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ASYMPTOTIC STABILITY OF WAVE EQUATIONS WITH
MEMORY AND FRICTIONAL BOUNDARY DAMPINGS

Abstract. This work is concerned with stabilization of a wave equation by
a linear boundary term combining frictional and memory damping on part
of the boundary. We prove that the energy decays to zero exponentially if
the kernel decays exponentially at infinity. We consider a slightly different
boundary condition than the one used by M. Aassila et al. [Calc. Var. 15,
2002]. This allows us to avoid the assumption that the part of the boundary
where the feedback is active is strictly star-shaped. The result is based on
multiplier techniques and integral inequalities.

1. Introduction. We are interested in energy decay of a wave equation
subjected to a boundary damping combining frictional and memory effects.
The results presented here can be extended to more general nonlinear damp-
ing effects, as in [4], [8]. We refer more generally to [9], [16, 17], [18], [19],
[10], [6, 7] for memory damping, to [11], [12] for polynomial type frictional
damping (see also [14]), and to [13], [15] and [2, 3] for general nonlinear
frictional damping.

We consider the following wave equation with frictional and memory
boundary damping:

utt −∆u = 0 on (0,+∞)×Ω,
u = 0 on (0,+∞)× Γ1,

∂u

∂ν
= m · ν (−ut + h ∗ u) on (0,+∞)× Γ0,

u(0, ·) = u0(·), ut(0, ·) = u1(·) on Ω.

(1.1)
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Here ∗ stands for convolution, that is,

(h ∗ u)(t) =
t�

0

h(t− s)u(s) ds, t ≥ 0.

One can remark that the boundary condition differs from the one considered
in [1]. In particular, the damping term includes an additional factor m · ν.
This permits avoiding a condition like

m · ν ≥ δ > 0 on Γ0.

The results presented below can be extended to nonlinear dampings. How-
ever, we prefer to keep the paper easy to read.

We assume that Ω is a non-empty bounded open set in RN having a
boundary Γ of class C2. Moreover, {Γ0, Γ1} is a partition of Γ such that
Γ 0∩Γ 1 = ∅ and x0 is a point in RN such that m ·ν ≥ 0 on Γ0 and m ·ν ≤ 0
on Γ1, where m(x) = x− x0. We set R = supx∈Ω |m(x)|.

We set H = L2(Ω) equipped with the usual norm, denoted by |u|H , and
V = {v ∈ H1

0 (Ω) : v = 0 on Γ1}, equipped with the norm |∇u|2H , equivalent
to the usual Sobolev norm, thanks to Poincaré’s inequality.

We denote by λ2
0 > 0 the smallest constant such that

(1.2)
�

Γ0

|v|2dσ ≤ λ2
0

�

Ω

|∇v|2 dx ∀v ∈ V.

Such a constant exists since the trace operator is continuous from V to
L2(Γ0), and the H1 seminorm is a norm on V .

The convolution kernel h is assumed to be defined and differentiable from
[0,∞) on (0,∞), and to satisfy

(1.3) h′(t) ≤ −αh(t) ∀t ≥ 0,

where α > 0 is a given constant, and

(1.4) λ2
0R

∞�

0

h(t) dt < 1.

The results presented here can be extended to polynomially decaying kernels
following the ideas of [4]. In this case, we prove that the energy decays
polynomially with the same rate of decay as the kernel h at infinity. These
results can be obtained using nonlinear integral inequalities, and multipliers
involving also appropriate powers of the energy.

We will use the following notation:

(h� u)(t) =
t�

0

h(t− s)
( �

Γ0

m · ν|u(t)− u(s)|2 dσ
)
ds.
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The paper is organized as follows. In Section 2, we recall well-posedness
results, establish some preliminary results concerning for instance dissipa-
tion of the energy and give our main result. In Section 3, we prove expo-
nential decay of the energy using appropriate multipliers and linear integral
inequalities. Finally, in Section 4, we comment briefly on extensions of our
results to other types of decay of the kernel, and state several open questions
connected with this work.

