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EXISTENCE OF SOLUTIONS TO THE (rot,div)-SYSTEM
IN L2-WEIGHTED SPACES

Abstract. The existence of solutions to the elliptic problem rot v = w,
div v = 0 in Ω ⊂ R3, v · n|S = 0, S = ∂Ω, in weighted Hilbert spaces is
proved. It is assumed that Ω contains an axis L and the weight is a negative
power of the distance to the axis. The main part of the proof is devoted to
examining solutions in a neighbourhood of L. Their existence in Ω follows
by regularization.

1. Introduction. We consider the elliptic problem

(1.1)
rot v = w in Ω,

div v = 0 in Ω,

v · n = b on S,

where Ω ⊂ R3 is a bounded domain, S = ∂Ω, n is the unit outward vector
normal to S and the dot denotes the scalar product in R3. Problem (1.1)
was considered, e.g., in [6].

For solutions of problem (1.1) to exist, the following compatibility con-
ditions have to be satisfied:

(1.2)
�

S

b(s) dS = 0,

(1.3) divw = 0.

Let an axis L pass through Ω. Then we introduce weighted Sobolev spaces
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Hk
−µ(Ω) with the norm

‖u‖Hk
−µ(Ω) =

(∑
|α|≤k

�

Ω

|Dα
xu(x)|2%(x)2(−µ−k+|α|) dx

)1/2
<∞,

where %(x) = dist{x, L}. The aim of this paper is to prove the following
result:

Theorem 1.1. Assume the compatibility conditions (1.2), (1.3) hold. As-
sume that w ∈ Hk

−µ(Ω), b ∈ Hk+1/2
−µ (S), µ ∈ R+, µ 6∈ Z, k ∈ N. Then there

exists a solution to problem (1.1) such that v ∈ Hk+1
−µ (Ω) and

(1.4) ‖v‖Hk+1
−µ (Ω) ≤ c(‖w‖Hk

−µ(Ω) + ‖b‖
H
k+1/2
−µ (S)

).

We are looking for solutions to problem (1.1) in the form (see [6])

(1.5) v = ∇ϕ+ u,

where ϕ is a solution to the problem

(1.6) ∆ϕ = 0, n · ∇ϕ|S = b,

and u satisfies

(1.7)
rotu = w in Ω,

div u = 0 in Ω,

u · n|S = 0.

By Lemma 1 in [1], (1.7)2,3 imply the existence of a vector e such that

(1.8) u = rot e, div e = 0, e · τ |S = 0,

where τ is any tangent vector to S.
In view of (1.8), problem (1.7) takes the form

(1.9) −∆e = w, e · τ |S = 0, div e|S = 0,

where we have taken into account that ∆ div e=0, div e|S =0 imply div e=0.
In a curvilinear orthonormal system of coordinates (τ1, τ2, n) in a neigh-

bourhood of S we express the vector e in the form e =
∑2

µ=1 eµτµ + enn,
where eµ = e · τµ, en = e · n.

Then problem (1.9) can be replaced by

(1.10) −∆e = w, eτ |S = 0, (n · ∇en + en div n)|S = 0.

To prove Theorem 1.1 we have to show the existence of solutions to
problems (1.6) and (1.10) in the same weighted spaces.

To prove the existence of solutions to problem (1.6) in weighted spaces
we need



The (rot, div)-system in L2-weighted spaces 85

Lemma 1.1 (see [3, Ch. 4]). Assume that b ∈ H1/2(S), S ∈ C2. Then
there exists a solution to problem (1.6) such that ∇ϕ ∈ H1(Ω) and

(1.11) ‖∇ϕ‖H1(Ω) ≤ c‖b‖H1/2(S).

Similarly, for solutions to (1.10) we have

Lemma 1.2 (see [3, Ch. 4]). Assume that w ∈ L2(Ω) and S ∈ C2. Then
there exists a solution to problem (1.10) such that e ∈ H2(Ω) and

(1.12) ‖e‖H2(Ω) ≤ c‖w‖L2(Ω).

Now we formulate the following main results:

Theorem 1.2. Let b ∈ H
l+1/2
−µ (S) for some l ∈ N, µ ∈ R+, µ 6∈ Z.

Assume the compatibility condition (1.2) holds. Then there exists a solution
to problem (1.6) such that ϕ ∈ H l+2

−µ (Ω) and

(1.13) ‖ϕ‖Hl+2
−µ (Ω) ≤ c‖b‖Hl+1/2

−µ (S)
.

Next we have

Theorem 1.3. Let w ∈ H l
−µ(Ω) for some l ∈ N and µ ∈ R+\Z. Assume

the compatibility condition divw = 0 holds. Then there exists a solution to
problem (1.10) such that e ∈ H l+2

−µ (Ω) and

(1.14) ‖e‖Hl+2
−µ (Ω) ≤ c‖w‖Hl

−µ(Ω).

Theorems 1.2 and 1.3 imply Theorem 1.1.
Problem (1.1) is an important step in the proofs of existence of regular

solutions to the Navier–Stokes equations. If we look for global regular solu-
tions close to being axially symmetric, we need the existence of solutions to
problem (1.1) in weighted Sobolev spaces. Hence, we exactly need Theorem
1.1. Therefore, Theorem 1.1 was used in [7–9, 11, 12].

2. Notation and auxiliary results. First we introduce weighted spaces.
Let %(x) = dist{x, L}. Then for µ ∈ R and k ∈ N we set

Hk
µ(Ω) =

{
u : ‖u‖Hk

µ(Ω) =
(∑
|α|≤k

�

Ω

|Dα
xu|2%2(µ−k+|α|)(x) dx

)1/2
<∞

}
.

