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IMPLICIT DIFFERENCE METHODS FOR QUASILINEAR
PARABOLIC FUNCTIONAL DIFFERENTIAL PROBLEMS

OF THE DIRICHLET TYPE

Abstract. Classical solutions of quasilinear functional differential equa-
tions are approximated with solutions of implicit difference schemes. Proofs
of convergence of the difference methods are based on a comparison tech-
nique. Nonlinear estimates of the Perron type with respect to the functional
variable for given functions are used. Numerical examples are given.

1. Introduction. For any two metric spaces X and Y we denote by
C(X,Y ) the class of all continuous functions defined on X and taking values
in Y . Let Mn×n denote the set of all n × n real matrices. We will use
vectorial inequalities, understanding that the same inequalities hold between
the corresponding components. Let

E = [0, a]× (−b, b), D = [−d0, 0]× [−d, d],

where a > 0, b = (b1, . . . , bn), bi > 0 for 1 ≤ i ≤ n, d0 ∈ R+, d =
(d1, . . . , dn) ∈ Rn

+ and R+ = [0,∞). We put c = (c1, . . . , cn) = b+ d and

∂0E = [0, a]×([−c, c]\(−b, b)), E0 = [−d0, 0]×[−c, c], Ω = E∪E0∪∂0E.

For a function z : Ω → R and a point (t, x) ∈ [0, a] × [−b, b] we define a
function z(t,x) : D → R as follows:

z(t,x)(ξ, y) = z(t+ ξ, x+ y) for (ξ, y) ∈ D.

The function z(t,x) is the restriction of z to the set [t− d0, t]× [x− d, x+ d]
and this restriction is shifted to the set D. Elements of the space C(D,R)
will be denoted by w, w and so on. Write Σ = E × C(D,R) and suppose
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that the functions

f : Σ →Mn×n, f = [fij ]i,j=1,...,n,

g : Σ → Rn, g = (g1, . . . , gn), G : Σ → R
and

ϕ : ∂0E ∪ E0 → R, α : E → R1+n, α = (α0, α
′), α′ = (α1, . . . , αn),

are given. We assume that α(t, x) ∈ E and α0(t, x) ≤ t for (t, x) ∈ E, where
E is the closure of E. We consider the problem consisting of the quasilinear
differential functional equation

∂tz(t, x) =
n∑

i,j=1

fij(t, x, zα(t,x))∂xixjz(t, x)(1)

+
n∑
i=1

gi(t, x, zα(t,x))∂xiz(t, x) +G(t, x, zα(t,x))

with the initial boundary condition of the Dirichlet type

(2) z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E.

We are interested in establishing a method of numerical approximation
of classical solutions to (1), (2) by means of solutions of associated implicit
difference schemes and in estimating the difference between the exact and
approximate solutions.

Explicit difference methods for (1), (2) consist in replacing the partial
derivatives ∂t, ∂x = (∂x1 , . . . , ∂xn) and ∂xx = [∂xixj ]i,j=1,...,n with difference
expressions. Moreover, because equation (1) contains the functional variable
zα(t,x) which is an element of the space C(D,R) we need interpolating op-
erators. This leads to a difference functional equation of the Volterra type.
Solutions of these equations approximate, under suitable assumptions on
given functions and on the mesh, solutions of the original problem. Methods
of difference inequalities or theorems on recurrent inequalities are used in
the investigation of the stability of difference schemes generated by parabolic
functional differential problems. The proofs of the convergence are also based
on a general theorem on an error estimate for approximate solutions of func-
tional difference equations of the Volterra type with the unknown function
of several variables.

Difference methods for nonlinear parabolic differential or functional dif-
ferential equations were considered by many authors under various assump-
tions. It is not our aim to give a full review of papers concerning convergence
results for difference schemes. We only mention those which contain such re-
views: [8], [11], [12], [14], [15].

Two types of assumptions are needed in theorems on convergence of
explicit difference methods for (1), (2). Conditions of the first type deal
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with the regularity of the given functions and the parabolicity of (1). It is
assumed that f, g, G are continuous on Σ and satisfy nonlinear estimates
of the Perron type with respect to the functional variable. The parabolicity
of (1) means that the matrix f is symmetric on Σ and

fii(P ) >
n∑
j=1
j 6=i

fij(P ), i = 1, . . . , n,

where P = (t, x, w) ∈ Σ. Note that the above condition implies that
n∑

i,j=1

fij(P )ξiξj ≥ 0 for ξ = (ξ1, . . . , ξn) ∈ Rn,

which means that equation (1) is parabolic in the sense of Walter [16]. The
conditions of the second type are connected with the mesh. It is assumed
that

(3) 1− 2h0

n∑
i=1

1
h2
i

fii(P ) + h0

n∑
j=1
j 6=i

1
hihj

|fij(P )| ≥ 0

for P ∈ Σ, where h0 and h′ = (h1, . . . , hn) are steps of the mesh. This
is a very restrictive assumption on the relations between h0 and h′. The
differential functional equation

(4) ∂tz(t, x) =
n∑
i=1

∂xixiz(t, x)+
n∑
i=1

∂xiz(t, x)gi(t, x, zα(t,x))+G(t, x, zα(t,x))

is a particular case of (1). Condition (3) for equation (4) has the form

1− 2h0

n∑
i=1

1
h2
i

≥ 0.

The aim of the paper is to show that the restriction (3) may be omitted in
the case of implicit difference schemes (9), (10).

