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CONTROLLABILITY OF PARTIAL DIFFERENTIAL
EQUATIONS ON GRAPHS

Abstract. We study boundary control problems for the wave, heat, and
Schrödinger equations on a finite graph. We suppose that the graph is a
tree (i.e., it does not contain cycles), and on each edge an equation is de-
fined. The control is acting through the Dirichlet condition applied to all
or all but one boundary vertices. Exact controllability in L2-classes of con-
trols is proved and sharp estimates of the time of controllability are ob-
tained for the wave equation. Null controllability for the heat equation and
exact controllability for the Schrödinger equation in any time interval are
obtained.

1. Introduction. Controllability problems for multi-link flexible struc-
tures or, in other words, for the wave and beam equations on graphs were
the subject of extensive investigations of many mathematicians (see, e.g., the
review paper [1] and references therein). Lagnese, Leugering, and Schmidt
[15, 16] used the method of energy estimates together with the Hilbert
uniqueness method to show that the exact controllability can be achieved in
optimal time for tree-like graphs consisting of homogeneous strings, when
all but one exterior nodes are controlled. Independently Avdonin and Ivanov
[2, Ch. VII] applied the method of moments and the theory of vector-valued
exponentials to study controllability problems on graphs for the wave equa-
tion. They proved exact controllability in optimal time for the wave equation
on a star-shaped graph of non-homogeneous strings. Belishev [5, 6], using
the propagation of singularities method, obtained a result on boundary con-
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trollability for a tree of non-homogeneous strings with respect to the first
component (shape) of the complete state.

Exact controllability results fail as soon as cycles occur within the net-
work, even if all nodes (including the interior ones) are subjected to control
[2, Sec. VII.1]. However, spectral controllability may be retained for many
graphs with cycles (see [2, Ch. VII], [10, 16] for details). In [19], for a tree of
homogeneous vibrating strings, the authors prove exact controllability for
some special class of initial/final data. Many interesting results on spectral
controllability are obtained in [10].

In this paper we prove exact controllability for the wave equation on
a tree-like graph of non-homogeneous strings for controls acting through
Dirichlet conditions applied to all or all but one boundary vertices. Our re-
sult generalizes the ones from [2] and [16]. Using the controllability of the
wave equation and results from [2, 21, 22, 24], we also prove the null con-
trollability of the heat equation and exact controllability of the Schrödinger
equation on trees.

Controllability problems for partial differential equations on graphs have
many important applications. They are also related to inverse problems
on graphs [3, 5, 7] and to harmonic analysis [2, Ch. VII]. In this paper
we use some known and prove several new results describing connections
between controllability of distributed parameter systems and properties of
exponential families.

We do not consider some important problems closely related to the topic
of the paper, such as controllability of networks of beams and hybrid sys-
tems, and refer the reader to the comprehensive papers [11, 16, 17].

2. Statement of the problems and main results. Let Ω be a finite
connected compact graph without cycles (a tree). The graph consists of edges
E = {e1, . . . , eN} connected at the vertices V = {v1, . . . , vN+1}. Every edge
ej ∈ E is identified with an interval (a2j−1, a2j) of the real line. The edges
are connected at the vertices vj which can be considered as equivalence
classes of the edge end points {aj}. The boundary Γ = {γ1, . . . , γm} of Ω
is a set of vertices having multiplicity one (the exterior nodes). We suppose
that the graph is equipped with a density

(2.1) %(x) ≥ const > 0, x ∈ Ω \ V, % ∈ C1(ēj), j = 1, . . . , N.

All the results of this paper are also valid for piecewise continuously differ-
entiable functions %. Discontinuity of % or its derivative at an inner point of
an edge is equivalent to an additional inner vertex of multiplicity two (see
the compatibility conditions (2.3), (2.4) below).