For k = 0 we have

L2,µ(Ω) =
{
u : ‖u‖L2,µ(Ω) =

( �
Ω

|u(x)|2%2µ(x) dx
)1/2

<∞
}
.

To examine regularity of solutions to problem (1.1) in a neighbourhood of L
we introduce a local system of coordinates such that L is contained in the
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x3-axis and 0 ∈ L. In these coordinates we introduce the Fourier transform

(2.1) (F1u)(x′, ξ) =
�

R
e−iξx3u(x′, x3) dx3,

where ξ ∈ R, x′ = (x1, x2).
Let u = u(x′, x3) be given. Let r, ϕ be the polar coordinates such that

x1 = r cosϕ, x2 = r sinϕ. Let τ = − ln r. Then for λ ∈ C we define the
transform

(2.2) (F2u)(λ, ϕ, x3) =
�

R
e−iλτu(τ, ϕ, x3) dτ.

Now we introduce a partition of unity. We distinguish four types of sub-
domains: Ω(1), near an interior point of L; Ω(2), near the points where L
meets S; Ω(3), near an interior point of Ω \L; Ω(4), near a point of S \L. To
each subdomain Ω(k) we attach a smooth function ζ(k) which is equal to 1 in
w(k) ⊂ Ω(k) and vanishes outside Ω(k), k = 1, 2, 3, 4. Let ξ(k) ∈ w(k) ⊂ Ω(k),
k = 1, 3, be any point of Ω(k). Next ξ(2) is a point where L meets S, and
ξ(4) is a point on S.

We shall examine problems (1.6) and (1.10) in subdomains Ω(1) and
Ω(2) only, because restrictions of solutions to Ω(3) and Ω(4) are covered by
Lemmas 1.2 and 1.3. We assume that Ω(1) is a cylinder with axis L.

Let ϕ(1) = ϕζ(1), e(1) = eζ(1). Then problems (1.6) and (1.10) take the
form

(2.3)
∆ϕ(1) = 2∇ζ(1)∇ϕ+ ϕ∆ζ(1) ≡ g(1) in Ω(1),

ϕ(1) = 0 on ∂Ω(1),

and

(2.4)
∆e(1) = w(1) + 2∇ζ(1)∇e+ e∆ζ(1) ≡ h(1) in Ω(1),

e(1) = 0 on ∂Ω(1).

In view of Lemmas 1.2 and 1.3 and the Hardy inequality, we have g(1), h(1) ∈
L2,−µ(Ω), µ ∈ (0, 1).

Problems (2.3) and (2.4) can be replaced by

(2.5)
∆u(1) = f (1) + 2∇ζ(1)∇u+∆ζ(1)u ≡ g(1) in Ω(1),

u(1) = 0 on ∂Ω(1),

where u ∈ H2(Ω) and replaces ϕ and e.
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Problem (1.10) in a domain of type Ω(2) implies

(2.6)

−∆e(2) = w(2) − 2∇ζ(2)∇e−∆ζ(2)e ≡ f (2),

e(2) · τ |
S∩∂Ω(2) = 0,

(n · ∇e(2)
n + e(2)

n div n)|
S∩∂Ω(2) = n · ∇ζ(2)en|S∩∂Ω(2) ,

e(2)|
∂Ω(2)\(S∩∂Ω(2)

)
= 0,

where e(2) = eζ(2), w(2) = wζ(2).
Let us introduce a local coordinate system y = {y1, y2, y3} with origin

at a point where L meets S. Assume that L is on the y3-axis and y3 > 0
describes points inside Ω. Let S(2) = S ∩Ω(2) be described by

(2.7) y3 = F (y1, y2).

Then we introduce new coordinates

(2.8)
zi = yi, i = 1, 2,
z3 = y3 − F (y1, y2).

Let us denote the mapping (2.8) by z = Φ(y).
Problem (1.10) is described in the coordinates x = {x1, x2, x3}, so pas-

sage to the coordinates y can be achieved by a rotation and a translation.
Let us denote the change of variables by

y = Y (x).

Hence,

(2.9) z = (Φ ◦ Y )(x) ≡ Ψ(x), Ω̂ = Ψ(Ω(2)), Ŝ = Ψ(S(2)).

Introduce the notation

ẽ(2)(z) = e(2)(Ψ−1(z)), w̃(2)(z) = w(2)(Ψ−1(z)),

ẽ(z) = e(Ψ−1(z)), ζ̃(z) = ζ(Ψ−1(z)), ∇z = ∂z,

∇Ψ =
∂z

∂x

∣∣∣∣
x=Ψ−1(z)

· ∇z = Ψx|x=Ψ−1(z) · ∇z, nz = (0, 0, 1),

nΨ = (Fy1 , Fy2 ,−1)|y=Φ−1(z),

τ1 = (1, 0, 0), τ2 = (0, 1, 0), τ1Ψ = nΨ × τ2, τ2Ψ = nΨ × τ1.

Then problem (2.6) takes the form
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(2.10)

−∇2
z ẽ

(2) = −(∇2
z −∇2

Ψ )ẽ(2) + f̃ (2) ≡ k,

ẽ(2)||z′|=R,z3∈(0,a) = 0,

ẽ(2)|z3=a = 0,

ẽ
(2)
i |z3=0 = ẽ(2) · τ i|z3=0 = ẽ(2) · (τ i − τ iΨ )|z3=0 ≡ hi, i = 1, 2,

ẽ
(2)
3,z3
|z3=0 ≡ nz · ∇z ẽ(2)

n |z3=0 = (nz · ∇z ẽ(2)
n − nΨ · ∇Ψ (ẽ(2) · nΨ )

− ẽ(2) · nΨ∇Ψ · nΨ + nΨ · ∇Ψζ(2)ẽ(2) · nΨ )|z3=0 ≡ h3,

where we assume that Ω̂ is the cylinder

Ω̂ = {z ∈ R3 : |rz| < R, 0 < z3 < a, ϕz ∈ [0, 2π]},

rz =
√
z2
1 + z2

2 , ϕz = arctan
z2
z1
.