Parabolic functional differential equations find applications in different
fields of knowledge. We give a few examples. The most important classes
of such problems are the Lotka–Volterra type reaction diffusion equations
which include delays and integral terms [4], [5]. Some systems of delayed
reaction diffusion equations have also been used in modelling genetic repres-
sion [9]. A nuclear reactor model has been described in [13] by means of a
system of two parabolic equations with delays. Reaction diffusion equations
with delays arise naturally in the study of climate models [6]. A mathemat-
ical description of the overall control systems may be given by a parabolic
equation with a deviated time variable [17]. For an extensive bibliography
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on applications of parabolic functional differential equations see the mono-
graph [18].

We give an example of equation which can be obtained from (1) by
specializing given functions.

Example 1. Assume that d0 = 0, d = 0 where 0 = (0, . . . , 0) ∈ Rn and

f̃ : E × R→Mn×n, f̃ = [f̃ij ]i,j=1,...,n,

g̃ : E × R→ Rn, g̃ = (g̃1, . . . , g̃n), G̃ : E × R→ R
are given functions. We define f, g,G as follows:

f(t, x, w) = f̃(t, x, w(0,0)),

g(t, x, w) = g̃(t, x, w(0,0)), G(t, x, w) = G̃(t, x, w(0,0)).

Then (1) reduces to the differential equation with deviated variables

∂tz(t, x) =
n∑

i,j=1

f̃ij(t, x, z(α(t, x)))∂xixjz(t, x)(5)

+
n∑
i=1

g̃i(t, x, z(α(t, x)))∂xiz(t, x) + G̃(t, x, z(α(t, x))).

Example 2. Suppose that β, γ : E → R1+n and β = (β0, β
′), γ =

(γ0, γ
′), β′ = (β1, . . . , βn), γ′ = (γ1, . . . , γn). We assume that

−d0 ≤ (β0 − α0)(t, x) ≤ 0, −d0 ≤ (γ0 − α0)(t, x) ≤ 0,
−d ≤ (β′ − α′)(t, x) ≤ d, −d ≤ (γ′ − α′)(t, x) ≤ d,

where (t, x) ∈ E. Write

I[w](t, x) =
(γ−α)(t,x)�

(β−α)(t,x)

w(τ, y) dy dτ.

For the above f̃ , g̃, G̃ we put

f(t, x, w) = f̃(t, x, I[w](t, x)),

g(t, x, w) = g̃(t, x, I[w](t, x)), G(t, x, w) = G̃(t, x, I[w](t, x)).

Then (1) is equivalent to the differential integral equation

(6) ∂tz(t, x) =
n∑

i,j=1

f̃ij

(
t, x,

γ(t,x)�

β(t,x)

z(τ, y) dy dτ
)
∂xixjz(t, x)

+
n∑
i=1

g̃i

(
t, x,

γ(t,x)�

β(t,x)

z(τ, y) dy dτ
)
∂xiz(t, x) + G̃

(
t, x,

(γ)(t,x)�

(β)(t,x)

z(τ, y) dy dτ
)
.
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It is clear that more complicated differential equations with deviated
variables and differential integral equations can be derived from (1). Note
also that equations (5), (6) cannot be obtained as particular cases of differ-
ential functional equations considered in [2], [3], [8]. The right hand sides
of equations in those papers depend on the restrictions of z to the set
[t−d0, t]×[x−d, x+d]. In our paper, the differential functional equations de-
pend on the restriction of z to [α0(t, x)−d0, α0(t, x)]×[α′(t, x)−d, α′(t, x)+d].

The paper is organized as follows. In Section 2 we construct a class of
implicit difference schemes for (1), (2). The existence and uniqueness of
approximate solutions, which is not obvious in contrast to explicit methods,
are proved in Section 3. In Section 4, which is the main part of the paper, we
give sufficient conditions for convergence of the implicit difference schemes.
Finally, numerical examples are presented in the last part of the paper.

2. Discretization of mixed problems. We formulate a difference
problem corresponding to (1), (2). We denote by N and Z the set of natural
numbers and the set of integers, respectively. Let F (X,Y ) denote the class
of all functions defined on X and taking values in Y where X and Y are arbi-
trary sets. For x ∈ Rn, U ∈Mn×n, where x = (x1, . . . , xn), U = [uij ]i,j=1,...,n,
we write

‖x‖ =
n∑
i=1

|xi|, ‖U‖∗ =
n∑

i,j=1

|uij |.

We define a mesh on Ω in the following way. Let (h0, h
′) where h′ =

(h1, . . . , hn) stand for steps of the mesh. For h = (h0, h
′) and (r,m) ∈ Z1+n

where m = (m1, . . . ,mn) we define nodal points as follows:

t(r) = rh0, x(m) = (x(m1)
1 , . . . , x(mn)

n ) = (m1h1, . . . ,mnhn).

Denote by H the set of all h = (h0, h
′) such that there exist K0 ∈ Z

and K = (K1, . . . ,Kn) ∈ Zn satisfying the conditions K0h0 = d0 and
(K1h1, . . . ,Knhn) = c. Let N ∈ N be defined by the relations Nh0 ≤ a <
(N + 1)h0. For h ∈ H we put

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z1+n}

and

Eh = E ∩ R1+n
h , E′h = {(t(r), x(m)) : 0 ≤ r ≤ N − 1, −K ≤ m ≤ K},

E0.h = E0 ∩ R1+n
h , ∂0Eh = ∂0E ∩ R1+n

h ,

Ωh = Ω ∩ R1+n
h = Eh ∪ E0.h ∪ ∂0Eh.

