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THE SUCCESSIVE APPROXIMATION METHOD
FOR THE DIRICHLET PROBLEM IN A PLANAR DOMAIN

Abstract. The Dirichlet problem for the Laplace equation for a planar do-
main with piecewise-smooth boundary is studied using the indirect integral
equation method. The domain is bounded or unbounded. It is not supposed
that the boundary is connected. The boundary conditions are continuous
or p-integrable functions. It is proved that a solution of the correspond-
ing integral equation can be obtained using the successive approximation
method.

1. Introduction. The integral equation method is a classical tool for
the study of the Dirichlet problem for the Laplace equation. For a bounded
domain with connected smooth boundary and a smooth boundary condition
the solution of the Dirichlet problem has been looked for in the form of a
double layer potential. In 1919 J. Radon studied the Dirichlet problem on a
bounded planar domain whose boundary is a curve with bounded rotation
(see [18], [19]). He proved the existence of a classical solution of the Dirichlet
problem for continuous boundary conditions. In the second half of the 20th
century the classical Dirichlet problem was studied using the integral equa-
tion method on domains with nonsmooth boundary in general Euclidean
space (see [9], [11]). Later this method was used to study a generalized solu-
tion of the Dirichlet problem on a bounded domain with connected Lipschitz
boundary and boundary conditions from Lp, p ≥ 2 (see [7]). If the domain
is convex, the boundary condition is continuous and we look for a solution
in the form of a double layer potential then the solution of the correspond-
ing integral equation can be calculated by the Neumann series (see [9]).
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This result was proved for more general bounded domains with connected
boundary in 1998 (see [12]).

If G is a domain with bounded boundary and G is not bounded or if
∂G is not connected then the solution of the Dirichlet problem is not a
double layer potential in general. This problem was overcome for G ⊂ Rm

with m > 2 (see [14]). D. Medková looked for a solution of the Dirichlet
problem in the form of a sum of a single layer potential and a double layer
potential with the same density. For a wide class of domains the existence of
a solution of the corresponding integral equation was proved and the solution
of this equation was expressed by the Neumann series. This method cannot
be directly used for planar domains. The first reason is that the single layer
potential is not bounded in the planar case. Secondly, if G ⊂ Rm with m > 2
and the single layer potential with density ϕ vanishes on ∂G then ϕ ≡ 0.
This is not true for planar domains. So, we must modify the method and
look for a solution of the Dirichlet problem in a slightly different form.

This paper is devoted to the Dirichlet problem for the Laplace equa-
tion for a planar domain G with boundary formed by finitely many curves
with bounded rotation. This domain might be bounded or unbounded. The
classical solution and also the scale of strong solutions with Lp boundary
condition are studied. The solution is looked for in the form

u = DMf + aSMf +
1

H1(∂G)

�

∂G

f dH1,

where

Mf = f − 1
H1(∂G)

�

∂G

f dH1,

Dϕ(x) =
1

2π

�

∂G

n(y) · (y − x)
|x− y|2

ϕ(y) dH1(y)

is the double layer potential with density ϕ,

Sϕ(x) =
1

2π

�

∂G

ϕ(y) ln
1

|x− y|
dH1(y)

is the single layer potential with density ϕ, and a is a nonnegative constant.
(If G is bounded then u = Df + aSMf . If G is unbounded then

u = Df + aSMf +
1

H1(∂G)

�

∂G

f dH1.)

This leads to the integral equation Taf = g, where g is a boundary condition.
Here

Taf(x) = KMf(x) + dG(x)Mf(x) + aSMf(x) +
1

H1(∂G)

�

∂G

f dH1
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where

Kϕ(x) = lim
ε→0

1
2π

�

{y∈∂G; |x−y|>ε}

n(y) · (y − x)
|x− y|2

ϕ(y) dH1(y),

and

dG(x) = lim
r→0+

H2(Ωr(x) ∩G)
H2(Ωr(x))

is the density of G at x.
Fix R > diamG and define

cR = sup
x∈∂G

1
2π

�

∂G

ln
R

|x− y|
dH1(y).

(If ∂G is formed by segments C1, . . . , Ck of lengths l1, . . . , lk then cR ≤
2π−1

∑
lj [1 − ln(lj/2R)].) The main result of the paper is the following

theorem:

Theorem. Put
p0 = 1 + sup

x∈∂G
|1− 2dG(x)|.

Fix γ > (1 +acR)/2, p ∈ (p0;∞). The operator Ta is continuously invertible
in Lp(∂G) and in C(∂G) and

T−1
a = γ−1

∞∑
n=0

(I − γ−1Ta)n.

If g ∈ Lp(∂G) then there is a unique Lp-solution u of the Dirichlet problem

∆u = 0 in G,

u = g on ∂G.