Let us extend solutions to problem (2.10) to the cylinder

Ω̂′ = {z ∈ R3 : |rz| < R, −a < z3 < a, ϕz ∈ [0, 2π]}.

For this purpose we construct a function η = (η1, η2, η3) such that

(2.11)

ηi|z3=0 = hi, i = 1, 2,
∂η3

∂z3

∣∣∣∣
z3=0

= h3,

ηj ||z′|=R, z3∈(0,a) = 0,

ηj |z3=a = 0, i = 1, 2, 3.

Then we introduce the function

(2.12) w = ẽ(2) − η,

which is a solution to the problem

(2.13)

−∇2
zw = k +∇2

zη in Ω̂,
wi|z3=0 = 0, i = 1, 2,
w3,z3 |z3=0 = 0,
wj ||z′|=R, z3∈(0,a) = 0,

wj |z3=a = 0, j = 1, 2, 3.

Now, we construct the following extension:

(2.14)
w′i(z3) = −wi(−z3), i = 1, 2, z3 ∈ (−a, 0),
w′3(z3) = w3(−z3), z3 ∈ (−a, 0),
w′j(z3) = wj(z3), j = 1, 2, 3, z3 ∈ (0, a).
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In view of (2.14) problem (2.13) takes the form

(2.15)
−∇2

zw
′ = k′ +∇2

zη
′ in Ω̂′,

w′ = 0 on ∂Ω̂′.

Hence, problem (2.15) assumes the form of problem (2.4).

3. Regularity near the axis in the L2-approach. To show the exis-
tence of solutions to problems (1.6) and (1.10) in a neighbourhood of L we
introduce the cylinder

CR,a = {x ∈ R3 : |x′| < R, |x3| < a}
with the axis of symmetry the x3-axis and with R, a given positive numbers.

Then we consider problems (2.5) and (2.15) in the form

(3.1)
−∆u = f in R3,

lim
|x|→∞

u = 0, supp f ⊂ CR,a,

where CR,a replaces Ω(1), Ω̂′ and f vanishes outside CR,a.
To prove the existence of solutions to problem (3.1) we consider first

problem (3.1) in the form

(3.2)
−∆uδ = fδ in R3 \ Cδ,

lim
|x|→∞

uδ = 0, uδ = 0 on ∂Cδ, supp fδ ⊂ CR,a,δ,

where δ > 0, fδ = 0 for |x′| < δ and

CR,a,δ = {x ∈ CR,a : |x′| > δ}, Cδ = {x ∈ R3 : |x′| > δ}.
Then we have (see [3, Ch. 4])

Lemma 3.1. Assume that fδ ∈ H l(CR,a,δ). Then there exists a solution
to problem (3.2) such that uδ ∈ H l+2(Cδ) and

(3.3) ‖uδ‖Hl+2(Cδ)
≤ c‖fδ‖Hl(CR,a,δ)

,

where c does not depend on δ.

Let us express (3.2) in variables τ, ϕ, z, τ = − ln r:

(3.4)
−(uδ,ττ + uδ,ϕϕ + e−2τuδ,zz) = e−2τfδ,

uδ|τ=−∞ = uδ|τ=− ln δ = 0,
uδ|z=−∞ = uδ|z=∞ = 0.

Let us introduce the function

(3.5) uδ =
{
uδ for τ < − ln δ,
0 for τ ≥ − ln δ.

It is shown in [5] that uδ is a solution to problem (3.1) (see also the proof
of Lemma 3.6).
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First, we examine the problem

(3.6)
−∆′u = f +∇2

x3
u ≡ g,

u||x′|=∞ = 0.

Lemma 3.2. Assume that g ∈ L2,−µ(R2) for some µ ∈ R \ Z. Then any
solution to problem (3.6) such that u ∈ H2

−µ(R2) satisfies

(3.7) ‖u‖H2
−µ(R2) ≤ c‖g‖L2,−µ(R2).

Proof. In polar coordinates problem (3.6) takes the form

(3.8)
r∂r(r∂ru) + u,ϕϕ = r2g ≡ h.
u|r=∞ = 0.

Let us introduce the new variable τ = − ln r, r = e−τ , r∂r = −∂τ . Since u
vanishes for large r, (3.8) can be considered in the form

(3.9)

∂2
τu+ ∂2

ϕu = h,

u|ϕ=0 = u|ϕ=2π,

∂u

∂ϕ

∣∣∣∣
ϕ=0

=
∂u

∂ϕ

∣∣∣∣
ϕ=2π

.

Applying the Fourier transform F2 denoted by ũ = F2u, we obtain from
(3.9) the problem

(3.10)

−λ2ũ+ ∂2
ϕũ = h̃,

ũ|ϕ=0 = ũ|ϕ=2π,

∂ũ

∂ϕ

∣∣∣∣
ϕ=0

=
∂ũ

∂ϕ

∣∣∣∣
ϕ=2π

.

We have to underline that the eigenvalues of problem (3.10) are such that
Reλ = 0 and Imλ ∈ Z (see [10]).