System (1) contains the functional variable zα(t,x) which is an element of
the space C(D,R). Thus we need an interpolating operator Th : F (Ωh,R)→
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C(Ω,R). We define Th in the following way. Suppose that z ∈ F (Ωh,R) and
(t, x) ∈ Ω. We consider two possibilities.

A) Suppose that there exists a point (t(r), x(m)) ∈ Ωh such that (t(r+1),
x(m+1)) ∈ Ωh, where m + 1 = (m1 + 1, . . . ,mn + 1) and t(r) ≤ t ≤ t(r+1),
x(m) ≤ x ≤ x(m+1). Put

= = {λ = (λ1, . . . , λn) : λi ∈ {0, 1} for 0 ≤ i ≤ n}.

We define

Th[z](t, x) =
t− t(r)

h0

∑
λ∈=

z(r+1,m+λ)

(
x− x(m)

h′

)λ(
1− x− x(m)

h′

)1−λ

+
(

1− t− t(r)

h0

)∑
λ∈=

z(r,m+λ)

(
x− x(m)

h′

)λ(
1− x− x(m)

h′

)1−λ

where (
x− x(m)

h′

)λ
=

n∏
i=1

(
xi − x(mi)

i

hi

)λi

,

(
1− x− x(m)

h′

)1−λ
=

n∏
i=1

(
1−

xi − x(mi)
i

hi

)1−λi

and we take 00 = 1 in the above formulas.

B) If (t, x) ∈ Ω and t(N) < t ≤ a, we define Th[z](t, x) = Th[z](t(N), x).

Thus we have defined Th[z] on Ω and Th[z] ∈ C(Ω,R).
The above interpolating operator was first proposed in [7] for the con-

struction of explicit difference schemes related to first order partial differ-
ential functional equations.

Let z : Ωh → R and (t(r), x(m)) ∈ E′h, and define

δ+i z
(r,m) =

1
hi

(z(r,m+ei) − z(r,m)),

δ−i z
(r,m) =

1
hi

(z(r,m) − z(r,m−ei)), 1 ≤ i ≤ n,

and

δ0z
(r,m) =

1
h0

(z(r+1,m) − z(r,m)),(7)

δiz
(r+1,m) =

1
2

(δ+i z
(r+1,m) + δ−i z

(r+1,m)), 1 ≤ i ≤ n.(8)

Put J = {(i, j) ∈ N2 : 1 ≤ i, j ≤ n, i 6= j}. Suppose that a function
ϕh : E0.h ∪ ∂0Eh → R is given. We approximate solutions of (1)–(2) with
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solutions of the difference functional equation

δ0z
(r,m) =

n∑
i,j=1

fij(P (r,m)[z])δijz(r+1,m)(9)

+
n∑
i=1

gi(P (r,m)[z])δiz(r+1,m) +G(P (r,m)[z]),

with the initial boundary condition

(10) z(r,m) = ϕ
(r,m)
h on E0.h ∪ ∂0Eh,

where P (r,m)[z] = (t(r), x(m), (Th[z])α(r,m)), α(r,m) = α(t(r), x(m)). The differ-
ence operator δ(2) = [δij ]i,j=1,...,n is defined in the following way:

(11) δiiz
(r+1,m) = δ+i δ

−
i z

(r+1,m), 1 ≤ i ≤ n,

(12) δijz
(r+1,m) =

1
2

(δ+i δ
−
j z

(r+1,m) + δ−i δ
+
j z

(r+1,m)) if fij(P (r,m)[z]) ≤ 0,

(13) δijz
(r+1,m) =

1
2

(δ+i δ
+
j z

(r+1,m) + δ−i δ
−
j z

(r+1,m)) if fij(P (r,m)[z]) > 0.

The difference functional problem (9)–(10) with δ0, δ, δ
(2) defined by

(7), (8), (11)–(13) is viewed as an implicit difference method for (1)–(2).
It is important in our considerations that the difference expressions δz and
δ(2)z appear in (9) at the point (t(r+1), x(m)). It follows from (12), (13) that
the definition of the difference expressions δijz(r+1,m) for (i, j) ∈ J depends
on the sign of fij(P (r,m)[z]). The corresponding explicit difference scheme
consists of the difference functional equation

δ0z
(r,m) =

n∑
i,j=1

fij(P (r,m)[z])δijz(r,m)(14)

+
n∑
i=1

gi(P (r,m)[z])δiz(r,m) +G(P (r,m)[z]),

with the initial boundary condition (10). It is clear that there exists exactly
one solution of problem (10), (14). Sufficient conditions for the convergence
of the difference scheme (10), (14) can be deduced from [2].

We prove that under natural assumptions on given functions there exists
exactly one solution uh : Eh → R of the implicit difference problem (9), (10).
In Section 4 we prove a convergence result.

3. Solutions of difference functional problems. For a function z :
Eh → R and a point (t(r), x(m)) ∈ Eh we put

(15) J
(r,m)
− [z] = {(i, j)∈ J : fij(P (r,m)[z]) ≤ 0}, J

(r,m)
+ [z] = J \J (r,m)

− [z].
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Assumption H[f, g, α].

1) The functions f : Σ → M [n] and g : Σ → Rn are continuous on Σ
and

(16) −1
2
|gi(P )|+ 1

hi
fii(P )−

n∑
j=1
j 6=i

1
hj
|fij(P )| ≥ 0, i = 1, . . . , n,

for P = (t, x, w) ∈ Σ.
2) α ∈ C(E,R1+n), α = (α0, α

′), α(t, x) ∈ E and α0(t, x) ≤ t for
(t, x) ∈ E.

