+

(

−(λ + µ) − σ2

2
S2(t′)

)

log I(t′) − µ log R(t′)

]

dt′
∣

∣

∣

∣

≤ 2(β + 3µ + λ + σ2)

τk(ω)∧t\
0

(|log S(t′)| + |log I(t′)| + |log R(t′)|) dt′

and
∣

∣

∣
σ2

τk(ω)∧t\
0

(I2(t′) + S2(t′)) dt
∣

∣

∣
≤ 2σ2t.

Substituting these relations into (6) and calculating the mean we have

E(log2 S(τk(ω) ∧ t) + log2 I(τk(ω) ∧ t) + log2 R(τk(ω) ∧ t))

≤ log2 S(0) + log2 I(0) + log2 R(0)

+ 2σ2t + 2(β + 3µ + λ + σ2)

×
t\
0

E(|log S(τk(ω) ∧ t′)| + |log I(τk(ω) ∧ t′)| + |log R(τk(ω) ∧ t′)|) dt′.

By the Hölder inequality,

E(|log S(τk(ω) ∧ t′)| + |log I(τk(ω) ∧ t′)| + |log R(τk(ω) ∧ t′)|)

≤ 3

2
+

1

2
E(log2 S(τk(ω) ∧ t′) + log2 I(τk(ω) ∧ t′) + log2 R(τk(ω) ∧ t′)).

Substituting we obtain

(7) E(log2 S(τk(ω) ∧ t) + log2 I(τk(ω) ∧ t) + log2 R(τk(ω) ∧ t))

≤ log2 S(0) + log2 I(0) + log2 R(0) + (3β + 9µ + 3λ + 5σ2)t

+ (β + 3µ + λ + σ2)

×
t\
0

E(log2 S(τk(ω) ∧ t′)+log2 I(τk(ω) ∧ t′)+log2 R(τk(ω) ∧ t′)) dt′.

We set

Y (t) = E(log2 S(τk(ω) ∧ t) + log2 I(τk(ω) ∧ t) + log2 R(τk(ω) ∧ t));

taking into account this relation, from (7) we get

Y (t) ≤ Y (0) + (3β + 9µ + 3λ + 5σ2)t + (β + 3µ + λ + σ2)

t\
0

Y (t′) dt′,
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from which it follows that

Y (t) ≤ C(t), ∀t ≥ 0,

where C(t) is the solution of the Cauchy problem in the statement of the
lemma.

Proof of Theorem 2.2. By Theorem 2.1 there exist τ > 0 and the solution
(S(t), I(t), R(t)) to the system (1) with the condition (2) for t ∈ [0, τ); to
prove that this solution is global, we need to show that τ = ∞ a.s. Consider
the stopping time defined in (3). Clearly (τk) is an increasing sequence.
Set τ∞(ω) = limk→∞ τk(ω), whence τ∞(ω) < τ a.s. If we can show that
τ∞(ω) = ∞ a.s. then τ = ∞ a.s. and consequently (S(t), I(t), R(t)) ∈ R

3
+

for all t ≥ 0 a.s. If this statement is false, then there are a constant T > 0
and ε ∈ (0, 1) such that

P{ω ∈ Ω : τ∞(ω) ≤ T} > ε.

Consequently, there exists an integer k1 ≥ k0 such that

P{ω ∈ Ω : τk(ω) ≤ T} ≥ ε ∀k ≥ k1.

Set Ωk = {ω ∈ Ω : τk(ω) ≤ T} for each k ≥ k1; we have P(Ωk) ≥ ε. Note
that for every ω ∈ Ωk some component of (S(τk(ω)), I(τk(ω)), R(τk(ω)))
equals 1/k or 1 − 1/k, and hence by (6),

Υ ((S(τk(ω)), I(τk(ω)), R(τk(ω))), ω) ≥ log2 k.

From (4) we deduce that

C(T ) ≥ E(1Ωk
Υ ((S(τk(ω)), I(τk(ω)), R(τk(ω))), ω)) ≥ ε log2 k

where 1Ωk
is the indicator function of Ωk. Letting k → ∞ leads to the

contradiction
∞ = C(T ) < ∞

so we must have τ = ∞ a.s.