Since the graph under consideration is a tree, for every a, b ∈ Ω, a 6= b,
there exists a unique path π[a, b] connecting these points. The density de-
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termines the optical metric and the optical distance

dσ2 = %(x)|dx|2, x ∈ Ω \ V,
σ(a, b) =

�

π[a,b]

√
%(x) |dx|, a, b ∈ Ω,

The optical diameter of the graph Ω is defined as

d(Ω) = max
a,b∈Γ

σ(a, b).

The graph Ω and the optical metric determine the metric graph denoted by
{Ω, %}. For a rigorous definition of the metric graph, see e.g. [12, 13, 14, 20,
23]. The space of real-valued functions on the graph, square integrable with
the weight %, is denoted by L2,%(Ω).

2.1. Dirichlet spectral problem. Let ∂w(aj) denote the derivative of w
at the vertex aj taken along the corresponding edge in the direction toward
the vertex. We associate the following spectral problem to the graph:

−1
%

d2w

dx2
= λw,(2.2)

w ∈ C(Ω),(2.3) ∑
aj∈v

∂w(aj) = 0 for v ∈ V \ Γ ,(2.4)

w = 0 on Γ .(2.5)

It is well known (see, e.g., [8, 20, 25]) that the problem (2.2)–(2.5) has
a discrete spectrum of eigenvalues 0 < λ1 ≤ λ1 ≤ · · · , λk → +∞, and
corresponding eigenfunctions φ1, φ2, . . . can be chosen so that {φk}∞k=1 forms
an orthonormal basis in H := L2,%(Ω):

(φi, φj)H =
�

Ω

φi(x)φj(x)%(x) dx = δij .

Set κk(γ) = ∂φk(γ) for γ ∈ Γ . Let αk be the m-dimensional column vector
defined as αk = col (κk(γ)/

√
λk)γ∈Γ .

Definition 1. The set of pairs

(2.6) {λk, αk}∞k=1

is called the Dirichlet spectral data of the graph {Ω, %}.

2.2. Initial boundary value problems. Control from the whole boundary.
We associate to the graph {Ω, %} three dynamical systems, described corre-
spondingly by the wave, heat and Schrödinger equations. The first one has
the form
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%utt − uxx = 0 in Ω \ V × [0, T ],(2.7)
u|t=0 = ut|t=0 = 0,(2.8)
u(·, t) satisfies (2.3) and (2.4) for all t ∈ [0, T ],(2.9)
u = f on Γ × [0, T ].(2.10)

Here T > 0 and f = f(γ, t), γ ∈ Γ , is the Dirichlet boundary control which
belongs to FTΓ = L2([0, T ]; Rm). The inner product in FTΓ is defined by

(f, g)FTΓ =
m∑
i=1

T�

0

f(γi, t)g(γi, t) dt.

Let D′(Ω) be the set of distributions over the graph. We introduce the
space

H−1 =
{
g ∈ D′(Ω) : g(x) =

∞∑
k=1

gkφk(x), {gk/
√
λk}∞k=1 ∈ l2

}
.

The initial boundary value problem (2.7)–(2.10) has a classical solution
if f ∈ C2([0, T ]; Rm), f(0) = f ′(0) = 0. In our case when f ∈ FTΓ , the
solution to (2.7)–(2.10) is understood in a weak (distributional) sense. It
can be proved (see [2, 7, 10, 16]) that for any f ∈ FTΓ , the initial boundary
value problem (2.7)–(2.10) has a unique weak solution uf and it satisfies the
inclusion

uf ∈ C([0, T ];H) ∩ C1([0, T ];H−1).

This means that uf (·, t) ∈ H, uft (·, t) ∈ H−1 for all t ∈ [0, T ], and both
functions are continuous with respect to t in the corresponding norms. In
other words, the state (u(·, t), ut(·, t)) of the dynamical system (2.7)–(2.10)
is a point of H×H−1, and the trajectory of the system is a continuous curve
in the state space H×H−1. This regularity result is sharp.

One of the main results of the present paper demonstrates the exact
controllability of the system (2.7)–(2.10).