Remark 1. Suppose that

(17) fii(P )−
n∑
j=1
j 6=i

|fij(P )| ≥ ε, P ∈ Σ,

where ε > 0, and h1 = · · · = hn are sufficiently small. Then condition (16)
is satisfied.

Theorem 3.1. If Assumption H[f, g, α] is satisfied and ϕh : ∂0Eh ∪
E0.h → R, then there is exactly one solution uh : Eh → R of problem
(9)–(10).

Proof. Suppose that 0 ≤ r ≤ N − 1 is fixed and that the solution uh of
(9), (10) is defined on Ωh ∩ ([−d0, t

(r)] × Rn). We prove that the numbers
u

(r+1,m)
h , where (t(r+1), x(m)) ∈ Eh, exist and are unique. There is Qh > 0

such that

(18) Qh ≥ 2h0

n∑
i=1

1
h2
i

fii(P (r,m)[uh])− h0

∑
(i,j)∈J

1
hihj

|fij(P (r,m)[uh])|.

Problem (9)–(10) is equivalent to the system of equations

z(r+1,m) =
1

Qh+1

[
Qhz

(r+1,m)
h +u(r,m)

h +h0

n∑
i,j=1

fij(P (r,m)[uh])δijz(r+1,m)(19)

+ h0

n∑
i=1

gi(P (r,m)[uh])δiz(r+1,m) + h0G(P (r,m)[uh])
]
,

with the boundary condition

z(r+1,m) = ϕ
(r+1,m)
h for (t(r+1), x(m)) ∈ ∂0Eh,
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where z(r+1,m), −K ≤ m ≤ K, are unknown. Write

Sh = {x(m) : −K ≤ m ≤ K}, ∂0Sh = {x(m) : (t(r+1), x(m)) ∈ ∂0Eh}.

We consider the space F (Sh,R). Elements of F (Sh,R) are denoted by ξ, ξ.
For ξ ∈ F (Sh,R) we write ξ(m) = ξ(x(m)) and

δξ(m) = (δ1ξ(m), . . . , δnξ
(m)), δ(2)ξ(m) = [δijξ(m)]i,j=1,...,n,

where δi and δij , 1 ≤ i, j ≤ n, are defined by (8)–(13). The norm in F (Sh,R)
is defined by

‖ξ‖∞ = max{|ξ(m)| : x(m) ∈ Sh}.

We consider the linear operator Uh : F (Sh,R)→ F (Sh,R) defined by

Uh[ξ](m) =
1

Qh + 1

[
Qhξ

(m) + h0

n∑
i,j=1

fij(P (r,m)[uh])δijξ(m)(20)

+ h0

n∑
i=1

gi(P (r,m)[uh])δiξ(m)
]

for x(m) ∈ Sh \ ∂0Sh,

and

(21) Uh[ξ](m) = 0 for x(m) ∈ ∂0Eh.

We prove that for ξ ∈ F (Sh,R) we have

(22) ‖Uh[ξ]‖∞ ≤
Qh

1 +Qh
‖ξ‖∞.

Write

A
(r,m)
i.+ [z] =

h0

2hi
gi(P (r,m)[z]) +

h0

h2
i

fii(P (r,m)[z])(23)

−
n∑
j=1
j 6=i

h0

hihj
|fij(P (r,m)[z])|,

A
(r,m)
i.− [z] = − h0

2hi
gi(P (r,m)[z]) +

h0

h2
i

fii(P (r,m)[z])(24)

−
n∑
j=1
j 6=i

h0

hihj
|fij(P (r,m)[z])|,

A(r,m)[z] = −2
n∑
i=1

h0

h2
i

fii(P (r,m)[z]) +
n∑

(i,j)∈J

h0

hihj
|fij(P (r,m)[z])|,(25)
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where 1 ≤ i ≤ n. It follows from Assumption H[f, g, α] that

|Uh[ξ](m)|(Qh + 1)

≤ |(Qh +A(r,m)[uh])ξ(m)|

+
∣∣∣ n∑
i=1

A
(r,m)
i.+ [uh]ξ(m+ei)

∣∣∣+
∣∣∣ n∑
i=1

A
(r,m)
i.− [uh]ξ(m−ei)

∣∣∣
+ h0

n∑
(i,j)∈J(r,m)

+ [uh]

1
2hihj

fij(P (r,m)[uh])[|ξ(m+ei+ej)|+ |ξ(m−ei−ej)|]

− h0

n∑
(i,j)∈J(r,m)

− [uh]

1
2hihj

fij(P (r,m)[uh])[|ξ(m+ei−ej)|+ |ξ(m−ei+ej)|].

We conclude from Assumption H[f, g, α] and from (18) that

Qh +A(r,m)[uh] ≥ 0, A
(r,m)
i.+ [uh] ≥ 0, A

(r,m)
i.− [uh] ≥ 0, 1 ≤ i ≤ n,

and

(26) A(r,m)[uh] +
n∑
i=1

A
(r,m)
i.+ [uh] +

n∑
i=1

A
(r,m)
i.− [uh]

+h0

n∑
(i,j)∈J(r,m)

+ [uh]

1
hihj

fij(P (r,m)[uh])−h0

n∑
(i,j)∈J(r,m)

− [uh]

1
hihj

fij(P (r,m)[uh]) = 0.