The existence of solutions to problem (3.10) follows from the following
construction. Let λ = iσ. Then we are looking for solutions to problem (3.10)
in the form

ũ = α sin(σϕ) + β cos(σϕ).

By variation of constants we calculate α, β from the equations
dα

dϕ
sin(σϕ) +

dβ

dϕ
cos(σϕ) = 0,

dα

dϕ
cos(σϕ)− dβ

dϕ
sin(σϕ) =

1
σ
h̃.

Solving the equations we obtain
dα

dϕ
=

1
σ

cos(σϕ)h̃,
dβ

dϕ
= − 1

σ
sin(σϕ)h̃.
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Hence

α =
1
σ

ϕ�

0

cos(σϕ′)h̃(ϕ′) dϕ′, β = − 1
σ

ϕ�

0

sin(σϕ′)h̃(ϕ′) dϕ′.

Then a general solution to (3.10) has the form

ũ = α sin(σϕ) + β cos(σϕ) +
sin(σϕ)

σ

ϕ�

0

cos(σϕ′)h̃(ϕ′) dϕ′(3.11)

− cos(σϕ)
σ

ϕ�

0

sin(σϕ′)h̃(ϕ′) dϕ′.

The boundary conditions (3.10)2,3 imply

− sin(2πσ)α+ (1− cos(2πσ))β =
sin(2πσ)

σ

2π�

0

cos(σϕ′)h̃(ϕ′) dϕ′

− cos(2πσ)
σ

2π�

0

sin(σϕ′)h̃(ϕ′) dϕ′ ≡ A1,

(3.12)

(1− cos(2πσ))α+ sin(2πσ)β =
cos(2πσ)

σ

2π�

0

cos(σϕ′)h̃(ϕ′) dϕ′

+
sin(2πσ)

σ

2π�

0

sin(σϕ′)h̃(ϕ′) dϕ′ ≡ A2.

Solving (3.12) yields

(3.13)
α =

−A1 sin(2πσ) +A2(1− cos(2πσ))
2(1− cos(2πσ))

,

β =
A1(1− cos(2πσ)) +A2 sin(2πσ)

2(1− cos(2πσ))
,

so α, β are defined for

(3.14) 1 6= cos(2πσ) so σ 6∈ Z.

Let

B1 =
1
σ

2π�

0

sin(σϕ′)h̃(ϕ′) dϕ′, B2 =
1
σ

2π�

0

cos(σϕ′)h̃(ϕ′) dϕ′.

Then
A1 = − cos(2πσ)B1 + sin(2πσ)B2,

A2 = sin(2πσ)B1 + cos(2πσ)B2
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and
α = [B1 sin(2πσ)−B2(1− cos(2πσ))]/[2(1− cos(2πσ))],

β = [B1(1− cos(2πσ)) +B2 sin(2πσ)]/[2(1− cos(2πσ))].

Using α and β in (3.11) yields

ũ = [B1 sin(2πσ)−B2(1− cos(2πσ))]
sin(σϕ)

2(1− cos(2πσ))
(3.15)

+ [B1(1− cos(2πσ)) +B2 sin(2πσ)]
cos(σϕ)

2(1− cos(2πσ))

+ sin(σϕ)B2 − cos(σϕ)B1

=
B1

2(1− cos(2πσ))
[cos((2π − ϕ)σ)− cos(σϕ)]

+
B2

2(1− cos(2πσ))
[sin(σϕ) + sin((2π − ϕ)σ)]

=
sin(πσ)

1− cos(2πσ)
[−B1 sin((π − ϕ)σ) +B2 cos((π − ϕ)σ)].

Finally, the solution to problem (3.10) has the form

ũ =
sin(πσ)

σ(1− cos(2πσ))

[
− sin((π − ϕ)σ)

2π�

0

sin(σϕ′)h̃(ϕ′) dϕ′(3.16)

+ cos((π − ϕ)σ)
2π�

0

cos(σϕ′)h̃(ϕ′) dϕ′
]
.

Now we obtain the estimate (3.7). Multiplying (3.10)1 by ũ, where v is
the complex conjugate to v, integrating with respect to ϕ and by parts yields

(3.17)
2π�

0

(λ2|ũ|2 + |∂ϕũ|2) dϕ =
2π�

0

h̃ũ dϕ.

Let λ = λr + iλi, λr, λi ∈ R. Then

|λ|2 = λ2
r + λ2

i , λ2 = λ2
r − λ2

i + 2iλrλi.

Hence (3.17) takes the form

(3.18)
2π�

0

(|λ|2|ũ|2 + |∂ϕũ|2) dϕ = 2(λ2
i − iλrλi)

2π�

0

|ũ|2 dϕ+
2π�

0

h̃ũ dϕ.
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Integrating (3.18) with respect to λ from −∞+ih0 to +∞+ih0 and applying
the Hölder and Young inequalities yields

(3.19)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ (|λ|2|ũ|2 + |∂ϕũ|2)

≤ ε1
2

+∞+ih0�

−∞+ih0

dλλ2
r

2π�

0

dϕ |ũ|2 +
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ 2h2
0

(
1 +

1
ε1

)
|ũ|2

+
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ

(
ε2
2
h2

0|ũ|2 +
1

2ε2h2
0

|h̃|2
)
.

Assuming ε1 = ε2 = 1 and multiplying the result by 2 gives

(3.20)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ (|λ|2|ũ|2 + |∂ϕũ|2)

≤ 8h2
0

+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |ũ|2 +
1
h2

0

+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |h̃|2.