2. Well-posedness and main result. We refer the reader to [1] for well-
posedness in C([0,∞);V )∩C1([0,∞);H) for initial data (u0, u1)∈V ×H. In
this case, the solution is in a weak sense. If the initial data are more regular,
that is, if (u0, u1) ∈ (V ∩H2(Ω))×V and satisfies the compatibility condition

∂u0

∂ν
+ u1 = 0 on Γ0,

then the solution is strong, that is, u ∈ C([0,∞);V ∩H2(Ω))∩C1([0,∞);V )∩
C1([0,∞);H).

We define the energy of a solution as

(2.1) E(t) =
1
2

( �

Ω

(|ut|2 + |∇u|2) dx−
t�

0

h(s) ds
�

Γ0

m · ν|u|2 dσ + h� u
)
.

Proposition 2.1. Let u be a weak solution of (1.1), and E its energy.
Let η > 0 be any number such that

η < 1− λ2
0R

∞�

0

h(s) ds.

Then

(2.2) E(t) ≥ 1
2

�

Ω

u2
t + η

1
2

�

Ω

|∇u|2.

Proof. Since h ≥ 0, the definition of E yields

(2.3) E(t) ≥ 1
2

�

Ω

u2
t +

1
2

�

Ω

|∇u|2 − 1
2
R

∞�

0

h(s) ds
�

Γ0

|u|2.

From the definition of λ0, we easily derive the desired estimate.

Lemma 2.2. Assume that u is a weak solution of (1.1), and E its energy.
Then E satisfies the following dissipation relation:
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E(T )− E(S) = −
T�

S

�

Γ0

m · ν|ut|2 dσ dt+
1
2

T�

S

h′ � u(2.4)

− 1
2

T�

S

h(t)
�

Γ0

m · ν|u|2 dσ dt ∀0 ≤ S ≤ T.

Moreover , for a strong solution, we have

(2.5) E′(t) = −
�

Γ0

m · ν|ut|2 dσ +
1
2
h′ � u− h(t)

2

�

Γ0

m · ν|u|2 dσ ≤ 0.

Proof. Let u be a strong solution of (1.1). By the definition of h� u, we
have

(2.6)
d

dt
(h� u)(t) = (h′ � u)(t) +

d

dt

( t�
0

h(s) ds
�

Γ0

m · ν|u|2 dσ
)

− h(t)
�

Γ0

m · ν|u|2 dσ − 2
( t�

0

h(t− s)
�

Γ0

m · νu(s) dσ ds
)
ut(t).

Differentiating the energy (2.1) with respect to t, integrating by parts and
using the boundary conditions in (1.1), we obtain

E′(t) =
�

Ω

(utt −∆u)ut dx+
�

Γ0

m · ν
(
−|ut|2 +

( t�
0

h(t− s)u(s) ds
)
ut(t)

)
dσ

− 1
2
d

dt

( t�
0

h(s) ds
�

Γ0

m · ν|u|2
)

+
1
2
d

dt
(h� u)(t).

Applying now (2.6) in the above relation, we obtain (2.5). Integration of this
last relation between S and T gives (2.4), which can be extended to weak
solutions by usual density arguments.

We can now state our main result:

Theorem 2.3. Assume the above hypotheses on h and on Γ0 and Γ1.
Then there exists ω > 0 such that for every initial data (u0, u1) ∈ V × H,
the corresponding energy satisfies

E(t) ≤ CE(0)e−ωt ∀t ≥ 0,

where C is a generic constant which does not depend on the initial data.

3. Proof of the exponential decay of energy. We prove Theorem 2.3
as follows. Let u be a strong solution of (1.1). We introduce the multiplier

Mu = m · ∇u+
n− 1

2
u
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and rewrite the left hand side of the following identity using appropriate
integrations by parts and the boundary conditions satisfied by u in (1.1):

T�

S

�

Ω

(utt −∆u)Mudxdt = 0.

