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ON THE CONVERGENCE OF EXTREME
DISTRIBUTIONS UNDER POWER NORMALIZATION

Abstract. This paper deals with the convergence in distribution of the
maximum of n independent and identically distributed random variables un-
der power normalization. We measure the difference between the actual and
asymptotic distributions in terms of the double-log scale. The error com-
mitted when replacing the actual distribution of the maximum under power
normalization by its asymptotic distribution is studied, assuming that the
cumulative distribution function of the random variables is known. Finally,
we show by examples that the convergence to the asymptotic distribution
may not be uniform in this double-log scale.

1. Introduction. LetX1, . . . , Xn be independent random variables with
common distribution function (d.f.) F (x) = P (Xn ≤ x), and X1:n ≤ · · · ≤
Xn:n be the corresponding order statistics. Suppose there exist norming
constants αn, βn ∈ R and a d.f. K(x) such that as n→∞,

(1) Fn(αnx+ βn) w→ K(x),

where w→ denotes weak convergence. We call K a max stable d.f. under linear
normalization or simply an `-max stable law. It is well known that an `-max
stable law can only be one of Gnedenko’s extreme value distributions (see
[1], [7], [10]). If (1) holds, we write F ∈ D`(K) to indicate that F belongs
to the maximal domain of attraction of K under linear normalization. In
order to improve the accuracy of the approximation of the distribution of the
maximum for large values of n, [13, 15] introduced a nonlinear normalization
called power normalization. Following [12, 13], a d.f. F is said to belong to
the maximal domain of attraction of a d.f. H(x) under power normalization
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if there exist norming constants an, bn > 0 such that, as n→∞,

(2) P

(∣∣∣∣Xn:n

an

∣∣∣∣1/bnS(Xn:n) ≤ x
)

= Fn(an|x|bnS(x)) w→ H(x),

where S(x) = −1; 0; 1 if respectively x < 0; x = 0; x > 0. In this case we
write F ∈ Dp(H). We call H(x) a max stable d.f. under power normalization
or simply a p-max stable d.f. if (2) holds. We say that two d.f.’s F1 and F2 are
of the same p-type if there exist A,B > 0 such that F1(x) = F2(A|x|BS(x))
for all x. [13] showed that any p-max stable d.f. H(x) has the p-type of one
of the six d.f.’s H(i)

β (x) = exp(−Vi;β(x)), i = 1, . . . , 6, β > 0, where

Types I : V1;β(x) =
{∞, x ≤ 1,

(lnx)−β, x > 1;

Types II : V2;β(x) =


∞, x ≤ 0,
(− lnx)β, 0 < x ≤ 1,
0, x > 1;

Types III : V3;β(x) =


∞, x ≤ −1,
(− ln(−x))−β, −1 < x ≤ 0,
0, x > 0;

(3)

Types IV : V4;β(x) =
{

(ln(−x))β, x ≤ −1,
0, x > −1;

Type V : V5;β(x) =V5(x) =
{∞, x ≤ 0,

1/x, x > 0;

Type VI : V6;β(x) =V6(x) =
{−x, x < 0,

0, x ≥ 0.

Necessary and sufficient conditions for a d.f. to belong to Dp(·) for each
of the six p-max stable laws were obtained in [12, 14]. In these papers the
results of [8, 9] concerning linear normalization were extended to p-max
stable laws. They showed that every d.f. attracted to an `-max stable law is
necessarily attracted to some p-max stable law and that p-max stable laws,
in fact, attract more. For more details on power normalization see [2]–[5].

The normalizing constants an and bn can be chosen as follows (see [12]):

F ∈ Dp(exp(−V1;β(x))) : an = 1, bn = lnF−(1− 1/n),

F ∈ Dp(exp(−V2;β(x))) : an = x0, bn = ln
[

x0

F−(1− 1/n)

]
,

F ∈ Dp(exp(−V3;β(x))) : an = 1, bn = − ln[−F−(1− 1/n)],
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F ∈ Dp(exp(−V4;β(x))) : an = −x0, bn = ln
[
F−(1− 1/n)

x0

]
,

F ∈ Dp(exp(−V5;β(x))) : an = F−(1− 1/n), bn = f(an),

F ∈ Dp(exp(−V6;β(x))) : an = −F−(1− 1/n), bn = f(−an),

where F−(y) = inf {x : F (x) > y}, x0 = sup {x : F (x) < 1} and

f(t) = (1− F (t))−1
x0�

t

1− F (x)
x

dx.