From (3.18) we also have the inequality

2π�

0

(|λ|2|ũ|2 + |∂ϕũ|2) dϕ ≤ 2(|λi|2 + |λr| |λi|)
2π�

0

|ũ|2 dϕ(3.21)

+
ε1
2
|λ|2

2π�

0

|ũ|2 dϕ+
1

2ε1|λ|2
2π�

0

|h̃|2 dϕ.

Multiplying (3.21) by |λ|2, integrating the result with respect to λ from
−∞ + ih0 to +∞ + ih0 and applying the Hölder and Young inequalities
yields

(3.22)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |λ|2(|λ|2|ũ|2 + |∂ϕũ|2)

≤ 2
+∞+ih0�

−∞+ih0

dλ

(
ε2
2
|λ|4 +

1
2ε2
|h0|4 +

ε
4/3
3

4/3
|λ|4 +

1
4ε43
|h0|4

) 2π�

0

|ũ|2 dϕ

+
ε1
2

+∞+ih0�

−∞+ih0

dλ |λ|4
2π�

0

|ũ|2 dϕ+
1

2ε1

+∞+ih0�

−∞+ih0

dλ

2π�

0

|h̃|2 dϕ.
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Assuming ε1
2 + ε2 + 3

2ε
4/3
3 ≤ 1

2 we obtain from (3.22) the inequality

(3.23)
+∞+ih0�

−∞+ih0

dλ

2π�

0

|λ|2(|λ|2|ũ|2 + |∂ϕũ|2) dϕ

≤ c1
+∞+ih0�

−∞+ih0

dλ

2π�

0

|ũ|2dϕ+ c2

+∞+ih0�

−∞+ih0

dλ

2π�

0

|h̃|2dϕ.

From (3.20) and (3.23) we have

(3.24)
+∞+ih0�

−∞+ih0

dλ

2π�

0

(|λ|4|ũ|2 + |λ|2|ũ|2 + |λ|2|∂ϕũ|2 + |∂ϕũ|2) dϕ

≤ c3
+∞+ih0�

−∞+ih0

dλ

2π�

0

|ũ|2dϕ+ c4

+∞+ih0�

−∞+ih0

dλ

2π�

0

|h̃|2dϕ.

In virtue of (3.24) and (3.10)1 we obtain

(3.25)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ(|λ|4|ũ|2 + |λ|2|ũ|2 + |λ|2|∂ϕũ|2 + |∂ϕũ|2 + |∂2
ϕũ|2)

≤ c5
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |ũ|2 + c6

+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |h̃|2.

Let a > 0 be such that a4 = 2c5. Then the part of the first integral on the
r.h.s. of (3.25) for |λr| ≥ a is absorbed by 1/2 of the l.h.s. integral. Hence

(3.26)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ (|λ|4|ũ|2 + |λ|2|ũ|2 + |λ|2|∂ϕũ|2 + |∂ϕũ|2 + |∂2
ϕũ|2)

≤ 2c5
a+ih0�

−a+ih0

dλ

2π�

0

dϕ |ũ|2 + 2c6
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |h̃|2.

To estimate the first integral on the r.h.s. of (3.26) we use the explicit formula
(3.16) for solutions of (3.10). Since σ = −iλ = −i(λr + ih0) = −iλr +h0 and
since |λr| ≤ a and h0 is a fixed number we obtain from (3.16) the inequality

(3.27)
a+ih0�

−a+ih0

dλ

2π�

0

dϕ |ũ|2 ≤ c7
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |h̃|2.

Estimates (3.26) and (3.27) imply

(3.28)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ (|λ|4|ũ|2 + |λ|2|ũ|2 + |λ|2|∂ϕũ|2 + |∂ϕũ|2 + |∂2
ϕũ|2)

≤ c8
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ |h̃|2.
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Setting h0 = 1 + µ for some µ 6∈ Z we infer that the constructed solution
(3.16) belongs toH2

−µ(R2) and estimate (3.7) holds. This concludes the proof.

Now we consider problem (3.1).

Lemma 3.3. Assume that f ∈ L2,−µ(R3) for some µ ∈ (R+∪(0, 1))\Z+.
Then any solution to problem (3.1) such that u ∈ H2

−µ(R3) satisfies

(3.29) ‖u‖H2
−µ(R3) ≤ c‖f‖L2,−µ(R3).

Proof. Let ũ = F1u (see (2.1)). Then problem (3.1) takes the form

(3.30) −∆′ũ+ ξ2ũ = f̃ in R2,

where ∆′ = ∂2
x1

+ ∂2
x2
.

If µ ∈ (0, 1), then multiplying (3.30) by ũ|x′|−2µ and integrating over R2

yields

(3.31)
�

R2

(|∇′ũ|2 + ξ2|ũ|2)|x′|−2µ dx′

= 2µ
�

R2

∇′ũũ|x′|−2µ−1∇|x′| dx′ +
�

R2

f̃ ũ|x′|−2µ dx′,

where the first integral on the r.h.s. is estimated by

ε1
2

�

R2

|∇′ũ|2|x′|−2µ dx′ +
2µ2

ε1

�

R2

|ũ|2|x′|−2µ−2 dx′

and the second by
ε2
2

�

R2

ξ2|ũ|2|x′|−2µ dx′ +
1

2ε2
1
ξ2

�

R2

|f̃ |2|x′|−2µ dx′.

Multiplying (3.31) by ξ2 and assuming ε1 = ε2 = 1 we obtain�

R2

(ξ2|∇′ũ|2 + ξ4|ũ|2)|x′|−2µ dx′ ≤ 4µ2
�

R2

ξ2|ũ|2|x′|−2µ−2 dx′(3.32)

+
�

R2

|f̃ |2|x′|−2µ dx′.