Theorem 2.2 and Lemma 2.1 show that Q = [0, 1] × [0, 1] × [0, 1] is the
invariant set of the solutions of the system (1).
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Fig. 2. Susceptibles-infectives phase plane in the deterministic and stochastic SIR model
when λ = 0, 1, µ = 0, 2, σ = 0, 2, β = 0, 37 (β > µ + λ + σ2/2) with different initial data
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3. Existence of the invariant measure under the condition β >
λ + µ + σ2/2. From the system (1) we find that S(t) + I(t) + R(t) = 1 a.s.
for all t ≥ 0 so we can consider only the first two equations of (1). Moreover,
by using the existence, uniqueness and positivity of solution we substitute

ξ(t) = log S(t), η(t) = log I(t),

and we replace (1) by

(8)



















dξ =

(

−βeη − µ + µe−ξ − σ2

2
e2η

)

dt − σeηdW,

dη =

(

βeξ − (λ + µ) − σ2

2
e2ξ

)

dt + σeξdW,

(9) ξ0 = log S(0), η0 = log I(0).

The aim of this section is to study the existence and uniqueness of the in-
variant measure of the system (8) by showing that there exists a Has’minskij
function (see [4, Chap. III]).

We say that a non-negative function V ∈ C2(Rn) is a Has’minskij func-

tion for a stochastic equation in R
n

dX(t) = b(X(t)) dt + σ(X(t))dW (t),(10)

where W (t) is a Brownian motion in R
n, if

sup
|x|≥r

AV (x) → −∞ as r → +∞,

where A is the operator defined by

(11) Av =
1

2

n
∑

i,j=1

aij(x)
∂2v

∂xi∂xj
+

n
∑

i=1

bi(x)
∂v

∂xi
, aij(x)=

n
∑

k=1

σik(x)σjk(x).

Throughout this section we assume

β > λ + µ + σ2/2.(12)

The operator A for the system (8) is of the form

(13) Av =

(

−βeη − µ + µe−ξ − σ2

2
e2η

)

∂v

∂ξ

+

(

βeξ − (µ + λ) − σ2

2
e2ξ

)

∂v

∂η
+

1

2
σ2

(

e2η ∂2v

∂ξ2
− 2eηeξ ∂2v

∂ξ∂η
+ e2ξ ∂2v

∂η2

)

.

We set

(14) ξ∗ = inf

{

ξ < 0 : βeξ−µ−λ−σ2

2
e2ξ > ε

}

, ε =
1

4

(

β−µ−λ−σ2

2

)

.

We observe that, in virtue of (12), ε > 0 and moreover ξ∗ < 0.
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Lemma 3.1. Let ε and ξ∗ be as in (14) and set

k∗ =
µ + λ + ε

µ(e−ξ∗ − 1)
, U(ξ, η) = −k∗ξ − η ∀(ξ, η) ∈ Q,(15)

where

Q = {(ξ, η) ∈ R
2 : ξ ≤ 0, η ≤ 0}.

Then there exist ξ (≤ ξ∗) and η < 0 such that

AU(ξ, η) ≤ −ε/2 ∀(ξ, η) ∈ Q \ K,

where

K = {(ξ, η) ∈ R
2 : ξ ≤ ξ ≤ 0, η ≤ η ≤ 0}.

Proof. It is easy to prove that

AU = k∗

(

βeη − µ(e−ξ − 1) +
σ2

2
e2η

)

+ µ + λ − βeξ +
σ2

2
e2ξ.

Since

k∗µ(e−ξ − 1) → +∞ as ξ → −∞
we find ξ ≤ ξ∗ < 0 such that

(16) k∗

(

β − µ(e−ξ − 1) +
σ2

2

)

+ µ + λ − βeξ +
σ2

2
e2ξ ≤ −ε

2
∀ξ ≤ ξ.

Since

k∗

(

βeη +
σ2

2
e2η

)

→ 0 as η → −∞

we find η < 0 such that

k∗

(

βeη +
σ2

2
e2η

)

≤ ε

2
∀η ≤ η.(17)

We observe that Q \ K is the union of the following sets:

E1 = {(ξ, η) ∈ R
2 : ξ ≤ ξ, η ≤ 0},

E2 = {(ξ, η) ∈ R
2 : ξ ≤ ξ ≤ ξ∗, η ≤ η},

E3 = {(ξ, η) ∈ R
2 : ξ∗ ≤ ξ < 0, η ≤ η}.