Theorem 1. For any state {a, b} ∈ H × H−1, there exists a control
function f(γ, t) ∈ FTΓ with T = d(Ω) such that the solution of the initial
boundary value problem (2.7)–(2.10) satisfies the equalities uf (·, T ) = a,
uft (·, T ) = b.

Another system we associate to the graph {Ω, %} is

%ut − uxx = 0 in Ω \ V × [0, τ ],(2.11)
u|t=0 = a,(2.12)
u(·, t) satisfies (2.3) and (2.4) for all t ∈ [0, τ ],(2.13)
u = f on Γ × [0, τ ],(2.14)

where τ > 0, f ∈ FτΓ and a ∈ H−1.
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It is known (see, e.g., [2, 9, 16]) that the initial boundary value problem
(2.11)–(2.14) has a unique weak solution uf and

uf ∈ C([0, τ ];H−1).

For parabolic-type dynamical systems various types of controllability are
considered in the literature (see [2, 16]). The following result demonstrates
the null controllability of the system (2.11)–(2.14).

Theorem 2. For any initial state a ∈ H−1 and for an arbitrary time
interval [0, τ ], τ > 0, there exists a control f ∈ FτΓ such that the solu-
tion of the initial boundary value problem (2.11)–(2.14) satisfies the equality
uf (·, τ) = 0.

The Schrödinger equation can also be associated to the graph {Ω, %}:
%ut + iuxx = 0 in Ω \ V × [0, τ ],(2.15)
u|t=0 = a,(2.16)
u(·, t) satisfies (2.3) and (2.4) for all t ∈ [0, τ ],(2.17)
u = f on Γ × [0, τ ],(2.18)

where f ∈ FτΓ , a ∈ H−1. It is known (see, e.g. [4, 26]) that a unique weak
solution uf (x, t) of (2.15)–(2.18) exists and satisfies the inclusion

uf ∈ C([0, T ];H−1).

For the dynamical system governed by the Schrödinger equation (2.15)–
(2.18) the following exact controllability result holds. (Due to time reversibil-
ity, the exact and null controllability are equivalent for the Schrödinger
equation.)

Theorem 3. For any initial state a ∈ H−1 and for an arbitrary time
interval [0, τ ], τ > 0, there exists a control f ∈ FτΓ such that the solu-
tion to the initial boundary value problem (2.15)–(2.18) satisfies the equality
uf (·, τ) = 0.

2.3. Initial boundary value problems. Control from a part of the bound-
ary. In the case when the graph is controlled from the whole boundary but
contains cycles, the system (2.7)–(2.10) is not exactly controllable (see, e.g.,
[2, Sec. VII.1]). Similarly, if the graph is a tree, but the system is not con-
trolled at two or more boundary points (the Dirichlet condition u = 0 is
imposed there), the conclusion of Theorem 1 fails; an example (in the case
of homogeneous strings) is given in [10, Sec. 6.3] (see also [1]). Suppose that
the graph is not controlled at one of the boundary points, say γ1. Then
one can introduce the length of the longest path from γ1 to the rest of the
boundary Γ1 = Γ \ {γ1}:

d1(γ1, Ω) = max
γ∈Γ1

τ(γ1, γ).
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The boundary conditions for the system (2.7)–(2.9) have the form

(2.19) u(γ1, t) = 0, u(γi, t) = f(γi, t), i = 2, . . . , N,

where f ∈ FTΓ1
= L2([0, T ]; Rm−1). In this situation the analog of Theorem 1

holds true:

Theorem 4. For any state {a, b} ∈ H × H−1, there exists a control
function f ∈ FTΓ1

with T = 2d1(γ1, Ω) such that the solution of the initial
boundary value problem (2.7)–(2.9), (2.19) satisfies the equalities uf (·, T )=a,
uft (·, T ) = b.