(If g ∈ C(∂G) then u is a classical solution of the problem.) If we put f =
T−1
a g then

u = DMf + aSMf +
1

H1(∂G)

�

∂G

f dH1.

Fix f0 ∈ Lp(∂G) and put

fn+1 = γ−1g + (I − γ−1Ta)fn for n ≥ 0.

Then fn converges to f in Lp(∂G) and ‖fn − f‖ ≤ Mqn/(1− q), where M
is a constant depending on G, a, γ, p, g, f0 and q ∈ (0; 1) is a constant
depending on G, a, p, γ. The same is true in C(∂G).

2. Formulation of the problem. Let S be a rectifiable curve in R2

and let s denote arc length on S (0 ≤ s ≤ l). If the angle θ(s) made by the
positively oriented tangent and the x-axis is a function of bounded variation
on [0; l], the curve S is said to be a curve with bounded rotation. Note that
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piecewise C1+α bounded curves with α > 0 and the boundary of a convex
bounded set are curves with bounded rotation.

Denote by Hk the k-dimensional Hausdorff measure normalized so that
Hk is the Lebesgue measure on Rk. If x ∈ R2 and r > 0, define Ωr(x) =
{y ∈ R2; |x− y| < r}. If G ⊂ R2 is a measurable set and x ∈ R2, denote by

dG(x) = lim
r→0+

H2(Ωr(x) ∩G)
H2(Ωr(x))

the density of G at x.
Let G be a domain in R2 with bounded nonempty boundary ∂G. Suppose

that ∂G is formed by finitely many disjoint Jordan curves with bounded
rotation. Suppose moreover that G has no cusps, i.e.

(1) 0 < inf
x∈∂G

dG(x) ≤ sup
x∈∂G

dG(x) < 1.

We remark that ∂G is locally the graph of a Lipschitz function. Let S
be a fixed Jordan curve of ∂G. Suppose that S = {(x(s), y(s)); 0 ≤ s ≤ l},
where the parameter s is the arc length on S. If θ(s) is the angle made by
the positively oriented tangent and the x-axis, then

x(s) = x(0) +
s�

0

cos θ(t) dt, y(s) = y(0) +
s�

0

sin θ(t) dt

(see [19, p. 1126]). Fix s0 ∈ (0; l). Since θ is a function of bounded variation,
it follows that θ+(s0), the limit from the right of θ at s0, and θ−(s0), the limit
from the left of θ at s0, both exist. We can choose a coordinate system so that
−π/2 < θ−(s0) ≤ 0 ≤ θ+(s0) < π/2. This implies that there are positive
constants α, s1, s2 such that 0 < s1 < s0 < s2 < l and −π/2 < −α < θ(s) <
α < π/2 for each s ∈ (s1; s2). Put S1 = {(x(s), y(s)); s1 < s < s2)}. Since
x(s) is an increasing function in (s1; s2) we can express y(s) as a function
of x(s) for S1. If s1 < s < τ < s2 then

|y(τ)− y(s)| ≤ τ − s ≤
τ�

s

cos θ(t)
cosα

dt =
1

cosα
|x(τ)− x(s)|,

because τ − s is the length of the part of S1 between (x(s), y(s)) and (x(τ),
y(τ)). So, S1 is the graph of a Lipschitz function.

If g ∈ C(∂G) we say that u is a classical solution of the Dirichlet problem
for the Laplace equation

∆u = 0 in G,(2)
u = g on ∂G(3)

if u ∈ C2(G) ∩ C(clG) is bounded and satisfies (2), (3). (Here clG denotes
the closure of G.)
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We will also study the scale of strong solutions of the Dirichlet problem
(2), (3) for g ∈ Lp(∂G).

For x ∈ ∂G let

Γ (x) = Γα(x) = {y ∈ G; |x− y| < (1 + α) dist(y, ∂G)}
denote the nontangential approach region of opening α corresponding to
G and x, where α > 0 is taken large enough depending on the Lipschitz
constant associated with G. Here dist(y,M) denotes the distance of the
point y from the set M . If u is a function on G we denote by

N(u)(x) = sup{|u(y)|; y ∈ Γ (x)}
the nontangential maximal function of u with respect to G. If x ∈ ∂G and

c = lim
y→x, y∈Γ (x)

u(y)

we say that c is the nontangential limit of u at x with respect to G.
Let 1 < p < ∞ and g ∈ Lp(∂G). We say that u is an Lp-solution of the

Dirichlet problem (2), (3) if u ∈ C2(G) satisfies (2), N(u) ∈ Lp(∂G) and g(x)
is the nontangential limit of u at x with respect to G for H1-a.a. x ∈ ∂G.