This gives

1
2

T�

S

�

Ω

(|ut|2 + |∇u|2) = −
[ �
Ω

utMu
]T
S

+
1
2

T�

S

�

Γ1

m · ν
∣∣∣∣∂u∂ν

∣∣∣∣2

+
T�

S

�

Γ0

m · ν(H +K),

where H and K are given by

H =
1
2

(|ut|2 − |∇u|2), K = (ut − h ∗ u)Mu.

We estimate K as follows:∣∣∣ T�
S

�

Γ0

m · νK dσ dt
∣∣∣ ≤ T�

S

�

Γ0

m · ν
(
|ut|+

∣∣∣ t�
0

h(t− s)(u(s)− u(t)) ds
∣∣∣

+
( t�

0

h(s) ds
)
|u|
)

(R|∇u|) +
T�

S

�

Γ0

m · ν
(∣∣∣ t�

0

h(t− s)(u(s)− u(t)) ds
∣∣∣

+
( t�

0

h(s) ds
)
|u|
)
· n− 1

2
|u|+ n− 1

4

∣∣∣[ �

Γ0

m · ν|u|2
]T
S

∣∣∣
≤ γR2

2

T�

S

�

Γ0

m · ν|∇u|2

+ C

(
1
γ

+ 1
) T�

S

�

Γ0

m · ν
(
|ut|2 +

( t�
0

h(s) ds
)( t�

0

h(t− s)|u(t)− u(s)|2 ds
)

+
( t�

0

h(s) ds
)
|u|2
)

+ CE(S) ∀γ > 0.

We choose γ = R−2. This gives, together with the property m · ν ≥ 0 on Γ0

and the above estimate,
T�

S

�

Γ0

m · ν(H +K)

≤ C
T�

S

�

Γ0

(
h� u+m · ν

(
|ut|2 +

( t�
0

h(s) ds
)
|u|2
))

+ CE(S).
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Hence,

(3.1)
1
2

T�

S

�

Ω

(|ut|2 + |∇u|2) ≤ −
[ �
Ω

utMu
]T
S

+
1
2

T�

S

�

Γ1

m · ν
∣∣∣∣∂u∂ν

∣∣∣∣2

+ C

T�

S

(
h� u+

�

Γ0

m · ν
(
|ut|2 +

( t�
0

h(s) ds
)
|u|2
))

+ CE(S).

We estimate the consecutive terms on the right hand side of (3.1). We first
easily prove that the first term satisfies∣∣∣[ �

Ω

utMu
]T
S

∣∣∣ ≤ CE(S) ∀0 ≤ S ≤ T.

By the sign condition m · ν ≤ 0 on Γ1, the second term on the RHS of (3.1)
is nonpositive. From the dissipation relation (2.4), we have

T�

S

�

Γ0

m · ν|ut|2 ≤ E(S) ∀0 ≤ S ≤ T.

Moreover, since h is assumed to decay exponentially we have
T�

S

h� u ≤ − 1
α

T�

S

h′ � u.

Using once again the dissipation relation (2.4) in this last estimate, we obtain
T�

S

h� u ≤ 2
α
E(S) ∀0 ≤ S ≤ T.

To estimate the last term on the right hand side of (3.1) we proceed as
follows. For t ≥ 0 fixed, we consider the elliptic problem

∆z = 0 on Ω,

z = 0 on Γ1,

∂z

∂ν
= m · ν

( t�
0

h(s) ds
)
z +m · ν(h ∗ u)(t) on Γ0.

(3.2)

This elliptic problem is well-posed as we shall now see. Its variational for-
mulation is to find z in V such that

a(z, φ) = L(φ) ∀φ ∈ V,
where a is the continuous bilinear form on V defined by

a(z, φ) =
�

Ω

∇z · ∇φ−
( t�

0

h(s) ds
) �

Γ0

m · νzφ,
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and L is the continuous linear form on V defined by

L(φ) =
�

Γ0

m · ν(h ∗ u)φ .

From the conditions (1.3)–(1.4) on h, we can easily show that a is coercive
on V . More precisely,

(3.3) a(φ, φ) ≥ η|∇φ|2H ∀φ ∈ V.