The above considerations and (21) imply

|Uh[ξ](m)|(Qh + 1) ≤ Qh‖ξ‖∞ for −K ≤ m ≤ K.
This completes the proof of (22). It follows that the norm of the operator
Uh is less than 1. Thus there exists exactly one solution of (19). Since uh
is given on the initial boundary set ∂0Eh ∪ E0.h, the proof is completed by
induction with respect to r, 0 ≤ r ≤ N .

4. Convergence of implicit difference schemes. Write I = [−d0, 0].
We will need the operator V : C(D,R)→ C(I,R+) defined by

V [w](t) = max{|w(t, x)| : x ∈ [−d, d]}, t ∈ I.
Let ‖ · ‖D denote the maximum norm in the space C(D,R). Set

Ih = {t(r) : −K0 ≤ r ≤ 0}, Ah = {t(r) : 0 ≤ r ≤ N}.
For ξ : Ih ∪Ah → R we write ξ(r) = ξ(t(r)). If ξ : Ih ∪Ah → R and t(r) ∈ Ah
then ξ[r] : Ih → R is defined by

ξ[r](τ) = ξ(t(r) + τ), τ ∈ Ih.
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We will need the operator Th0 : F (Ih,R)→ C(I,R) defined by

(27) Th0 [ξ](t) = ξ(r+1) t− t(r)

h0
+ ξ(r)

(
1− t− t(r)

h0

)
, t(r) ≤ t ≤ t(r+1),

where ξ ∈ F (Ih,R).
It is clear that Th0 is a particular case of Th.

Lemma 1. Suppose that z̃ : Ω → R and

1) z̃(t, ·) : [−c, c] → R is of class C2 for t ∈ [−d0, a] and z̃(·, x) :
[−d0, a]→ R is of class C1 for x ∈ [−c, c],

2) the constants d̃, d̃0 ∈ R+ are defined by the relations

|∂xixj z̃(t, x)| ≤ d̃ for (t, x) ∈ Ω, i, j = 1, . . . , n,(28)

|∂tz̃(t, x)| ≤ d̃0 for (t, x) ∈ Ω,
Then

(29) |Th(z̃h)[r,m] − z̃(r,m)| ≤ d̃0h0 + d̃‖h′‖2, (t(r), x(m)) ∈ Eh,
where z̃h is the restriction of z̃ to the set Ωh.

The above lemma follows from Theorem 5.27 in [7]. The estimate (29)
states that the function is approximated by Th[z̃h] and the error of this
approximation is bounded by d̃0h0 + d̃‖h′‖2.

Now we formulate assumptions on the regularity of G, f, g with respect
to the functional variables.

Assumption H[σ,f, g,G]. The functionsf, g satisfy Assumption H[f, g, α]
and

1) there is σ : [0, a]× C(I,R)→ R+ such that

(i) σ is continuous, nondecreasing with respect to both variables and
σ(t, θ) = 0 for t ∈ [0, a], where θ ∈ C(I,R+) is given by θ(τ) = 0
for τ ∈ I,

(ii) for each c ≥ 1 the function ω̃(t) = 0 for t ∈ I ∪ [0, a] is the
maximal solution of the Cauchy problem

(30) ζ ′(t) = cσ(t, ζt), ζ(t) = 0 for t ∈ I,
2) the estimates

‖f(t, x, w)− f(t, x, w)‖∗ ≤ σ(t, V [w − w]),
‖g(t, x, w)− g(t, x, w)‖ ≤ σ(t, V [w − w]),
|G(t, x, w)−G(t, x, w)| ≤ σ(t, V [w − w])

are satisfied on Σ.

For a function η : Ih → R we write η(r) = η(t(r)).
Now we prove a theorem on convergence of the method (9), (10).
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Theorem 4.1. Suppose that Assumption H[σ, f, g,G] is satisfied and

1) the function v : Ω → R is a solution of (1), (2) and v is of class C2

on Ω,
2) there is c0 > 0 such that hih−1

j ≤ c0, i, j = 1, . . . , n,
3) the function uh : Eh → R is a solution of (9), (10) and there is

γ0 : H → R+ such that

(31) |v(r,m) − u(r,m)
h | ≤ γ0(h) on ∂0Eh ∪ E0.h

and limh→0 γ0(h) = 0.

Then there exists a function α : H → R+ such that

(32) |(uh − vh)(r,m)| ≤ α(h) on Eh and lim
h→0

α(h) = 0

where vh is the restriction of v to the set Eh.

Proof. We divide the proof into a sequence of steps.

I. Write zh = vh − uh. We construct a difference equation for zh. Let
Γh : E′h → R and Γ0.h : ∂0Eh ∪ E0.h → R be defined by the relations

δ0v
(r,m)
h = Fh[vh](r,m) + Γ

(r,m)
h on E′h,

v
(r,m)
h = ϕ

(r,m)
h + Γ

(r,m)
0.h on ∂0Eh ∪ E0.h.

It follows from Lemma 1, condition 1) of the theorem and (31) that there is
γ : H → R+ such that

|Γ (r,m)
h | ≤ γ(h) on E′h, lim

h→0
γ(h) = 0.