3. Potentials. Since G has locally Lipschitz boundary there is an out-
ward unit normal n(y) at almost all y ∈ ∂G. For f ∈ Lp(∂G), 1 < p < ∞,
define

Df(x) =
1

2π

�

∂G

n(y) · (y − x)
|x− y|2

f(y) dH1(y)

the double layer potential with density f , and

Sf(x) =
1

2π

�

∂G

f(y) ln
1

|x− y|
dH1(y)

the single layer potential with density f . Then Df , Sf are harmonic func-
tions in G, N(Df) ∈ Lp(∂G), N(|∇Sf |) ∈ Lp(∂G) and the nontangential
limits of Df , ∇Sf with respect of G exist at almost all points of ∂G (see [7,
Theorem 2.2.13]). The single layer potential is well defined for all x ∈ Rn

and Sf ∈ C(Rn) (see [9, Lemma 2.18] or [16, Lemma 3.1]). If

(4)
�

∂G

f dH1 = 0

then Sf(x)→ 0 as |x| → ∞ and N(Sf) ∈ Lp(∂G). If (4) does not hold and
G is unbounded then |Sf(x)| → ∞ as |x| → ∞ and N(Sf) ≡ ∞ on ∂G.

For ε > 0 and x ∈ ∂G denote

Kεf(x) =
1

2π

�

{y∈∂G; |x−y|>ε}

n(y) · (y − x)
|x− y|2

f(y) dH1(y).
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For almost all x ∈ ∂G we have

Kf(x) = lim
ε→0

Kεf(x)

and 1
2f(x) + Kf(x) is the nontangential limit of Df at x (see [7, Theo-

rem 2.2.13]). If f ∈ C(∂G) then Kf(x) makes sense for each x ∈ ∂G and

lim
y∈G, y→x

Df(y) = dG(x)f(x) +Kf(x)

(see [9, Theorem 2.19, Lemma 2.15, Proposition 2.8 and Lemma 2.9]). Ob-
serve that dG(x) = 1/2 for almost all x ∈ ∂G because G has locally Lipschitz
boundary.

If G is unbounded then D1 = 0 in G and dG(x)+K1(x) = 0 on ∂G. (This
is an easy consequence of Green’s formula.) If G is bounded then D1 = 1 in
G and dG(x) +K1 = 1 on ∂G.

For f ∈ L2(∂G), ε > 0 and y ∈ ∂G set

K∗εf(y) =
1

2π

�

{y∈∂G; |x−y|>ε}

n(y) · (y − x)
|x− y|2

f(y) dH1(x).

For almost all y ∈ ∂G we have

K∗f(y) = lim
ε→0

K∗ε f(y),

and 1
2f(y) +K∗f(y) is the nontangential limit of −n(y) · ∇Sf with respect

to R2 \ clG at y (see [7, Theorem 2.2.13]).

4. Reduction of the problem. Define

(5) Mf = f − 1
H1(∂G)

�

∂G

f dH1

for f ∈ L1(∂G).
Fix a ≥ 0. We look for a solution of the problem (2)–(3) in the form

(6) u = DMf + aSMf +
1

H1(∂G)

�

∂G

f dH1.

Here f ∈ C(∂G) if g ∈ C(∂G) and if we look for a classical solution; f ∈
Lp(∂G) if g ∈ Lp(∂G) and if we look for an Lp-solution. Note that u =
Df + aSMf for G bounded, and

u = Df + aSMf +
1

H1(∂G)

�

∂G

f dH1

for G unbounded.
For f ∈ Lp(∂G) and x ∈ ∂G define

(7) Taf(x) = KMf(x) + dG(x)Mf(x) + aSMf(x) +
1

H1(∂G)

�

∂G

f dH1
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if the expression makes sense. If f, g ∈ C(∂G) then u given by (6) is a
classical solution of the Dirichlet problem (2), (3) if and only if Taf = g.
If f, g ∈ Lp(∂G), 1 < p < ∞, then u given by (6) is an Lp-solution of the
Dirichlet problem (2), (3) if and only if Taf = g.

If G is bounded then

Taf(x) = Kf(x) + dG(x)f(x) + aSMf(x).

If G is unbounded then

Taf(x) = Kf(x) + dG(x)f(x) + aSMf(x) +
1

H1(∂G)

�

∂G

f dH1.

5. Properties of the integral operator. Let X be a real Banach
space. Denote by complX the complexification of X, i.e. complX = {x+ iy;
x, y ∈ X}. If T is a linear operator on X extend T onto complX by setting
T (x+iy) = Tx+iTy. In particular, the complexifications of the spaces C(D)
and Lp(D) of real-valued functions are the corresponding spaces CC(D) and
LpC of complex-valued functions.

The bounded linear operator T on the Banach space X is called Fredholm
if α(T ), the dimension of the kernel of T , is finite, the range T (X) of T is
a closed subspace of X, and β(T ), the codimension of T (X), is finite. The
number i(T ) = α(T )− β(T ) is the index of T .