For the parabolic and Schrödinger type systems (2.11)–(2.13), (2.15)–
(2.18), we can also consider the problem of a controllability from a part of
the boundary, i.e., we add the boundary conditions (2.19) to the initial-value
problem (2.11)–(2.13) and to the problem (2.15)–(2.17). In this case one can
prove the analogs of Theorems 2 and 3:

Theorem 5. For any initial state a ∈ H−1 and for an arbitrary time
interval [0, τ ], τ > 0, there exists a control f ∈ FτΓ1

such that the solution of
the initial boundary value problem (2.11)–(2.13), (2.19) satisfies the equality
uf (·, τ) = 0.

Theorem 6. For any initial state a ∈ H−1 and for an arbitrary time
interval [0, τ ], τ > 0, there exists a control f ∈ FτΓ1

such that the solution of
the initial boundary value problem (2.15)–(2.17), (2.19) satisfies the equality
uf (·, τ) = 0.

3. Auxiliary results. In [5] (see also [6, 7]) the following result con-
cerning the controllability with respect to the first component (shape) of
the complete state {u, ut} of the dynamical system (2.7)–(2.10) has been
proved:

Theorem 7. Let T = d(Ω)/2. Then for any a ∈ H, there exists a
control f(γ, t) ∈ FTΓ such that the solution of the initial boundary value
problem (2.7)–(2.10) satisfies the equality uf (x, T ) = a(x).

In other words, the system (2.7)–(2.10) is controllable with respect to
shape in time equal to half the optical diameter of the graph. Note that in
general such a control is not unique.

To prove Theorem 7 the propagation of singularities method has been
used and the controllability was reduced to solvability of a Volterra type
equation. It was supposed in [5]–[7] that % ∈ C2 on all edges, but the method
works for % ∈ C1 as well. The same technique can be applied to obtain
the controllability of the system (2.7)–(2.10) with respect to the second
component (velocity) of the complete state:
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Proposition 1. If T = d(Ω)/2 then for any b ∈ H−1, there exists a
control f ∈ FTΓ such that the solution of the initial boundary value problem
(2.7)–(2.10) satisfies the equality uft (x, T ) = b(x).

In the following two propositions we consider the case of boundary
condition (2.19) for the system (2.7)–(2.9). The proof of Proposition 2
can be extracted from the proof of Theorem 7 [7, Sec. 2]. Let us intro-
duce the “optical center” of the graph Ω, i.e., a point ξ ∈ Ω such that
maxγ∈Γ τ(ξ, γ) = d(Ω)/2 = T . Since Ω is a tree, there can be only one
optical center. Suppose that the final state a(x) is supported in a subtree
Ω1 ⊂ Ω such that ξ /∈ Ω1. As shown in [5]–[7], to solve the control problem
one has to use controls supported on the part of the boundary of the graph
Ω which is the boundary of Ω1. In other words, it is possible to construct a
control f ∈ FTΓ such that uf (T, x) = a(x) and f(γ, t) = 0 for γ /∈ Ω1. The
authors offer an explicit procedure for constructing such a control. If instead
of the “optical center” of the graph we take a boundary point γ1 where the
homogeneous Dirichlet condition u(γ1, t) = 0 is imposed, we come to the
following statements:

Proposition 2. If T = d1(γ1, Ω) then for any a ∈ H there exists a
control f ∈ FTΓ1

such that the solution of the boundary value problem (2.7)–
(2.9), (2.19) satisfies the equality uf (x, T ) = a(x).

The same result holds true for controllability with respect to velocity:

Proposition 3. If T = d1(γ1, Ω) then for any b ∈ H−1 there exists
a control f ∈ FTΓ1

such that the solution of the boundary value problem
(2.7)–(2.9), (2.19) satisfies the equality uft (x, T ) = b(x).

4. Proof of Theorem 1. We begin by reducing the problem of control-
lability of the dynamical system (2.7)–(2.10) to a moment problem in FTΓ .
Solving the initial boundary value problem (2.7)–(2.10) by the Fourier
method and looking for the solution in the form

(4.1) uf (x, t) =
∞∑
k=1

cfk(t)φk(x),

we get the expression for the coefficients:

cfk(t) =
∑
γ∈Γ

κk(γ)√
λk

t�

0

sin(
√
λk (t− s))f(γ, s) ds.