The Lax–Milgram lemma implies that the above elliptic problem has a
unique solution in V . By regularity theory, this solution is in H2(Ω). More-
over, choosing φ = z in the above variational formula, and using (3.3), we
obtain

η
�

Ω

|∇z|2 ≤
�

Γ0

m · ν
t�

0

h(t− s)(u(s)− u(t))z(t) ds dσ

+
t�

0

h(s) ds
�

Γ0

m · νu(t)z(t) dσ.

Using Cauchy–Schwarz’s and Young’s inequalities, we obtain, for every δ>0,

η
�

Ω

|∇z(t)|2 ≤ C

δ

�

Γ0

m · ν
t�

0

h(t− s)|u(t)− u(s)|2 ds+ δ
( t�

0

h(s) ds
) �

Γ0

m · ν|z|2

+
C

δ

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2 + δ

t�

0

h(s) ds
�

Γ0

m · ν|z(t)|2.

Using (1.2) and choosing δ sufficiently small, we obtain

�

Ω

|∇z(t)|2 ≤ C1(h� u)(t) + C2

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2.

From this estimate, the definition of the energy, (1.2) and (2.1), we deduce
that �

Ω

|∇z(t)|2 ≤ CE(t) ∀t ≥ 0,

and by (1.2) once again, we also have

(3.4)
�

Γ0

m · ν|z(t)|2 ≤ C1(h� u)(t) + C2

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2 ∀t ≥ 0.
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We now multiply both sides of (3.4) by h(t) and integrate the resulting
inequality between S and T to obtain

T�

S

�

Γ0

h(t)m · ν|z(t)|2 ≤ C1

T�

S

h(t)(h� u)(t)

+ C2

T�

S

t�

0

h(s) ds
�

Γ0

m · νh(t)|u(t)|2 ∀t ≥ 0.

Using now (1.3) together with the dissipation relation (2.4), we obtain

(3.5)
T�

S

�

Γ0

h(t)m · ν|z(t)|2 ≤ CE(S) ∀0 ≤ S ≤ T.

We now consider the identity

T�

S

�

Ω

(utt −∆u)z = 0.

Integrating by parts the left hand side of this identity and using the bound-
ary conditions in (1.1) together with those in (3.2), we obtain

T�

S

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2

=
T�

S

�

Ω

utzt +
T�

S

�

Γ0

m · ν
[
−ut(t)z(t) +

( t�
0

h(t− s)(u(t)− u(s)) ds
)
u(t)

−
( t�

0

h(t− s)(u(t)− u(s)) ds
)
z(t)

]
dσ dt−

[ �
Ω

utz
]T
S
.

Hence, estimating the right hand side, we obtain, for each ε > 0 and δ > 0,

T�

S

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2 ≤ δ
T�

S

�

Ω

|ut|2 +
C

δ

T�

S

�

Ω

|zt|2 +
C

ε

T�

S

�

Γ0

m · ν|ut|2

+ ε

T�

S

�

Γ0

m · ν|z|2 +
C

ε

T�

S

h� u+ ε

T�

S

�

Γ0

m · ν
t�

0

h(s) ds|u(t)|2

+ ε

T�

S

�

Γ0

m · ν
t�

0

h(s) ds|z(t)|2 + CE(S) ∀0 ≤ S ≤ T.
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Using the above estimates on z, together with the inequality (1.3) on h and
the dissipation relation (2.4), we obtain

T�

S

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2 ≤ δ
T�

S

�

Ω

|ut|2 +
C

δ

T�

S

�

Ω

|zt|2

+ C

(
1
ε

+ 1
)
E(S) + Cε

T�

S

�

Γ0

m · ν
t�

0

h(s) ds |u(t)|2 ∀0 ≤ S ≤ T.

Hence, choosing ε sufficiently small, we have, for every δ > 0,

(3.6)
T�

S

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2

≤ δ
T�

S

�

Ω

|ut|2 +
C

δ

T�

S

�

Ω

|zt|2 + CE(S) ∀0 ≤ S ≤ T.