Let X be a complex Banach space and T be a bounded linear operator
in X. Denote by σ(T ) the spectrum of T , r(T ) = sup{|λ|; λ ∈ σ(T )} the
spectral radius of T , and re(T ) = sup{|λ|; λI−T is not a Fredholm operator
with index 0} the essential spectral radius of T . Here I denotes the identity
operator on X.

Lemma 5.1. The operator Ta is a bounded linear operator in CC(∂G) and
in LpC(∂G). Moreover , re(Ta − 1

2I) < 1
2 in CC(∂G). Put

(8) p0 = 1 + sup
x∈∂G

|1− 2dG(x)|.

Then 1 ≤ p0 < 2. If p ∈ (1,∞) then Ta is a Fredholm operator with index 0
in Lp(∂G) if and only if p > 1+ |1−2dG(x)| for each x ∈ ∂G. If p0 < p <∞
then re(Ta − 1

2I) < 1
2 in LpC(∂G).

Proof. Since G has no cusps, (1) implies that 1 ≤ p0 < 2.
Define T̃ f(x) = dG(x)f(x) +Kf(x). The operator T̃ is a bounded linear

operator on C(∂G) (see [9, §2] or [19]). J. Radon proved that re(T̃ − 1
2I) < 1

2
in CC(∂G) for ∂G connected (see [19, p. 1149]). Denote by C1, . . . , Ck all
components of ∂G. Let G1, . . . , Gk be open sets such that G =

⋂k
j=1Gj and
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Cj = ∂Gj for j = 1, . . . , k. For f ∈ LpC(Cj), 1 < p <∞, set

T̂jf(x) = dGj (x)f(x) + lim
ε→0

1
2π

�

{y∈Cj ; |x−y|>ε}

n(y) · (y − x)
|x− y|2

f(y) dH1(y).

Then re(T̂j − 1
2I) < 1

2 in CC(∂Gj). For f ∈ LpC(∂G) define T̂ f(x) = T̂jf(x)
for x ∈ Cj , j = 1, . . . , k. Let now λ ∈ C, |λ| ≥ 1/2. If f ∈ CC(∂G) then
(T̂ − 1

2I − λI)f = 0 if and only if (T̂j − 1
2I − λI)f = 0 for j = 1, . . . , k and

thus

α(T̂ − 1
2I − λI) = α(T̂1 − 1

2I − λI) + · · ·+ α(T̂k − 1
2I − λI).

Moreover, for a given g ∈ CC(∂G) there is f ∈ CC(∂G) such that (T̂ − 1
2I −

λI)f = g if and only if there are fj ∈ CC(Cj) such that (T̂j − 1
2I−λI)fj = g

on Cj . Therefore

β(T̂ − 1
2I − λI) = β(T̂1 − 1

2I − λI) + · · ·+ β(T̂k − 1
2I − λI).

Since T̂j − 1
2I − λI are Fredholm operators in CC(Cj) with index 0 for j =

1, . . . , k, we conclude that T̂ − 1
2I − λI is a Fredholm operator in CC(∂G)

with index 0. (Compare also [22, Proposition 1].) Since

(T̃ − T̂ )f(x) =
�

∂G\Cj

n(y) · (y − x)
|x− y|2

f(y) dH1(y)

for x ∈ Cj , we see that T̃ − T̂ is a bounded linear operator from CC(∂G) into
C1

C(∂G). The compact embedding of C1(∂G) into C(∂G) implies that T̃ − T̂
is a compact linear operator in CC(∂G). Since T̃ − 1

2I − λI = (T̂ − 1
2I −

λI) + (T̃ − T̂ ), T̂ − 1
2I − λI is a Fredholm operator with index 0, and T̃ − T̂

is a compact linear operator, we conclude that T̃ − 1
2I − λI is a Fredholm

operator with index 0 (cf. [20, Theorem 5.10]). Hence re(T̃ − 1
2I) < 1

2 in
CC(∂G).

Easy calculation yields

(9) (Ta − T̃ )f = aSMf +
[

1
H1(∂G)

�

∂G

f dH1

]
(1− T̃1).