For these results to be useful in practice one needs to know the order of
magnitude of the error committed when the actual cdf Fn(an|x|bnS(x)) is
replaced by the asymptotic cdf H(i)

β (x). One way of measuring this error is
provided by the arithmetical scale of probabilities which leads to the absolute
error Fn(an|x|bnS(x))−H(i)

β (x). In addition, the double-log scale and inverse
scale that leads to the idea of “return period” may be used to measure the
error. The speed of convergence of the distribution of the maximum of a
sample of independent and identically distributed random variables under
linear normalization to its asymptotic distribution is considered in [11]. In
this paper the convergence of the distribution of the maximum of a sample
of independent and identically distributed random variables under power
normalization is studied. The practical importance of the double-log scale is
considered in Section 2. The order of magnitude of the error in the double-log
scale and the uniformity of the convergence are studied in Section 3.

2. The double-log scale property. Many properties of probability
distributions can be expressed adequately using the arithmetical scale. How-
ever, there are practical situations when the occurrence of an event relating
to the distribution of the maximum or minimum has a catastrophic charac-
ter. In these cases, one typically wants to evaluate the risk incurred because
of taking a decision. When a cdf H(x) takes values in a small neighborhood
of 1, the arithmetical scale makes it difficult to perceive and to represent
graphically the often significant consequences of a seemingly small change in
H(x). So, the double-log scale to measure the error deserves consideration.
In this scale we use |ζF − ζH |, where

ζF = − ln {− lnFn(an|x|bnS(x))} and ζH = − ln {− lnH(x)}.
Also, we can use the inverse scale or “return period” defined by δH =
(1−H(x))−1, which gives the expected number of observations of the ran-
dom variable required to obtain the first observation larger than quantile
of H(x). According to these scales, a probability H(x) = 1 − (ln a)−1 may
be represented by ξH = − ln(− ln(1 − (ln a)−1)) ≈ ln ln a or δH = ln a, the
approximation being valid if H(x) is close to 1. When a = 10, the corre-
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sponding probability is represented in terms of the arithmetical, double-log,
and inverse scales by 0.0, 0.0 and 1.0, respectively. If a decision is taken to
choose a = 100, these figures must be replaced by 0.5, 0.3 and 2. While
the difference is 0.005 in the arithmetical scale, it is 0.003 in the double-log
scale, and 0.001 for the return period. The relative risk is 2, and the ln of
the relative risk is 0.30, so the difference between the double-log values is
almost exactly equal to the ln of the relative risk.

In the double-log scale, the equations y = H
(i)
β (x), i = 1, . . . , 6, represent

curves in the coordinates (x, y), but become straight lines in the coordinates
(ξ, η), where ξ = − ln(− lnH(i)

β (x)) and η = ln lnx for i = 1, η = − ln(− lnx)
for i = 2, η = − ln(− ln(−x)) for i = 3, η = − ln ln(−x) for i = 4, η = lnx
for i = 5 and η = − ln(−x) for i = 6.

3. Uniformity of convergence. The convergence of Fn(an|x|bnS(x))
to H(i)

β (x) and the continuity of the double-log scale transformation imply
the convergences of ξF to ξH . If these convergence were uniform, the error
committed using H

(i)
β (x) instead of Fn(an|x|bnS(x)) would be bounded in

the upper tail when using the double-log scale. The uniformity is an impor-
tant property in practical applications. We now give two theorems to show
that the convergence is not always uniform in the double-log scale and the
greater the sample size n, the smaller the bound would be.

Theorem 3.1. Let F (x) be absolutely continuous and suppose G(zx) =
z−β(1 − F (x0 exp(−zx))) is finite and has a limit M 6= 0 as z → 0. Then
F (x) is in the domain of attraction of H(2)

β (x) and the convergence in the
upper tail is uniform in x in the double-log scale.

Proof. F (x) ∈ DP (H(2)
β (x)) if and only if (see [12])

lim
z→0

1− F (x0 exp(−zx))
1− F (x0 exp(−z))

= xβ, x, β > 0.

Since G(z) has a limit M 6= 0, we have

lim
z→0

1− F (x0 exp(−zx))
1− F (x0 exp(−z))

= lim
z→0

G(zx)
G(z)

xβ = xβ,

and therefore F (x) is in the domain of attraction of H(2)
β (x).