Then we have

δ0z
(r,m)
h =

n∑
i,j=1

fij(P (r,m)[uh])δijz
(r+1,m)
h +

n∑
i=1

gi(P (r,m)[uh])δiz
(r+1,m)
h

+ Λ
(r,m)
h + Γ

(r,m)
h ,

where

Λ
(r,m)
h =

n∑
i,j=1

[fij(P (r,m)[vh])− fij(P (r,m)[uh])]δijv
(r+1,m)
h

+
n∑
i=1

[gi(P (r,m)[vh])− gi(P (r,m)[uh])]δiv
(r+1,m)
h

+G(P (r,m)[vh])−G(P (r,m)[uh]).
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The above relations and (7), (8), (11)–(13), (23)–(25) imply

(33) z
(r+1,m)
h [1−A(r,m)[uh]]

= z
(r,m)
h + h0

n∑
i=1

A
(r,m)
i.+ [uh]z(r+1,m+ei)

h + h0

n∑
i=1

A
(r,m)
i.− [uh]z(r+1,m−ei)

h

− h0

∑
(i,j)∈J(r,m)

− [uh]

1
2hihj

fh.ij(P (r,m)[uh])[z(r+1,m+ei−ej)
h + z

(r+1,m−ei+ej)
h ]

+ h0

∑
(i,j)∈J(r,m)

+ [uh]

1
2hihj

fh.ij(P (r,m)[uh])[z(r+1,m+ei+ej)
h + z

(r+1,m−ei−ej)
h ]

+ h0Λ
(r,m)
h + h0Γ

(r,m)
h .

The above relation can be considered as a difference equation for the error zh.

II. Let the function ε
(r)
h : Ih ∪Ah → R+ be defined by

ε
(r)
h = max{|z(i,m)

h | : (t(i), x(m)) ∈ Ωh ∩ ([−d0, t
(r)]× Rn)}, −K0 ≤ r ≤ N.

We will write a difference inequality for εh. We deduce from (16) that

(34) A
(r,m)
i.+ [uh] ≥ 0, A

(r,m)
i.− [uh] ≥ 0, 1−A(r,m)[uh] ≥ 0 for 1 ≤ i ≤ n.

It is easy to prove by induction with respect to n that∑
λ∈=

(
x− x(m)

h′

)λ(
1− x− x(m)

h′

)1−λ
= 1 for x(m) ≤ x ≤ x(m+1).

This gives

V [Th[zh][r,m]](τ) ≤ Th0 [(εh)[r]](τ), τ ∈ I, 0 ≤ r ≤ N.

We conclude from condition 2) of Assumption H[σ, f, g,G] that

(35)
n∑

i,j=1

|fij(P (r,m)[vh])− fij(P (r,m)[uh])|

=
n∑

i,j=1

|fij(t(r), x(m), (Th[vh])α(r,m))− fij(t(r), x(m), (Th[uh])α(r,m))|

≤ σ(t(r), Th0 [(εh)[r]])

In a similar way we obtain

(36) ‖g(P (r,m)[vh])− g(P (r,m)[uh])‖ ≤ σ(t(r), Th0 [(εh)[r]]),
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and

(37) |G(t(r), x(m), (Th[vh])α(r,m))−G(t(r), x(m), (Th[uh])α(r,m))|

≤ σ(t(r), Th0 [(εh)[r]]).

Let c̃ ∈ R+ be a constant such that

|∂xiv(t, x)|, |∂xixjv(t, x)| ≤ c̃, i, j = 1, . . . , n, (t, x) ∈ E.

It follows from (26) and (33)–(37) that the function εh satisfies the recurrent
inequality

(38) ε
(r+1)
h ≤ ε(r)h + (2c̃+ 1)h0σh(t(r), Th0 [(εh)t(r) ]) + h0γ(h),

0 ≤ r ≤ N − 1,
and

(39) ε
(r)
h ≤ γ0(h) for −K0 ≤ r ≤ 0.

III. We prove that there is α : H → R+ such that ε(r)h ≤ α(h) for
0 ≤ r ≤ N and limh→0 α(h) = 0. Consider the Cauchy problem

ξ′(t) = (2c̃+ 1)σ(t, ξt + (µ(h))t) + γ(h),(40)
ξ(t) = γ0(h) for t ∈ I,(41)

where µ : H → (0,∞), limh→0 µ(h) = 0 and (µ(h))t ∈ C(I,R+) is a con-
stant function: (µ(h))t(τ) = µ(h) for τ ∈ I. It follows from condition 1) of
Assumption H[f, g, α] that there is ε̃ > 0 such that for ‖h‖ ≤ ε̃ the maximal
solution ω(·, h) of (40), (41) is defined on I ∪ [0, a] and

(42) lim
h→0

ω(t, h) = 0 uniformly on I ∪ [0, a].

Suppose that h̃ ∈ H is fixed and ‖h̃‖ < ε. Denote by C[h̃] the set of all
h ∈ H satisfying ‖h‖ < ε̃ and µ(h) < µ(h̃), γ(h) < γ(h̃). Then the maximal
solution ω(·, h) of the difference equation (40), (41), where h ∈ C[h̃], satisfies
the condition

(43) ω(t, h) ≤ ω(t, h̃) for t ∈ I ∪ [0, a].

Let ωh0(·, h) denote the restriction of ω(·, h) : I ∪ [0, a] → R+ to the set
Ih ∪Ah. It follows from (27) that

(44) Th0 [(ωh0(·, h))[r]](τ)− (ω(·, h))t(r)(τ) ≤ h0ω
′(a, h) ≤ h0ω

′(a, h̃)

for τ ∈ I. There is ε > 0 such that for h ∈ C[h̃] with ‖h‖ < ε we have

(45) µ(h̃) > µ(h) ≥ h0ω
′(a, h̃).