Suppose that we are given the final state {a, b} ∈ H×H−1 at t = T , where
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the functions a(x), b(x) have the expansions

a(x) =
∞∑
k=1

akφk(x), b(x) =
∞∑
k=1

bkφk(x),

for some {ak}∞k=1 ∈ l2 and {bk/
√
λk}∞k=1 ∈ l2. Then for an unknown control

f ∈ FTΓ , the following moment equalities should hold at time t = T :

ak = cfk(T ) =
∑
γ∈Γ

κk(γ)√
λk

T�

0

sin(
√
λk (T − s))f(γ, s) ds, k ∈ N,(4.2)

bk√
λk

=
ċfk(T )√
λk

=
∑
γ∈Γ

κk(γ)√
λk

T�

0

cos(
√
λk (T − s))f(γ, s) ds, k ∈ N.(4.3)

Using the Euler formulas for exponentials, we rewrite (4.2), (4.3) as

bk√
λk
± iak =

∑
γ∈Γ

κk(γ)√
λk

T�

0

e±i
√
λk(T−s)f(γ, s) ds, k ∈ N.(4.4)

Definition 2. We call the moment problem (4.4) solvable (and f(γ, t)
a solution of the moment problem) in the time interval [0, T ] if, for arbitrary
sequences {ak}∞k=1, {bk/

√
λk}∞k=1 ∈ l2, there exists a function f ∈ FTΓ such

that equalities (4.4) hold.

We emphasize that the solvability of the moment problem (4.4) in the
time interval [0, T ] for some T > 0 is equivalent to the controllability of the
dynamical system (2.7)–(2.10) in the sense of Theorem 1 in the same time
interval. This is a basic statement of the method of moments (see e.g. [2,
Ch. III], [24]).

We need a couple of definitions concerning vector families in a Hilbert
space.

Definition 3. The family {ξk}∞k=1 in a Hilbert space H is called a Riesz
basis if it is the image of an orthonormal basis under the action of some linear
isomorphism.

Definition 4. The family {ξk}∞k=1 in a Hilbert space H is called an
L-basis if it is a Riesz basis in the closure of the linear span of the family.

The controllability result in Theorem 7 implies the solvability of the
moment problem (4.2) for T = d(Ω)/2 for every {ak}∞k=1. The controllability
result in Proposition 1 implies the solvability of the moment problem (4.3)
for T = d(Ω)/2 for every {bk/

√
λk}∞k=1 ∈ l2. Our goal is to show that

the solvability of the moment problems (4.2) and (4.3) for T = d(Ω)/2
implies the solvability of the moment problem (4.4) for T = d(Ω). Let us
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put T∗ = d(Ω)/2 and introduce the families of vector-valued functions

Sk(t) = αk sin(
√
λk t), Ck(t) = αk cos(

√
λk t), k ∈ N.

According to Theorem III.3.3 of [2] the solvability of the moment prob-
lems (4.2) and (4.3) means that the families {Sk}∞k=1 and {Ck}∞k=1 form
L-bases in L2([0, T∗]; Rm).

Let us introduce subspaces of L2([0, T∗]; Rm):

Ξo =
∨
{Sk}∞k=1, Ξe =

∨
{Ck}∞k=1,

where
∨

denotes the closure of the linear span of a family. We extend the
functions from Ξo to the interval [−T∗, 0) in the odd way:

ϕ̃(t) =
{
ϕ(t), t ≥ 0,
−ϕ(−t), t < 0,

− T∗ ≤ t ≤ T∗, ϕ ∈ Ξo,

and the functions from Ξe in the even way:

ϕ̃(t) =
{
ϕ(t), t ≥ 0,
ϕ(−t), t < 0,

− T∗ ≤ t ≤ T∗, ϕ ∈ Ξe.