Let h(z, x) = G(zx)/G(z). Then limz→0 h(z, x) = 1, x > 0. Choosing
an = x0, F (x0 exp(−bn)) = 1− 1/n, S(x) = 1 one obtains

ξF = − ln(−n lnF (x0|x|bn))

= − ln(−n ln(1− (− lnx)βh(bn,− lnx))(1− F (x0 exp(−bn))))
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≈ − ln(n(− lnx)βh(bn,− lnx)))(1− F (x0 exp(−bn))))
= − lnn− β ln(− lnx)− ln(h(bn,− lnx))

− ln(1− F (x0 exp(−bn)))
= − β ln(− lnx)− ln(h(bn,− lnx)),

where 0 < x < 1 and the approximation is valid when x is close to 1.
Moreover,

ξ
H

(2)
β

= − ln(− ln(exp(−(− lnx)β))) = −β ln(− lnx).

Then
∆ = |ξF − ξH(2)

β

| = |ln(h(bn,− lnx))|.

Therefore, the convergence is uniform in x in the upper tail if h(bn,− lnx)
can be bounded in the neighborhood 0 < x < ε of zero.

Finally, because limz→0G(z) = M and limz→0G(xz) = M, for any ε > 0
we have

1− 2ε
M

< h(z, x) <
M + ε

M − ε
< 1 +

4ε
M
,

the last inequality being valid if ε < M/2. Hence if ε is small, then we have
|ln(h(bn,− lnx))| < 4ε

M ln e for any bn > 0 and 0 < x < 1, and consequently
the convergence to H(2)

β (x) is uniform in x in the upper tail when the double-
log scale is used.

Theorem 3.2. Let F (x) ∈ DP (H(2)
β (x)) and limz→0G(z) = M, where

G(z) = (1− F (x0 exp(−z)))z−β and M = 0 or ∞. Then the convergence is
non-uniform in x in the double-log scale. Moreover , for any α > 0, one has
limz→0G(z)z−α =∞ if M = 0, and limz→0G(z)zα = 0 if M =∞.

Proof. If limz→0 G(z) = 0 and F (x) ∈ DP (H(2)
β (x)), then the rate of

convergence of G(z) to 0 must be compatible with the necessary and suffi-
cient condition for F (x) to be in the domain of attraction of H(2)

β (x), which
is

lim
z→0

G(zx)
G(z)

= 1, x > 0.

If limz→0G(z)z−α = M > 0, one has

lim
z→0

G(zx)
G(z)

= lim
z→0

(zx)−αG(zx)
z−αG(z)

xα = xα 6= 1,

and therefore F (x) is not in the domain of attraction of H(2)
β (x). Similarly,

when limz→0 G(z) =∞ and F (x) ∈ DP (H(2)
β (x)).
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Remark 3.1. Theorem 3.1 provides conditions for Fn(an|x|bnS(x)) to
converge uniformly to H

(2)
β (x), while Theorem 3.2 gives conditions under

which the convergence to H(2)
β (x) is non-uniform. The most important con-

sequence of these theorems is that the convergence to H(2)
β (x) and H

(i)
β (x),

i = 1, 3, 4, 5, 6, must be uniform or, otherwise, the difference |ξF −ξH(i)
β

| is at

most a logarithmic function of η, where η = ln lnx for i = 1, η = − ln(− lnx)
for i = 2, η = − ln(− ln(−x)) for i = 3, η = − ln ln(−x) for i = 4, η = lnx
for i = 5 and η = − ln(−x) for i = 6.

Example 3.1. Let

F (x) =


1, x > 1,
1− (− lnx)β(− ln(− lnx))M , a < x ≤ 1,
0, x ≤ a,

where β > 0,M is a given real number and a satisfies a ≥ exp(−1), a ≥
exp(− exp(−M/β)), and a ≥ x∗ for every solution x∗ of the equation 1 −
(− ln(x∗))β(− ln(− ln(x∗)))M = 0 in the interval (0, 1). Since

lim
z→0

1− F (x0 exp(−zx))
1− F (x0 exp(−z))

= xβ, x0 = 1,

we have F (x) ∈ DP (H(2)
β (x)) with an = 1 and bβn(− ln bn)M = 1/n, and

when S(x) = 1,

ξF = − ln(−n lnF (an|x|bn))