Taking into account (12), (15), (16), (17) it is easy to verify that AU ≤ −ε/2
on each Ei.

In order to prove the existence of the invariant measure we use the
Has’minskij theorem [7, Th. 5.1] and [16, Lemma 4.1].

Theorem 3.1. If the relation (12) holds, then the system (8) has an

invariant measure on

Q = {(ξ, η) ∈ R
2 : ξ ≤ 0, η ≤ 0}.
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Proof. By using (13) and (15) there exists a constant C such that
∣

∣

∣

∣

σ2e2η ∂2

∂ξ2
U2 + σ2e2ξ ∂2

∂η2
U2 − 2σ2eξeη ∂2

∂ξ∂η
U2

∣

∣

∣
≤ C

for all (ξ, η) ∈ Q. Therefore, as in Lemma 4.1 of [16], we set V = 1
2U2 and

we obtain

sup
ξ2+η2≥r

AV (ξ, η) → −∞ as r → ∞, ξ ≤ 0, η ≤ 0.

Consequently, as in the proof of the Has’minskij theorem, for all N > 0 we
have

αN

t\
0

Eχ{ξ2+η2≥N2, ξ≤0, η≤0} dt′ ≤ E(ξ2(0) + η2(0)) + t max{ sup
(ξ,η)∈Q

AV, 0}

where

−αN = sup{AV : ξ2 + η2 ≥ N2, ξ ≤ 0, η ≤ 0}.
Then

1

t

t\
0

P({ξ2(t′) + η2(t′) ≥ N2, ξ ≤ 0, η ≤ 0}) dt′ ≤ C1

αN

where C1 is a constant independent on N . So in virtue of Theorem 2.1 of [7],
there exists an invariant measure.

4. Uniqueness of the invariant measure. In this section we prove
the uniqueness of the invariant measure and the convergence of the law of
(ξ(t), η(t)) to this measure.

Theorem 4.1. The system (8) has a unique invariant measure and , as

t → ∞, the solution (ξ(t), η(t)) converges in law to a random variable Z0 in

R
2 whose law is the invariant measure of (8). Moreover , the support of the

invariant measure has the form

E = {(ξ, η) ∈ Q : θ0 ≤ eξ + eη ≤ 1}
with a certain θ0 > 0.

In order to prove Theorem 4.1, we need the following lemma:

Lemma 4.1. The transition function P (t, ξ, η, A) (t > 0, (ξ, η) ∈ R
2,

A ∈ B(R2)) associated to the system (8) has the density p(t, ξ, η, ξ′, η′) ∈
C∞(]0,∞[ × R

2 × R
2).

Proof. Set

X = σ

(

eη ∂

∂ξ
− eξ ∂

∂η

)

,
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Y =

(

−βeη − µ + µe−ξ +
σ2

2
(eξ+η − e2η)

)

∂

∂ξ

+

(

βeξ − (µ + λ) +
σ2

2
(eξ+η − e2ξ)

)

∂

∂η
.

Then the differential operator A defined in (13) can be written as

A =
1

2
X2 + Y.

We consider the Lie bracket

Z = [X, Y ] = σ(−µeη−ξ + (µ + λ)eη + σ2eξ+2η)
∂

∂ξ

+ σ(µ − µeξ − σ2e2ξ+η)
∂

∂η
.

Now we show that X and Z span R
2. In fact, set

α = σeη, β = −σeξ,

α′ = σ(−µeη−ξ + (µ + λ)eη + σ2eξ+2η),

β′ = σ(µ − µeξ − σ2e2ξ+η).

Then X and Z can be written in the form

X = α
∂

∂ξ
+ β

∂

∂η
, Z = α′ ∂

∂ξ
+ β′ ∂

∂η
,(18)

and we have

α′

α
= −µe−ξ + µ + λ + σ2eξ+η,

β′

β
= −µe−ξ + µ + σ2eξ+η,

α′

α
− β′

β
= λ 6= 0,

so
α′

α
6= β′

β
.(19)

Remembering that (19) holds for all (ξ, η) ∈ R
2, in virtue of Theorem 3

of [8] the transition function P (t, ξ, η, A) has a density p(t, ξ, η, ξ′, η′) ∈
C∞(]0,∞[ × R

2 × R
2).