We conclude from condition 1) of Assumption H[f, g, α] and from (44), (45)
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that for h ∈ C[h̃], ‖h‖ < ε we have

ω′(t(r), h) = (2c̃+ 1)σ(t(r), (ω(·, h))t(r) + (µ(h))t) + γ(h)

= σ(t(r), Th0 [(ωh0(·, h))[r]] + (ω(·, h))t(r) − Th0 [(ωh0(·, h))[r]]

+ (µ(h))t(r)) + γ(h)

≥ σ(t(r), Th0 [(ωh0(·, h))[r]])− (h0ω
′(a, h))(t(r)) +(µ(h))(t(r)))+γ(h)

≥ σ(t(r), Th0 [(ωh0(·, h))[r]]) + γ(h), 0 ≤ r ≤ N.

Since ω(·, h) is a convex function, for h ∈ C[h̃] with ‖h‖ < ε we have the
difference inequality

ωh0(t(r+1), h) ≥ ωh0(t(r), h) + h0(2c̃+ 1)σ(t(r), Th0 [(ωh0(·, h))[r]])

+ h0γ(h), 0 ≤ r ≤ N − 1.

Since εh satisfies (38), (39) the above relations and (24) imply the estimate

ε
(r)
h ≤ ω(t(r), h), 0 ≤ r ≤ N.

where h ∈ C[h̃], ‖h‖ < ε. It follows from (25), (43) that the assertion of the
theorem is satisfied with α(h) = ω(a, h).

Remark 2. Suppose that Assumption H[σ, f, g] is satisfied with

σ(t, w) = L‖w‖I , (t, p) ∈ [0, a]× R+ where L ∈ R+.

Then f, g and G satisfy the Lipschitz condition with respect to the func-
tional variable. We obtain the following error estimates:

|(uh − vh)(r,m)| ≤ α̃(h)ecLa + γ̃(h)
ecLa − 1
cL

on Eh if L > 0,

and
|(uh − vh)(r,m)| ≤ α̃(h) + aγ̃(h) on Eh if L = 0.

The above inequalities follow from (32) with α(h) = ωh(a) where ωh :
[0, a]→ R+ is a solution of the problem

ζ ′(t) = cLζ(t) + γ̃(h), ζ(0) = α0(h).

It is important in our considerations that equations with deviated vari-
ables appear in comparison problems. In the next lemma we give a suitable
example.

Lemma 2. If µ ≥ ν > 1 and L ∈ R+, c ≥ 1 then the maximal solution
of the Cauchy problem

(46) ζ ′(t) = c[ζ(tµ)]1/ν + Lζ(t), ζ(0) = 0,

is ζ(t) = 0 for t ∈ [0, a] where a < 1.
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Proof. There are ε̃, c̃ > 0 such that the maximal solution ζ of (46) sat-
isfies

ζ(t) ≤ C̃t for t ∈ [0, ε̃].

Write
C = max{c, L, C̃}.

Then ζ satisfies the integral inequality

ζ(t) ≤ C
[ t�

0

[ζ(sµ)]1/ν ds+
t�

0

ζ(s) ds
]
, t ∈ [0, ε̃],

and ζ(t) ≤ Ct for t ∈ [0, ε̃].
It follows from the above relations that

ζ(t) ≤ Cktk, t ∈ [0, ε̃], k ≥ 1.

Then there is ε0 such that ζ = 0 for t ∈ [0, ε0] and consequently ζ(t) = 0 on
[0, a].

Remark 3. Note that the maximal solution of (46) with ν > 1 and
µ = 1 is positive on (0, a]. The above considerations and examples (5),
(6) show that the class of differential functional equations which is covered
by our theory is more general than the corresponding classes considered in
[2], [3], [13], [14].

Remark 4. Consider the explicit difference method (10)–(14). Then we
need the following assumption on f and on the steps of the mesh ([10]):

(47) 1− 2h0

n∑
j=1

1
h2
j

fjj(P ) + h0

∑
(i,j)∈J

1
hihj

|fij(P )| ≥ 0,

where P ∈ Σ. If the functions fij , i, j = 1, . . . , n, are bounded on Σ then
inequality (47) states relations between h0 and h′ = (h1, . . . , hn). It is impor-
tant in our considerations that condition (47) is omitted in the convergence
theorem.

Remark 5. Suppose that the function σ has the structure

σ(t, τ) = A(t)B(τ),

where A ∈ C ([0, a],R+), B ∈ C (R+,R+), B(0) = 0 and B(τ) > 0 for τ > 0.
The Cauchy problem

ξ′(t) = A(t)B(ξ(t)), ξ(0) = 0,

has a unique solution if and only if
ε�

0

dτ

B(τ)
=∞, where ε > 0.
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Then for each c ≥ 1 the Cauchy problem

ξ′(t) = cA(t)B(ξ(t)), ξ(0) = 0,

has the only solution u(t) = 0 for t ≥ 0.
There is a comparison problem

ξ′(t) = σ(t, ξ(t)), ξ(0) = 0,

which has the maximal solution u(t) = 0 for t ≥ 0 while the initial problem

ξ′(t) = cσ(t, ξ(t)), ξ(0) = 0,

for c ≥ 0 has a positive solution on [0, a]. Such an example is given in [1].

5. Numerical examples

Example 1. Write

E = [0, 0.25]× [−1, 1]× [−1, 1], E0 = {0} × [−1, 1]× [−1, 1],
∂0E = [0, 0.25]× [([−1, 1]× [−1, 1]) \ ((−1, 1)× (−1, 1))].