Let us denote the spaces of extended functions by Ξ̃o and Ξ̃e and notice
that the extended families {S̃k}∞k=1 and {C̃k}∞k=1 are Riesz bases in Ξ̃o and
Ξ̃e respectively. The orthogonality of the spaces Ξ̃o and Ξ̃e implies that the
union

{C̃k(t)}∞k=1 ∪ {S̃k(t)}∞k=1

is a Riesz basis in Ξ̃o ⊕ Ξ̃e ⊂ L2([−T∗, T∗]; Rm). Introducing the functions

E±k(t) = Ck(t)± iSk(t) = αke
±i
√
λkt, k ∈ N,(4.5)

we see that the set {E±k}k∈N is an L-basis in L2([−T∗, T∗]; Cm). Shifting
the argument, we come to the conclusion that the same family is an L-basis
in L2([0, 2T∗]; Cm). Then according to Theorem III.3.3 of [2], the moment
problem (4.4) is solvable for T = 2T∗ = d(Ω). As already noticed, this
implies the exact controllability of (2.7)–(2.10) in the time interval [0, d(Ω)].
Theorem 1 is proved.

The proof of Theorem 4 is analogous to the previous one. We set α′k to
be the (m− 1)-dimensional column vector defined as

(4.6) α′k = col (κ(γ)/
√
λk)γ∈Γ1 .

There naturally arise the families of vector functions in L2([0, T1]; Rm−1)
with T1 = d1(γ1, Ω):

S1
k(t) = α′k sin(

√
λk t), C1

k(t) = α′k cos(
√
λk t), k ∈ N.

One should perform the same procedure (using Propositions 2 and 3 instead
of Theorem 7 and Proposition 1) as in the proof of Theorem 1, construct
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the family of vector exponentials

(4.7) {E1
±k}k∈N, E1

±k(t) = α′ke
±i
√
λkt, t ∈ (0, 2T1), k ∈ N,

and use the connection between controllability and vector exponentials ([2,
Theorem III.3.3]).

In the proofs of Theorems 1 and 4 we have obtained important results
which are of independent interest in function theory.

Proposition 4. The family {E±k}k∈N (see (4.5)) constructed using the
Dirichlet spectral data (2.6) is an L-basis in L2([0, d(Ω)]; Cm).

Suppose that we pick an arbitrary boundary point of the graph (we keep
the notation γ1 for it); then we get

Proposition 5. The family {E1
±k}k∈N (see (4.7)) constructed using the

Dirichlet spectral data (2.6), (4.6) is an L-basis in L2([0, 2T1]; Cm−1) for
T1 = d1(γ1, Ω).

It seems difficult to obtain these results without using the control-theo-
retic approach.

5. Proof of Theorem 2. Looking for the solution of (2.11)–(2.14) in
the form (4.1) for a fixed initial state a ∈ H−1 with the expansion

(5.1) a(x) =
∞∑
k=1

akφk(x),

we come to the following formulas for the coefficients:

cfk(t) = ake
−λkt +

∑
γ∈Γ

κk(γ)
t�

0

e−λk(t−s)f(γ, s) ds.

Solving the control problem associated with (2.11)–(2.14) in the time interval
[0, τ ], we need the equation cfk(τ) = 0, k ∈ N, to be satisfied. This leads to
the following moment problem:

(5.2) 0 =
ak√
λk

e−λkτ +
∑
γ∈Γ

κk(γ)√
λk

τ�

0

e−λk(τ−s)f(γ, s) ds, k ∈ N.

Definition 5. The moment problem (5.2) is solvable in the time interval
[0, τ ] for some τ > 0 if and only if, for any {ak/

√
λk}∞k=1 ∈ l2, there exists

f ∈ FτΓ such that equalities (5.2) hold.

Note that solvability of the moment problem (5.2) is equivalent to the
null controllability of the dynamical system (2.11)–(2.14).

Definition 6. A family {ξk}∞k=1 in a Hilbert space H is called minimal
if no ξk belongs to the closure of the linear span of the remaining elements.