We now show that Ta − T̃ is a compact linear operator in CC(∂G). Since
T̃1 = 0 for G unbounded and T̃1 = 1 for G bounded (see above), we have

(Ta − T̃ )f = aSMf +
1

H1(∂G)

�

∂G

f dH1

for G unbounded and
(Ta − T̃ )f = aSMf
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for G bounded. The operator f 7→ Sf is a bounded linear operator from
L2(∂G) to C(∂G) (see [16, Lemma 3.1]). The compact embedding of C(∂G)
into L2(∂G) gives that S is a bounded compact operator in C(∂G). Since the
composition of a bounded operator and a compact operator is a compact
operator, the finite-dimensional operator is a compact operator and the sum
of two compact operators is a compact operator (see [24, Chapter X, §2]),
we infer that Ta− T̃ is a bounded compact linear operator in CC(∂G). Since
Ta− T̃ is a bounded linear operator in CC(∂G), we find that Ta is a bounded
linear operator in CC(∂G). Fix now λ ∈ C, |λ| ≥ 1/2. Since T̃ − 1

2I − λI
is a Fredholm operator with index 0 and Ta − T̃ is a compact operator in
CC(∂G), we deduce that Ta − 1

2I − λI is a Fredholm operator with index 0
in CC(∂G) (cf. [20, Theorem 5.10]). Therefore, re(Ta − 1

2I) < 1
2 in CC(∂G).

Fix 1 < p <∞. Then K is a bounded linear operator in LpC(∂G) (see [7,
Theorem 2.2.13]). Since G has locally Lipschitz boundary we have dG(x) = 1

2

for almost all x ∈ ∂G. Thus T̃ = 1
2I + K is a bounded linear operator

in LpC(∂G). The operator S is a compact linear operator in LpC(∂G) (see
[16, Lemma 3.1]). Using (9) and the same reasoning as above we prove
that Ta − T̃ is a bounded compact linear operator in LpC(∂G). Therefore
Ta is a bounded linear operator in LpC(∂G). In the same way as above we
prove that T̃ − T̂ is a compact linear operator in LpC(∂G). Fix now λ ∈ C.
Since Ta − T̂ is a compact linear operator in LpC(∂G) the operator Ta − λI
is a Fredholm operator in LpC(∂G) if and only if T̂ − λI is a Fredholm
operator in LpC(∂G) and i(Ta − λI) = i(T̂ − λI) (see [20, Theorem 5.10]).
If f ∈ LpC(∂G) then (T̂ − λI)f = 0 if and only if (T̂j − λI)f = 0 for
j = 1, . . . , k and thus α(T̂ −λI) = α(T̂1−λI) + · · ·+α(T̂k −λI). Moreover,
for a given g ∈ LpC(∂G) there is f ∈ LpC(∂G) such that (T̂ − λI)f = g if and
only if there are fj ∈ LpC(Cj) such that (T̂j − λI)fj = g on Cj . Therefore
β(T̂ − λI) = β(T̂1 − λI) + · · · + β(T̂k − λI). Hence T̂ − λI is a Fredholm
operator in LpC(∂G) if and only if T̂j − λI is a Fredholm operator in LpC(Cj)
for j = 1, . . . , k, and i(T̂ − λI) = i(T̂1− λI) + · · ·+ i(T̂k − λI). (Cf. also [22,
Proposition 1].) According to [22, Theorem 5], T̂j is a Fredholm operator
in LpC(Cj) if and only if p 6= 1 + |1 − 2dG(x)| for each x ∈ ∂Cj . Moreover,
i(T̂j) ≥ 0, and i(T̂j) = 0 if and only if p > 1 + |1−2dG(x)| for each x ∈ ∂Cj .
Altogether, Ta is a Fredholm operator with index 0 in Lp(∂G) if and only if
p > 1 + |1− 2dG(x)| for each x ∈ ∂G.

Let p0 < p < ∞, λ ∈ C, |λ| ≥ 1
2 . Then T̂j − 1

2I − λI is a Fredholm
operator with index 0 in Lp(Cj) for j = 1, . . . , k by [22, Theorem 6] (see
also [21, Theorem 4]). We have shown that Ta − 1

2I − λI is a Fredholm
operator with index 0 in Lp(∂G). Thus re(Ta − 1

2I) < 1
2 in LpC(∂G).
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Corollary 5.2. For f ∈ L2
C(∂G) and x ∈ ∂G define

(10) T ∗a f(x) = MK∗f(x) +
1
2
Mf(x) + aMSf(x) +

1
H1(∂G)

�

∂G

f dH1

whenever it makes sense. Then the operator T ∗a is bounded in L2
C(∂G) and

it is the adjoint operator of Ta in L2
C(∂G).

Proof. Easy calculation gives that K∗ε is the adjoint operator of Kε. If
f ∈ L2(∂G) then ‖Kεf‖ ≤ C‖f‖, ‖K∗ε f‖ ≤ C‖f‖ where the constant C
does depend on f and ε (see [23, Lemma 1.2]). This, the definitions of K∗,
K and the Lebesgue lemma imply that K∗ is a bounded operator in L2

C(∂G)
which is the adjoint operator of K in L2

C(∂G). Since the operator f 7→ Sf
is a bounded linear operator in L2

C(∂G) (see [16, Lemma 3.1]) we infer that
T ∗a is a bounded operator in L2

C(∂G). Since dG(x) = 1
2 for almost all x ∈ ∂G,

Fubini’s theorem shows that T ∗a is the adjoint operator of Ta in L2
C(∂G).