We now need an estimate on the L2 norm of zt in [S, T ] × Ω. For this, we
differentiate the solution z of the elliptic problem (3.2) with respect to time
and take zt as a test function. This gives

�

Ω

|∇zt|2 −
( t�

0

h(s) ds
) �

Γ0

m · ν|zt|2 =
�

Γ0

m · νh(t)z zt

+
�

Γ0

m · ν
t�

0

h′(t− s)(u(s)− u(t))zt(t) ds+
�

Γ0

m · νh(t)u(t)zt(t).

Hence, for all γ > 0 we obtain

η

T�

S

�

Ω

|∇zt|2 ≤ γ
T�

S

�

Γ0

m · νh(t)|zt|2 +
C

γ

T�

S

�

Γ0

m · νh(t)|z|2

+
C

γ

T�

S

(−h′ � u) +
C

γ

T�

S

�

Γ0

m · νh(t)|u(t)|2

+ γh(0)
T�

S

�

Γ0

m · ν|zt|2 + γ

T�

S

�

Γ0

m · νh(t)|zt|2.

We now use (3.5) in the above estimate, together with (1.2) and once again
the dissipation relation (2.4). If we choose γ sufficiently small, this gives

T�

S

�

Ω

|∇zt|2 ≤ CE(S) ∀0 ≤ S ≤ T.
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We use this last estimate in (3.6) to obtain
T�

S

t�

0

h(s) ds
�

Γ0

m · ν|u(t)|2 ≤ δ
T�

S

�

Ω

|ut|2 + C

(
1
δ

+ 1
)
E(S) ∀0 ≤ S ≤ T.

We now estimate the last term of (3.1):

1
2

T�

S

�

Ω

(|ut|2 + |∇u|2) ≤ δ
T�

S

�

Ω

|ut|2 + C

(
1
δ

+ 1
)
E(S) ∀0 ≤ S ≤ T.

Choosing δ sufficiently small, we obtain

1
2

T�

S

�

Ω

(|ut|2 + |∇u|2) ≤ CE(S) ∀0 ≤ S ≤ T.

Now from (1.3) and (2.4), we already know that
T�

S

h� u ≤ CE(S) ∀0 ≤ S ≤ T.

Hence,

(3.7)
T�

S

E(t) dt ≤ CE(S) ∀0 ≤ S ≤ T.

Since E is nonincreasing and satisfies the linear integral inequality (3.7),
applying a well-known result of [11] we deduce that E decays exponentially
at infinity. This concludes the proof for strong solutions. The exponential
decay of weak solutions is obtained by density arguments.

4. Conclusion and open questions. We establish exponential decay
of the energy of the solutions of a wave equation subjected to combined fric-
tional and memory boundary dampings. The results presented here concern
the exponentially decaying kernel case, but they can be extended to the
polynomial case, following partly the techniques introduced in [4], together
with the multipliers used in the present paper, in particular the one to esti-
mate the trace of the L2 norm of the solution on the part of the boundary
where the feedback is active.

Many open questions are of interest. If one considers both nonlinear fric-
tional and polynomially decaying kernels competing, which one will finally
determine the optimal decay rate of the energy? How to establish decay
rates of the energy for other types of decay rate for the kernel, different
than polynomial or exponential? These questions are of interest for bound-
ary as well as internal dampings. Also, if in the wave equation considered in
this paper, one removes the frictional damping, it is not clear how to show



Wave equations with boundary dampings 257

decay of the energy, since we have no further control through dissipation
on the kinetic energy of solutions of the part of the boundary on which the
feedback is active. A first answer in this direction is given in [5], in which
only memory damping is considered. The model for the damping is different
from the present one and the convolution kernel is assumed to belong to
a class of singular kernels. Such classes of singular kernels have been first
introduced in [20]. Uniform stabilization is not expected for pure boundary
memory damping. We prove in [5] a polynomial decay rate of the energy.
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