Controllability of partial differential equations on graphs 389

Another equivalent characterization of a minimal family {ξk}∞k=1 in a
Hilbert space H with the scalar product 〈·, ·〉 is the existence of a bi-
orthogonal family {ξ′k}∞k=1 ⊂ H such that

〈ξk, ξ′n〉 = δk,n, k, n ∈ N.

It is well known that if a vector family is an L-basis in H, it is minimal
in H.

Proposition 4 states that the “hyperbolic” family {E±k}k∈N defined by
(4.5) is an L-basis in L2([0, d(Ω)]; Cm). Let us denote by {E′±k}k∈N the
family bi-orthogonal to {E±k}k∈N. There are connections between the “hy-
perbolic” family (4.5) and the “parabolic” one,

(5.3) {Qk}∞k=1, Qk(t) = αke
−λkt, k ∈ N,

first established by D. L. Russell [24]. We use his result in a slightly more
general form, stated in Theorem II.5.20 of [2], from which it follows that
the “parabolic” family {Qk}∞k=1 is minimal in L2([0, τ ]; Cm) for every τ > 0
and for the members of the “parabolic” bi-orthogonal family {Q′k}∞k=1 the
following estimates hold:

(5.4) ‖Q′k‖L2([0,τ ];Cm) ≤ C(τ)‖E′k‖L2([0,d(Ω)];Cm)e
β
√
|λn|, k ∈ N,

with positive constants C(τ) and β.
To prove Theorem 2, one needs to show the solvability of the moment

problem (5.2) which can be rewritten as

− ak√
λk

e−λkτ =
∑
γ∈Γ

κk(γ)√
λk

τ�

0

e−λktf(γ, τ − t) dt, k ∈ N,

or, briefly, as

(5.5) − ak√
λk

e−λkτ = (Qk, f τ )FτΓ , k ∈ N,

where f τ (γ, t) = f(γ, τ − t). One can check that a formal solution of (5.5)
has the form

(5.6) f τ (γ, t) = −
∞∑
k=1

ake
−λkτQ′k(t).

Estimates (5.4) imply that f τ (γ, t) defined by (5.6) belongs to FτΓ , and
therefore the moment problem (5.2) is solvable. This completes the proof of
Theorem 2.

The proof of Theorem 5 is similar. The corresponding family of exponen-
tials that arise when reducing the control problem to the moment problem
has the form

(5.7) {Q1
k}∞k=1, Q1

k(t) = α′ke
−λkt, k ∈ N.
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We conclude this section with results about families of vector exponen-
tials that naturally appeared in the proofs.

Proposition 6. The family {Qk}∞k=1 (see (5.3)) constructed using the
Dirichlet spectral data (2.6) is minimal in L2([0, T ]; Cm) for any T > 0.

If we pick an arbitrary boundary point of the graph (we keep the notation
γ1 for it), then the following statement is true.

Proposition 7. The family {Q1
k}∞k=1 (see (5.7)) constructed using the

Dirichlet spectral data (2.6), (4.6) is minimal in L2([0, T ]; Cm−1) for any
T > 0.

We emphasize that an independent proof of Propositions 6, 7 without
using the control-theoretic approach would be difficult.

6. Proof of Theorem 3. To prove Theorem 3 we use the scheme pro-
posed in [21]. We restate the initial boundary value problems (2.7)–(2.10)
and (2.15)–(2.18) in the operator form. Results concerning the dependence
of solutions to systems dual to (2.7)–(2.10), (2.15)–(2.18) on the initial data
allow us to use Theorem 3.1 of [21] that derives the exact controllability
of the first-order system (2.15)–(2.18) in any time interval from the exact
controllability of the second-order system (2.7)–(2.10) in some time interval.

Let us introduce the operator

A = −1
%

d2

dx2
in H0 := H = L2,%(Ω).