The invariant measure admits a regular density Ψ(ξ, η) such that\\
R2

Ψ(ξ, η)p(t, ξ, η, ξ′, η′) dξ dη = Ψ(ξ′, η′) ∀t > 0, (ξ′, η′) ∈ R
2.(20)

To determine the support of the invariant measure we use an idea of [16] to
prove the following lemma.
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Lemma 4.2. Set

Φ(θ, ξ) =
σ2θ

2
e2ξ +

(

λ − σ2θ2

2

)

eξ − (λ + µ)θ + µ.

Then there exists θ0 ∈ ]0, 1[ such that :

(i) if 0 < θ < θ0, then

Φ(θ, ξ) > 0 ∀ξ < 0;

(ii) if θ0 < θ < 1, then there exist ξ1, ξ2 < 0 such that

Φ(θ, ξ1) > 0 Φ(θ, ξ1) > 0;

(iii) if θ ≥ 1, then

Φ(θ, ξ) < 0 ∀ξ < 0.

Proof. We choose θ0 = min{
√

2λ/σ, (µ/λ + µ)}. Then properties (i)–(iii)
follow from elementary calculus.

Proof of Theorem 4.1. In virtue of the definition of ξ(t) and η(t), it is
clear that the support of any invariant measure is included in

{(ξ, η) ∈ R
2 : eξ + eη ≤ 1}.

On the other hand, if (ξ(t), η(t)) is in the region {eξ + eη < θ0}, then in
virtue of (i) of Lemma 4.1, we have

Φ(eξ(t) + eη(t), ξ(t)) > 0,

that is, if we put

a(ξ, η) = a = −βeη(t) − µ + µe−ξ(t) − σ2

2
e2η(t),

b(ξ, η) = b = βeξ(t) − (λ + µ) − σ2

2
e2ξ(t),

the angle between the vector (eξ(t), eη(t)) and (a, b) is between −π/2 and π/2.
So (7) can be written

d

(

ξ

η

)

=

(

a

b

)

dt + σ

( −eη

eξ

)

dW.

This means that, for t1 > t, we have

eξ(t1) + eη(t1) > eξ(t) + eη(t),

which leads, in the same manner as in [14, Lemma 3], to

P{θ0 ≤ eξ(t) + eη(t) ≤ 1} → 1.

In order to examine the behavior of (ξ(t), η(t)) in the region E, we consider
the family of curves

{γθ}θ∈[θ0,1], γθ = {(ξ, η) ∈ R
2 : eξ + eη = θ}.
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If θ0 < θ < 1, then in virtue of (ii) of Lemma 4.2 there exist (ξ1, η1), (ξ2, η2)
∈ γθ such that

(

a

b

)

·
(

eξ1

eη1

)

> 0,

(

a

b

)

·
(

eξ2

eη2

)

< 0.(21)

On the other hand, we can construct the oriented curve δ(ξ,η) which is the
trajectory of the differential equation

dξ(s)

ds
= a(ξ(s), η(s)),

dη(s)

ds
= b(ξ(s), η(s)),

ξ(0) = ξ, η(0) = η.

From Lemma 4.2 it follows that δ(ξ,η) with (ξ, η) ∈ E cannot go out
of E. Remembering the regularity of the function Φ(θ, ξ), it is easy to see
that (21) and the construction of δ(ξ,η) imply that, from an arbitrary point

(ξ1, η1) such that θ0 < eξ1 + eη1 < 1 to an arbitrary point (ξ2, η2) such that
θ0 < eξ2 + eη2 < 1 we can construct a curve which follows γθ, θ0 < θ < 1, or
δ(ξ,η) in the direction of increasing s. As in [14], this implies that the prob-
ability density Ψ(ξ, η) is positive in E \ (γθ0

∪ γ1). Then Theorem 2 of [11]
(see also [10], [12], [14]) yields the uniqueness of the invariant measure and

lim
t→∞

‖Ptµ − Ψ‖L1(R2) = 0,

where µ0 is the law of the random variable (ξ0, η0), while Pt is the operator
defined by

Ptµ0(x, y) =
\\
R2

µ0(dx′, dy′)p(t, x′, y′, x, y).

This completes the proof of the theorem.
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