Lemma 5.3. Denote by L2
0(∂G) the set of all f ∈ L2(∂G) satisfying (4).

Fix R ≥ diam ∂G, where diam ∂G denotes the diameter of ∂G. Define

(11) cR = sup
x∈∂G

1
2π

�

∂G

ln
R

|x− y|
dH1(y).

Let f = f1 + if2 ∈ L2
0,C(∂G), 0 <

	
|f |2 ≤ 1. Denote by f = f1 − if2 the

complex conjugate of f . Then

0 <
�

R2\∂G

|∇Sf |2 dH2 =
�

∂G

fSf dH1 ≤ cR <∞.

Proof. Denote by H the restriction of H1 onto ∂G. Since Sfj is bounded
on ∂G and fj ∈ L2

0(∂G) the real measure fjH has finite energy (see [10,
Chapter I, §4]). According to [10, Chapter I, Theorem 1.16] we have

�

∂G

fjSfj dH1 ≥ 0,

and equality holds if and only if fj = 0 a.e. on ∂G. Moreover, [10, Chapter I,
Theorem 1.20] shows that

�

R2\∂G

|∇Sfj |2 dH2 =
�

∂G

fjSfj dH1.

Fubini’s theorem gives�

R2\∂G

|∇Sf |2 dH2 =
�

R2\∂G

[|∇Sf1|2 + |∇Sf2|2] dH2

=
�

∂G

[f1Sf1 + f2Sf2] dH1 =
�

∂G

fSf dH1.
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Since 0 <
	
|f |2 we obtain

0 <
�

∂G

[f1Sf1 + f2Sf2] dH1 =
�

∂G

fSf dH1.

Since f ∈ L2
0,C(∂G) we have

Sf(x) =
1

2π

�

∂G

f(y) ln
R

|x− y|
dH1(y).

Using Hölder’s inequality and Fubini’s theorem we obtain
�

∂G

fSf dH1 ≤
�

∂G

|f(x)|
√ �

∂G

|f(y)|2 1
2π

ln
R

|x− y|
dH1(y)

√
cR dH1(x)

≤
√
cR

√ �

∂G

|f(x)|2 dH1(x)

√ �

∂G

�

∂G

|f(y)|2 1
2π

ln
R

|x− y|
dH1(y) dH1(x)

≤
√
cR

√ �

∂G

|f(y)|2
�

∂G

1
2π

ln
R

|x− y|
dH1(x) dH1(y) ≤ cR.

Lemma 5.4. Fix R ≥ diam(∂G). If f is a nontrivial function from the
space L2

0,C(∂G) then

0 <
�

∂G

(MSf)(Sf) dH1 ≤ cR
�

∂G

fSf dH1,

where cR is given by (11).

Proof. Hölder’s inequality gives∣∣∣ �

∂G

Sf dH1

∣∣∣2 ≤ H1(∂G)
�

∂G

|Sf |2 dH1

and the equality holds if and only if Sf = c a.e. on ∂G, where c is constant.
In that case

0 =
�

∂G

fSf dH1,

which contradicts Lemma 5.3. Thus

0 <
�

∂G

|Sf |2 dH1 −
1

H1(∂G)

∣∣∣ �

∂G

Sf dH1

∣∣∣2 =
�

∂G

(MSf)(Sf) dH1.

For φ, ψ ∈ L2
0,C(∂G) define

[φ, ψ] =
�

∂G

φSψ dH1.

Lemma 5.3 implies that [φ, ψ] is a scalar product on L2
0,C(∂G). Define

Λ = {φ ∈ L2
0,C(∂G);

	
|φ|2 ≤ 1}. Since MSf ∈ L2

0,C(∂G), using Schwarz’s
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inequality (see [4, Theorem I.7.4]) we get�

∂G

(MSf)(Sf) dH1 ≤ sup
φ∈Λ

[φ, f ]‖MSf‖L2(∂G)

≤ sup
φ∈Λ
|[φ, f ]| sup

ψ∈Λ

∣∣∣ �

∂G

ψMSf dH1

∣∣∣ = sup
φ∈Λ
|[φ, f ]| sup

ψ∈Λ

∣∣∣ �

∂G

ψSf dH1

∣∣∣
≤ sup

φ∈Λ

√
[φ, φ]

√
[f, f ]| sup

ψ∈Λ

√
[f, f ]

√
[ψ,ψ] ≤ cR[f, f ]

by Lemma 5.3.

Proposition 5.5. Let a ≥ 0, f ∈ L2
C(∂G) be nontrivial , and T ∗a f = λf

where λ is a complex number. If f 6∈ L2
0,C(∂G) then λ = 1. If f ∈ L2

0,C(∂G)
then 0 ≤ λ ≤ 1 + acR. If a > 0 or ∂G is connected then λ > 0.