Consider the differential equation with deviated variables

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y)(48)

+ xy sin
[
z

(
t,
x+y

2
,
x−y

2

)
−e−t/2z(t/2, x, y)

]
∂xyz(t, x, y)

+
√
z(t2, x, y)− z(t2, x, y) + f(t, x, y)z(t, x, y)

and the initial boundary conditions

(49) z(0, x, y) = 1 for (x, y) ∈ [−1, 1]× [−1, 1],

(50) z(t,−1, y) = z(t, 1, y) = ety
2

for t ∈ [0, 0.25], y ∈ [−1, 1],

(51) z(t, x,−1) = z(t, x, 1) = etx
2

for t ∈ [0, 0.25], x ∈ [−1, 1].

where
f(t, x, y) = −4t− 4t2(x2 + y2 + x2y2) + (x2 + y2 − 1).

The solution of (48)–(51) is known:

v(t, x, y) = et(x
2+y2−1).

We found approximate solutions of (48), (49) using both implicit and
explicit numerical methods, and taking the following steps of the mesh:
h0 = 0.0025, h1 = 0.0025, h2 = 0.0025.

Let uh denote the approximate solution of (48)–(51) which is obtained
by a difference scheme.
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The average errors of the method ε
(r)
h are found with the following for-

mula:

ε
(r)
h =

1
(2N1 + 1)(2N2 + 1)

N1∑
i=−N1

N2∑
j=−N2

|u(r,i,j)
h − v(r,i,j)

h |

where N1h1 = 1, N2h2 = 1 and vh is the restriction of the function v to the
mesh.

Note that the function f and the steps of the mesh do not satisfy con-
dition (47), which is necessary for the explicit method to be convergent. In
our numerical example the average errors of the explicit method exceeded
1017, while the average errors εh for fixed t(r) of implicit method are given
in Table 1.

Table 1. Errors (εh)

(h0 = 0.0025, h1 = 0.0025, h2 = 0.0025)

t(r) ε
(r)
h

t = 0.05 33 · 10−5

t = 0.01 55 · 10−5

t = 0.15 70 · 10−5

t = 0.20 80 · 10−5

t = 0.25 86 · 10−5

The differential equation (48) contains the deviated variables (t, (x+y)/2,
(x− y)/2) and the example has the following property: if (t(r), x(m1), y(m2))
is a grid point then

(t(r), 0.5(x(m1) + y(m2)), 0.5(x(m1) − y(m2))),

in general, is not a grid point. We approximate the value z(t(r), 0.5(x(m1) +
y(m2)), 0.5(x(m1) − y(m2))) using the interpolating operator Th with n = 2.

Example 2. Consider the integral-differential equation

(52) ∂tz(t, x, y)

=
{

1 +
[
2t(y2 − 1)

x�

−1

sz(t, s, y) ds− z(t, x, y)
]2}

∂xxz(t, x, y)

+
{

1 +
[
2t(x2 − 1)

y�

−1

sz(t, x, s) ds− z(t, x, y)
]2}

∂yyz(t, x, y)

+ ∂xyz(t, x, y) sin
[
(x2 − 1)(y2 − 1)

t�

0

z(τ, x, y) dτ − z(t, x, y) + 1
]

+ f(t, x, y)z(t, x, y)
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and the initial boundary condition

(53) z(t, x, y) = 1 on ∂0E ∪ E0

where E, E0, ∂E0 are defined as earlier and

f(t, x, y) = −4t(x2 + y2 − 2)− 8t2(x2(y2 − 1)2 + y2(x2 − 1)2).

The solution of (52), (53) is known:

v(t, x, y) = et(x
2−1)(y2−1).

As in the previous numerical example we chose the steps of the mesh which
do not satisfy condition (47). In accordance with our expectations the ex-
plicit method is not convergent, and the average errors are so big that it is
impossible for the personal computer to compute them, while the implicit
method is convergent and gives the following average errors.

Table 2. Errors (εh)

(h0 = 0.0025, h1 = 0.0025, h2 = 0.0025)

t(r) ε
(r)
h

t = 0.10 15 · 10−4

t = 0.20 69 · 10−4

t = 0.30 18 · 10−3

t = 0.40 38 · 10−3

t = 0.50 66 · 10−3

The differential equation (52) contains integrals of the unknown func-
tion z. Therefore the corresponding difference equation includes the terms

x(m1)�

−x(m1)

τz(t(r), τ, y) dτ,
y(m2)�

−y(m2)

τz(t(r), x, τ) dτ,
t(r)�

0

z(τ, x(m1), y(m2)) dτ

where z(t(r), x(m1), y(m2)) is a grid point. The above integrals are approxi-
mated by

x(m1)�

−x(m1)

τTh[zh](t(r), τ, y) dτ,
y(m2)�

−y(m2)

τTh[zh](t(r), x, τ) dτ,

t(r)�

0

Th[zh](τ, x(m1), y(m2)) dτ

where zh is a solution of a difference equation. The above method is equiv-
alent to the trapezoidal rule.

The computation was performed on a PC computer. Numerical results
are consistent with our mathematical theory.
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Difference schemes obtained by a discretization of problem (1), (2) have
the following property: a large number of previous values z(r,m) must be
preserved, because they are needed to compute an approximate solution
with t = t(r+1).

The above examples show that there are implicit difference schemes
which are convergent, while the corresponding classical methods are not
convergent. This is due to the fact that we need the relation (47) for steps
of the mesh in the classical case. We do not need this condition in our implicit
method. Implicit difference methods in Sections 5 and 6 have the potential
for applications in the numerical solving of differential integral equations or
equations with deviated variables.
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Wit Stwosz St. 57
80-952 Gdańsk, Poland
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