From Lemma 3.2 we have

(3.33) ‖ũ‖2H2
−µ(R2) ≤ cξ

4‖ũ‖2L2,−µ(R2) + c‖f̃‖2L2,−µ(R2).

From (3.32) and (3.33) we get

(3.34) ‖ũ‖2H2
−µ(R2) +

�

R2

(ξ2|∇′ũ|2 + ξ4|ũ|2)|x′|−2µ dx′

≤ c
�

R2

ξ2|ũ|2|x′|−2µ−2 dx′ + c‖f̃‖2L2,−µ(R2).
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Now we have to examine the first integral on the r.h.s. of (3.34). For this
purpose we introduce

(3.35)
Q1 = {(ξ, x′) : |ξ| |x′| ≤ a1},
Q2 = {(ξ, x′) : |ξ| |x′| ≥ a2},
Q3 = {(ξ, x′) : a1 ≤ |ξ| |x′| ≤ a2}.

The numbers ai, i = 1, 2, will be determined later.
Let us examine the first integral on the r.h.s. of (3.34). In view of (3.35),

we express it in the form

(3.36)
�
dξ

�

R2

ξ2|ũ|2|x′|−2µ−2 dx′ =
3∑
i=1

�

Qi

dξ dx′ |ξ|2|ũ|2|x′|−2µ−2 ≡
3∑
i=1

Ii.

From the properties of the sets Qi, i = 1, 2, 3, we have

(3.37)

I1 ≤ a2
1

�
dξ

�

R2

|ũ|2|x′|−2µ−4 dx′,

I2 ≤
1
a2

2

�
dξ

�

R2

dx′ |ξ|4|ũ|2|x′|−2µ,

I3 ≤
1

a
2(1+µ)
1

�
dξ

�

Q3

dx′ |ξ|4+2µ|ũ|2 ≡ I.

To estimate I we introduce the sets
d1(ξ) = {x′ ∈ R2 : |ξ| |x′| ≤ a1},
d2(ξ) = {x′ ∈ R2 : |ξ| |x′| ≥ a2},
d3(ξ) = {x′ ∈ R2 : a1 ≤ |ξ| |x′| ≤ a2}.

Moreover, for λ > 0 we have

Ωλ = {(x′, ξ) : λ|ξ| |x′| ≤ 1},
wλ(ξ) = {x′ ∈ R2 : λ|ξ| |x′| ≤ 1}.

We see that Q3 ⊂ Ωλ for λ ∈ (0, a−1
2 ). Let us introduce a smooth function

χ = χ(t) such that χ(t) = 1 for t ≤ 1 and χ(t) = 0 for t ≥ 2, 0 ≤ χ(t) ≤ 1,
|χ′(t)| ≤ 2.

Set χλ(x′, ξ) = χ(λ|ξ| |x′|). Then χλ(x′, ξ) 6= 0 for λ−1 ≤ |ξ| |x′| ≤ 2λ−1.
Multiplying (3.30) by ũχ2

λ and integrating over R2 we obtain

(3.38)
�

R2

(|∇′ũ|2 + ξ2|ũ|2)χ2
λ dx

′ = −2
�

R2

∇′ũũ∇χλχλ dx′ +
�

R2

f̃ ũχ2
λ dx

′.

The first term on the r.h.s. of (3.38) is estimated by
ε1
2

�

R2

|∇′ũ|2χ2
λ dx

′ +
2
ε1

�

R2

|ũ|2|∇′χλ|2 dx′
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and the second by
ε2
2

�

R2

|ũ|2|ξ|2+2µ|x′|2µχ2
λ dx

′ +
1

2ε2
1

|ξ|2+2µ

�

R2

|f̃ |2|x′|−2µχ2
λ dx

′ ≡ J1.

On supp χλ we have |x′|2µ|ξ|2µ ≤ (2/λ)2µ, so the first term in J1 is bounded
by

ε2
2

(
2
λ

)2µ �

R2

|ũ|2|ξ|2χ2
λ dx

′.

Assuming ε1 = 1 and ε2(2/λ)2µ = 1 we obtain from (3.38) the inequality
1
2

�

R2

(|∇′ũ|2 + ξ2|ũ|2)χ2
λ dx

′

≤ 2
�

R2

|ũ|2|∇′χλ|2 dx′ +
1
2

(
2
λ

)2µ 1
|ξ|2+2µ

�

R2

|f̃ |2|x′|−2µχ2
λ dx

′.

Multiplying the above inequality by 2|ξ|2+2µ and integrating with respect to
ξ yields

(3.39)
�
dξ |ξ|2+2µ

�

R2

(|∇′ũ|2+ξ2|ũ|2)χ2
λ dx

′ ≤ 4
�
dξ |ξ|2+2µ

�

R2

|ũ|2|∇′χλ|2 dx′

+
(

2
λ

)2µ �
dξ

�

R2

|f̃ |2|x′|−2µ dx′.