Proof. Suppose first that f 6∈ L2
0,C(∂G). Since T ∗a is the adjoint operator

of Ta we have

λ
�

∂G

f dH1 =
�

∂G

1 · T ∗a f dH1 =
�

∂G

f · Ta1 dH1 =
�

∂G

f dH1.

Let now f ∈ L2
0,C(∂G). Then

λ
�

∂G

fSf dH1 =
�

∂G

[T ∗a f ][Sf ] dH1

=
�

∂G

(K∗f + 1
2f)Sf dH1 + a

�

∂G

(MSf)(Sf) dH1

=
�

R2\G

|∇Sf |2 dH1 + a
�

∂G

(MSf)(Sf) dH1

by [12, Lemma 7]. Using Lemmas 5.3 and 5.4 we get

0 ≤

	
R2\clG |∇Sf |

2 dH2	
R2\∂G |∇Sf |2 dH2

+ a

	
∂G(MSf)(Sf) dH1	

∂G fSf dH1

= λ ≤ 1 + acR.

If a > 0 then λ > 0 by Lemma 5.4. Suppose now that a = 0 and ∂G is
connected. If λ = 0 then ∇Sf = 0 in R2 \ clG. Since R2 \ clG is connected
there is a constant c such that Sf = c in R2 \ clG. Since Sf ∈ C(R2) we
obtain Sf = c on ∂G. Since f ∈ L2

0,C(∂G) we have
�

∂G

fSf dH1 =
�

∂G

fc dH1 = 0.

Lemma 5.3 yields f ≡ 0, which is a contradiction.

Corollary 5.6. Let a ≥ 0. If ∂G is not connected , suppose that a > 0.
Fix R > diam(∂G) and γ > (1+acR)/2. Then σ(Ta) ⊂ {λ ∈ C; |λ−γ| < γ}
in CC(∂G) and in LpC(∂G) for p0 < p <∞, where p0 is given by (8).
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Proof. Let λ ∈ σ(Ta) in CC(∂G) or in LpC(∂G), where p0 < p <∞. Since
{λ ∈ C; |λ− 1/2| < 1/2} ⊂ {λ ∈ C; |λ− γ| < γ}, we can suppose that |λ−
1/2| ≥ 1/2. Since Ta−λI is a Fredholm operator with index 0 by Lemma 5.1,
the complex number λ must be an eigenvalue of Ta in the corresponding
space. Since Ta − λI is a Fredholm operator with index 0 in L2

C(∂G), the
number λ is an eigenvalue of Ta in L2

C(∂G) (see [17, Lemma 2.1]). Since
λ ∈ σ(Ta) in L2

C(∂G) we have λ ∈ σ(T ∗a ) in L2
C(∂G) (see [24, Chapter VIII,

§6, Theorem 2]). Since T ∗a −λI is a Fredholm operator with index 0 (see [20,
Theorem 7.22]), we deduce that λ is an eigenvalue of T ∗a . Proposition 5.5
implies that λ ∈ (0; 1 + acr] ⊂ {β ∈ C; |β − γ| < γ}.

Theorem 5.7. Let a ≥ 0. If ∂G is not connected , suppose that a > 0.
Fix R > diam(∂G) and γ > (1 + acR)/2. Let p0 < p < ∞. Then there are
positive constants M , Mp and q, qp ∈ (0, 1) such that

‖(I − γ−1Ta)n‖Lp(∂G) ≤Mpq
n
p ,(12)

‖(I − γ−1Ta)n‖C(∂G) ≤Mqn(13)

for each nonnegative integer n. The operator Ta is continuously invertible
in LpC(∂G) and in CC(∂G) and

(14) T−1
a = γ−1

∞∑
n=0

(I − γ−1Ta)n.

Proof. Corollary 5.6 and the spectral mapping theorem (see [20, Theo-
rem 9.5]) give that σ(I−γ−1Ta) ⊂ {λ ∈ C; |λ| < 1}. Since r(I−γ−1Ta) < 1
and r(I−γ−1Ta) = lim ‖(I−γ−1Ta)n‖1/n as n→∞ (see [24, Chapter VIII,
§2]), we deduce that there are positive constants M , Mp and q, qp ∈ (0, 1)
such that (12), (13) hold. Since Ta = γ[I − (I − γ−1Ta)], easy calculation
gives (14).

6. Solution of the problem

Lemma 6.1. Let 0 < R < ∞ and u be a bounded harmonic function in
V = {x ∈ R2; |x| > R}. Then |∇u(x)| = O(|x|−2) as |x| → ∞.