= − ln(−n ln(1− (− ln(xbn))β(− ln(− ln(xbn)))M ))

= − ln(−n ln(1− bβn(− lnx)β(− ln(bn(− lnx)))M ))

= − ln
(
−n ln

(
1− (− lnx)β

n

(
− ln bn − ln(− lnx)

− ln bn

)M))
≈ − ln

(
(− lnx)β

(
− ln bn − ln(− lnx)

− ln bn

)M))
= −β ln(− lnx)−M ln

(
− ln bn − ln(− lnx)

− ln bn

)
,

where the approximation is valid for any 0 < x < 1 close to one. Also,

ξ
H

(2)
β

= −β ln(− lnx).

Hence

∆ = |ξF − ξH(2)
β

| =
∣∣∣∣M ln

(
− ln bn − ln(− lnx)

− ln bn

)∣∣∣∣,
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which is an unbounded function of η = − ln(− lnx) when η tends to infinity
provided that M 6= 0, and obviously tends to 0 as n tends to infinity for
each given η. Hence the convergence of ξF to ξ

H
(2)
β

is uniform in x if M = 0
but is non-uniform in x if M 6= 0.

Example 3.2. Let F (x) = 1 − exp(−(ln(−x))−β), x ≤ −1. In order to
study the uniformity of the convergence in the double-log scale one has to
analyze the difference |ξF − ξH | , where in the case S(x) = 1,

ξF = − ln(−n ln(1− exp(−(ln(−an|x|bn))−β)))

= − ln(n exp(−(ln(−an|x|bn))−β))

≈ − lnn+ (ln(−an|x|bn))−β ln e,

where the approximation is valid for large values of x, and

ξ
H

(4)
β

= − ln(− ln(exp(−(ln(−x))β))) = − ln((ln(−x))β).

Hence

∆1 = |ξF − ξH(4)
β

|

= |− lnn+ (ln(−an|x|bn))−β ln e+ β ln ln(−x)|.
For fixed n, this expression is an unbounded function of x for any β > 0,
except for β = 1 with bn = 1. Therefore, the convergence of Fn(αn|x|βnS(x))
to H(4)

β is non-uniform in x in the double-log scale for any β 6= 1, and the
difference ∆1 in the upper tail is a logarithmic function of η = − ln ln(−x)
with exponent β.

Example 3.3. Let F (x) = 1− exp(−(− ln(−x))β), −1 < x < 0. Then

ξF = − ln(−n ln(1− exp(−(− ln(−an|x|bn))β)))

= − ln(n exp(−(− ln(−an|x|bn))β))

≈ − lnn+ (− ln(−an|x|bn))β ln e,

ξ
H

(3)
β

= − ln(− ln(exp(−(− ln(−x))−β)))

= − ln((− ln(−x))−β).

Hence

∆2 = |− lnn+ (− ln(−an|x|bn))β ln e− β ln(− ln(−x))|.
For fixed n, this expression is an unbounded function of x for any β > 0, ex-
cept for β = 1 with bn = 1. Therefore, the convergence of Fn(αn|x|βnS(x))
to H(3)

β is non-uniform in x in the double-log scale for any β 6= 1, and the dif-
ference ∆2 in the upper tail is a logarithmic function of η = − ln(− ln(−x))
with exponent −β.
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Example 3.4. Let F (x) = 1− exp(−(lnx)β), x > 1. Then

ξF = − ln(−n ln(1− exp(−(ln(an|x|bn))β)))

= − ln(n exp(−(ln(an|x|bn))β))

≈ − lnn+ (ln(an|x|bn))β ln e,

ξ
H

(1)
β

= − ln(− ln(exp(−(lnx)−β)))

= − ln((lnx)−β).

Hence
∆3 = |− lnn+ (ln(an|x|bn))β ln e− β ln lnx|.

For fixed n, this expression is an unbounded function of x for any β > 0,
except for β = 1 with bn = 1. Therefore, the convergence of Fn(αn|x|βnS(x))
to H(1)

β is non-uniform in x in the double-log scale for any β 6= 1, and the
difference ∆3 in the upper tail is a logarithmic function of η = ln lnx with
exponent β.

It is interesting that, because |ξF − ξH(1)
β

| is a logarithmic function of η

in the first and second example, the difference between ξF and ξH increases
very slowly when η tends to infinity.
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