Using the estimate |∇′χλ| ≤ 2λ|ξ| we obtain from (3.39) the inequality

(3.40)
�
dξ |ξ|2+2µ

�

R2

(|∇′ũ|2 + ξ2|ũ|2)χ2
λ dx

′

≤ 16λ2
�

R3∩supp∇′χλ

dξ dx′ |ξ|4+2µ|ũ|2 +
(

2
λ

)2µ+2 �
dξ

�

R2

|f̃ |2|x′|−2µχ2
λ dx

′,

where λ ≤ 2 is utilized.
Now, ∇′χλ 6= 0 for λ−1 ≤ |ξ| |x′| ≤ 2λ−1 implies that supp∇′χλ ⊂

wλ/2(ξ) \ wλ(ξ) for any ξ ∈ R. Multiplying (3.40) by (λ/2)2µ+2 yields

(3.41)
(
λ

2

)2µ+2 �
dξ |ξ|2+2µ

�

wλ(ξ)

(|∇′ũ|2 + ξ2|ũ|2) dx′

≤ 64 · 4µλ2

(
λ/2
2

)2µ+2 �
dξ |ξ|4+2µ

�

wλ/2(ξ)\wλ(ξ)

|ũ|2 dx′

+
�
dξ

�

R2

|f̃ |2|x′|−2µ dx′.
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Let 43+µλ2 ≤ 1/2. Then iterating (3.41) up to order k we obtain

(3.42)
(
λ

2

)2µ+2 �
dξ |ξ|4+2µ

�

wλ(ξ)

|ũ|2 dx′

≤ 1
2k

(
λ/2k

2

)2µ+2 �
dξ |ξ|4+2µ

�

wλ/2
k+1

(ξ)\wλ/2k (ξ)

|ũ|2 dx′

+ 2
�
dξ

�

R2

|f̃ |2|x′|−2µ dx′,

where

wλ/2
k+1

(ξ) \ wλ/2k(ξ) =
{
x′ ∈ R2 :

2
λ/2k

≤ |ξ| |x′| ≤ 2
λ/2k+1

}
(3.43)

=
{
x′ ∈ R2 :

2k+1

λ
≤ |ξ| |x′| ≤ 2k+2

λ

}
.

On the set (3.43) we have

|ξ| ≤ 2
2k+1

λ
|x′|−1,

so the first term on the r.h.s. of (3.42) is estimated by

(3.44)
1
2k

(
λ

2k+1

)2µ+2 �
dξ ξ2

�

wλ/2
k+1

(ξ)\wλ/2k (ξ)

|ũ|222µ+2

(
2k+1

λ

)2µ+2

|x′|−2µ−2

=
22µ+2

2k
�
dξ ξ2

�

wλ/2
k+1

(ξ)\wλ/2k (ξ)

|ũ|2|x′|−2µ−2 dx′.

In view of (3.36), (3.37), (3.42) and (3.44) we have

(3.45)
�
dξ

�

R2

ξ2|ũ|2|x′|−2µ−2 dx′ ≤ a2
1

�
dξ

�

R2

|ũ|2|x′|−2µ−4 dx′

+
1
a2

2

�
dξ

�

R2

ξ4|ũ|2|x′|−2µ dx′ +
22µ+2

2ka2µ+2
1

�
dξ

�

R2

ξ2|ũ|2|x′|−2µ−2 dx′.

Using (3.45) in (3.34) integrated with respect to ξ and assuming that a1

is sufficiently small and a2, k are sufficiently large and applying the Hardy
inequality �

R2

|ũ|2|x′|−2µ−2 dx′ ≤ c
�

R2

|∇′ũ|2|x′|−2µ dx′

we obtain (3.29). This concludes the proof.

Now, we shall improve the regularity of solutions to problem (3.1).
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Lemma 3.4. Assume that g ∈ H l
−µ(R2) for some µ ∈ R \ Z and l ∈ Z+.

Then any solution to problem (3.6) such that u ∈ H l+2
−µ (R2) satisfies

(3.46) ‖u‖Hl+2
−µ (R2) ≤ c‖g‖Hl

−µ(R2).

Proof. To show higher regularity of solutions to problem (3.9) we consider
it in the following form:

(3.47)
∂2
τu+ ∂2

ϕu = h,

∂σϕu|ϕ=0 = ∂σϕu|ϕ=2π, σ ≤ l + 1,

where u vanishes sufficiently fast as τ converges to −∞. Applying the Fourier
transform F2 to (3.47) yields

(3.48)
−λ2ũ+ ∂2

ϕũ = h̃,

∂σϕũ|ϕ=0 = ∂σϕu|ϕ=2π, σ ≤ l + 1.

Differentiating (3.48)1 twice with respect to ϕ, multiplying by ∂2
ϕũ and in-

tegrating with respect to ϕ we get

(3.49)
2π�

0

(λ2|ũϕϕ|2 + |∂3
ϕũ|2) dϕ =

2π�

0

∂2
ϕh̃∂

2
ϕũ dϕ = −

2π�

0

∂ϕh̃∂
3
ϕũ dϕ.

Since λ2 = |λ|2 − 2λ2
i + 2iλiλr we obtain from (3.49) the inequality

(3.50)
2π�

0

(|λ|2|ũϕϕ|2 + |∂3
ϕũ|2) dϕ≤2(|λi|2+|λi| |λr|)

2π�

0

|ũϕϕ|2 dϕ+ c

2π�

0

|∂ϕh̃|2 dϕ.

Continuing, we obtain

(3.51)
2π�

0

(|λ|2|ũϕϕ|2 + |∂3
ϕũ|2) dϕ ≤ c|λi|2

2π�

0

|ũ,ϕϕ|2 dϕ+ c

2π�

0

|∂ϕh̃|2 dϕ.

Differentiating (3.48)2 with respect to ϕ, multiplying by λ2
ũϕϕ and integrat-

ing with respect to ϕ we have
2π�

0

(|λ|4|ũϕ|2 + λ
2
ũϕϕũϕ) dϕ =

2π�

0

λ
2
h̃ϕũϕ dϕ = −

2π�

0

λ
2
h̃ũϕϕ dϕ.