Proof. Set Ṽ = {x ∈ R2; |x| < 1/R} and v(x) = u(x/|x|2) for x ∈
V \ {(0, 0)}. Then v, the Kelvin transform of u, is a function harmonic in
Ṽ \{(0, 0)} (see [2, Corollary 1.6.4]). Since v is a bounded harmonic function
in Ṽ \{(0, 0)}, we can define v at the point (0, 0) in such a way that v is a har-
monic function in V (see [2, Corollary 5.2.3]). Since v ∈ C1(Ṽ ) there is a posi-
tive constant M such that |∇v(x)| ≤M for each x with |x| ≤ 1/2R. If |x| >
2R then u(x) = v(x/|x|2) and |∂ju(x)| = |

∑
∂iv(x/|x|2)∂j(xi/|x|2))| ≤

3M/|x|2.
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Theorem 6.2. Let a ≥ 0. If ∂G is not connected , suppose that a > 0.
Fix R > diam(∂G) and γ > (1 + acR)/2. If g ∈ C(∂G) then there is a
unique classical solution u of the Dirichlet problem (2), (3) with the boundary
condition g. This solution is given by (6), where f = T−1

a g and T−1
a is given

by (14). Let p0 < p <∞. If g ∈ Lp(∂G) then there is a unique Lp-solution u
of the Dirichlet problem (2), (3) with the boundary condition g. This solution
is given by (6), where f = T−1

a g and T−1
a is given by (14).

Proof. If T−1
a is given by (14), f = T−1

a g and u is given by (6) then u
is a solution of the problem by §4 and Theorem 5.7. Therefore it suffices to
prove the uniqueness of an Lp-solution for p0 < p ≤ 2.

Let u be an Lp-solution of the Dirichlet problem (2), (3) with the bound-
ary condition g ≡ 0, p0 < p ≤ 2. If G is bounded then u ≡ 0 (see
[7, Theorem 2.3.15] or [8]). Let now G be unbounded. Fix R > 0 such
that ∂G ⊂ ΩR(0). Put G̃ = G ∩ ΩR(0) and g = u on ∂ΩR(0). Since
g ∈ W 1,p(∂G) there is a unique Lp-solution v of the Dirichlet problem
for the Laplace equation on GR with the boundary condition g such that
N(|∇v|) ∈ Lp(∂GR) (see [6, Theorem 5.6]). Uniqueness for bounded do-
mains gives u = v. Since N(|∇u|) ∈ Lp(∂GR) the nontangential limit of
∇u exists at almost all x ∈ ∂GR (see [5, Theorem] and [3, Theorem 1]).
Set h(x) = n(x) · ∇u(x). Then h ∈ Lp(∂GR) and u is an Lp-solution of
the Neumann problem for the Laplace equation in GR with the boundary
condition h. This means that there is ϕ ∈ Lp(∂GR) and a constant c such
that u = Sϕ+ c (see [16, Theorem 8.7]). This shows that u ∈ C(clG). Since
u is bounded, |∇u(x)| = O(|x|−2) as |x| → ∞ by Lemma 6.1. Since u = 0
on ∂G, we get for R→∞ using Green’s formula (cf. [15, p. 229])

�

G

|∇u|2 dH2 = lim
R→∞

�

GR

|∇u|2 dH2 = lim
R→∞

�

∂GR

u
∂u

∂n
dH1 = 0.

Since ∇u = 0 in G the function u is constant. Thus u ≡ 0.

Remark 6.3. Let a ≥ 0. If ∂G is not connected, suppose that a > 0.
Fix R > diam(∂G) and γ > (1 + acR)/2. (If ∂G is formed by segments
C1, . . . , Ck of lengths l1, . . . , lk then we have the following estimate of cR:

cR ≤
1

2π

k∑
j=1

lj [1− ln(lj/2R)]

by [16, Example 11.1]. Let g ∈ C(∂G) or g ∈ Lp(∂G), where p0 < p < ∞.
According to Theorem 6.2 there is a unique solution u of the Dirichlet prob-
lem (2), (3) with the boundary condition g, which is given by (6), where f is a
solution of the integral equation Taf = g. We want to find f by successive ap-
proximations. We modify the equation Taf = g as f = γ−1g+(I−γ−1Ta)f .
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Fix arbitrary f0 and put

fn+1 = γ−1g + (I − γ−1Ta)fn
for each nonnegative integer n. Since the spectral radius of the operator
I − γ−1Ta is smaller than 1 by Corollary 5.6 and the spectral mapping
theorem (see [20, Theorem 9.5]), the series fn converges to the solution f
(see [1, Chapter V, §5]). Since

fn+1 − fn = (I − γ−1Ta)n(f1 − f0),

Theorem 5.7 yields constants q ∈ (0, 1), M depending on G, g and f0 such
that ‖fn+1 − fn‖ ≤Mqn and thus ‖fn − f‖ ≤Mqn/(1− q).
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