If the density % satisfies (2.1), the operator A is self-adjoint, positive definite
and boundedly invertible with the domain

D(A) = {a ∈ H0 : a|ei ∈ H2(ei), a satisfies (2.3), (2.4), a|Γ = 0}.
This operator defines the scale Hp, p ∈ Z, of Hilbert spaces. For p > 0,
Hp = D(Ap/2) with the norm ‖x‖p = ‖Ap/2x‖, and H−p is dual to Hp with
respect to the scalar product in H0. Another characterization of H−p(Ω) is
that it is the completion of H0 with respect to the norm ‖x‖−p = ‖A−p/2x‖.
We denote by A′ the operator dual to A: it is the extension of A to H−2

with the domain H0. Let Y = Rm and let C : H2 → Y be defined by

Ca = col (∂a(γ))γ∈Γ .

Let B : Y → H−2 be the operator dual to C. In this notation we can rewrite
the dynamical system (2.15)–(2.18) as

(6.1) ut(t)− iA′u(t) = Bf(t), u(0) = a ∈ H0.

The dual observation system with output function y is defined by

(6.2) ut(t)− iAu(t) = 0, u(0) = u0 ∈ H0, y(t) = Cu(t).



Controllability of partial differential equations on graphs 391

The smoothness of the solution of (6.2) (see [4] for the case of one interval)
guarantees that for the observation operator Cs : u0 7→ y(t) the following
estimate holds:

(6.3) ‖Csu0‖FT ≤ KT ‖u0‖H0 , u0 ∈ H2,

with KT > 0.
System (2.7)–(2.10) can be rewritten as

(6.4) utt(t) +A′u(t) = Bf(t), u(0) = 0, ut(0) = 0.

The dual observation system with the output function z has the form

utt(t) +Au(t) = 0, u(0) = u0 ∈ H1, ut(0) = u1 ∈ H0, z(t) = Cu(t).

The observation operator Cw : {u0, u1} 7→ z(t) satisfies the estimate

(6.5) ‖Cw{u0, u1}‖FT ≤ K1
T (‖u0‖H1 + ‖u1‖H0)

with K1
T > 0 (see [18]). Now we can use Theorem 3.1 of [21], which says

that if the dynamical system (6.4) is exactly controllable in some time in-
terval (in our case it is controllable in the time interval (0, d(Ω))), then the
system (6.1) is exactly controllable in any time interval, provided the obser-
vation operators satisfy inequalities (6.3), (6.5). This completes the proof of
Theorem 3.

Remark 1. The proof of Theorem 6 is similar: one should refer to The-
orem 4 for the controllability of the corresponding second order dynamical
system.

Looking for the solution of (2.15)–(2.18) in the form (4.1) for a fixed
initial state a ∈ H−1 with the expansion (5.1), we come to the following
formulas for the coefficients:

cfk(t) = ake
iλkt +

∑
γ∈Γ

κk(γ)
t�

0

eiλk(t−s)f(γ, s) ds.

Solving the control problem associated with (2.15)–(2.18) in the time interval
[0, τ ], we obtain the following moment problem:

(6.6) 0 =
ak√
λk

eiλkτ +
∑
γ∈Γ

κk(γ)√
λk

τ�

0

eiλk(τ−s)f(γ, s) ds, k ∈ N.

Theorem 3 implies that the moment problem (6.6) is solvable for any τ > 0.
Using Theorem III.3.3 of [2] we deduce the following result about the family
of vector-valued exponentials that appeared in the moment problem (6.6).

Corollary 1. The family

{Dk}∞k=1, Dk(t) = αke
iλkt, k ∈ N,
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constructed using the Dirichlet spectral data (2.6) is an L-basis in the space
L2([0, τ ]; Cm) for any τ > 0.

Picking an arbitrary boundary point of the graph (we keep the notation
γ1 for it) and using Theorem 6, we get

Corollary 2. The family

{D1
k}∞k=1, D1

k(t) = α′ke
iλkt,

constructed using the Dirichlet spectral data (2.6), (4.6) is an L-basis in
L2([0, τ ]; Cm−1) for any τ > 0.
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