Continuing, we get
2π�

0

|λ|4|ũϕ|2 dϕ ≤ ε
2π�

0

|λ|2|ũϕϕ|2 dϕ+ c(1/ε)
2π�

0

|λ|2|ũϕ|2 dϕ(3.52)

+ c

2π�

0

|λ|2|h̃|2 dϕ.
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In view of (3.51) and sufficiently small ε inequalities (3.51), (3.52) imply

(3.53)
2π�

0

(|λ|4|ũϕ|2 + |λ|2|ũϕϕ|2 + |∂3
ϕũ|2) dϕ

≤ c|λi|2
2π�

0

|ũϕϕ|2 dϕ+ c

2π�

0

|λ|2|ũϕ|2 dϕ+ c

2π�

0

(|h̃,ϕ|2 + |λ|2|h̃|2) dϕ.

Multiplying (3.48)1 by λ2|λ|2ũ and integrating with respect to ϕ yields
2π�

0

|λ|6|ũ|2 dϕ ≤
2π�

0

|λ|4|ũϕ|2 dϕ+
2π�

0

|λ|4|h̃| |ũ| dϕ

≤ ε1
2π�

0

|λ|6|ũ|2 dϕ+ c

2π�

0

|λ|4|ũϕ|2 dϕ+ c(1/ε1)
2π�

0

|λ|2|h̃|2 dϕ.

Hence, in view of (3.53) and for sufficiently small ε1, we have

(3.54)
2π�

0

(|λ|6|ũ|2 + |λ|4|ũϕ|2 + |λ|2|ũϕϕ|2 + |∂3
ϕũ|2) dϕ

≤ c|λi|2
2π�

0

|ũϕϕ|2 dϕ+ c

2π�

0

|λ|2|ũϕ|2 dϕ+ c

2π�

0

(|h̃,ϕ|2 + |λ|2|h̃|2) dϕ.

Integrating (3.54) with respect to λ from −∞+ ih0 to +∞+ ih0 and using
(3.28) we obtain

(3.55)
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ

3∑
i=0

|λ|2(3−i)|∂iϕũ|2

≤ c
+∞+ih0�

−∞+ih0

dλ

2π�

0

dϕ

1∑
i=0

|λ|2(1−i)|∂iϕh̃|2.

Continuing, we get

(3.56)
+∞+ih0�

−∞+ih0

dλ

2π�

0

l+2∑
i=0

|λ|2(l+2−i)|∂iϕũ|2 dϕ

≤ c
+∞+ih0�

−∞+ih0

dλ

2π�

0

l∑
i=0

|λ|2(l−i)|∂iϕh̃|2 dϕ.

Choosing h0 = 1 + l + µ, we find that u ∈ H l+2
−µ (R2) and (3.46) holds. This

concludes the proof.

Now we consider problem (3.1).
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Lemma 3.5. Assume that f ∈ H l
−µ(R3) for some µ ∈ (R+ ∪ (0, 1)) \ Z+

and l ∈ Z+. Then any solution to problem (3.1) such that u ∈ H l+2
−µ (R3)

satisfies

(3.57) ‖u‖Hl+2
−µ (R3) ≤ c‖f‖Hl

−µ(R3).

Proof. Multiplying (3.30)1 by ξ2ũ|x′|−2µ and integrating over R2 yields

(3.58)
�

R2

ξ2(|∇′ũ|2 + ξ2|ũ|2)|x′|−2µ dx′

= 2µ
�

R2

ξ2∇′ũũ|x′|−2µ−1∇|x′|dx′ +
�

R2

ξ2f̃ ũ|x′|−2µ dx′,

where the first integral on the r.h.s. of (3.58) is estimated by
ε1
2

�

R2

ξ2|∇′ũ|2|x′|−2µ dx′ +
2µ2

ε1

�

R2

ξ2|ũ|2|x′|−2µ−2 dx′,

and the second by
ε2
2

�

R2

ξ4|ũ|2|x′|−2µ dx′ +
1

2ε2

�

R2

|f̃ |2|x′|−2µ dx′.

Hence for ε1 = ε2 = 1 inequality (3.58) yields�

R2

ξ2(|∇′ũ|2 + ξ2|ũ|2)|x′|−2µ dx′ ≤ 4µ2
�

R2

ξ2|ũ|2|x′|−2µ−2 dx′(3.59)

+
�

R2

|f̃ |2|x′|−2µ dx′.

Next, we have�

R2

ξ4(|∇′ũ|2 + ξ2|ũ|2)|x′|−2µ dx′ ≤ 4µ2
�

R2

ξ4|ũ|2|x′|−2µ−2 dx′(3.60)

+
�

R2

ξ2|f̃ |2|x′|−2µ dx′.

Applying Lemma 3.4 to (3.30) gives

(3.61) ‖ũ‖2H3
−µ(R2) ≤ cξ

4‖ũ‖2H1
−µ(R2) + c‖f̃‖2H1

−µ(R2)

and
(3.62) ξ2‖ũ‖2H2

−µ(R2) ≤ cξ
6‖ũ‖2L2,−µ(R2) + cξ2‖f̃‖2L2,−µ(R2).

From (3.60)–(3.61) we have, after integration with respect to ξ,

(3.63)
�

R
dξ (‖ũ‖2H3

−µ(R2) + ξ2‖ũ‖2H2
−µ(R2) + ξ4‖ũ‖2H1

−µ(R2) + ξ6‖ũ‖2L2,−µ(R2))

≤ c
�

R

�

R2

ξ4|ũ|2|x′|−2µ−2 dx′dξ + c
�

R
(‖f̃‖2H1

−µ(R2) + ξ2‖f̃‖2L2,−µ(R2))dξ.
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Repeating the considerations leading to (3.45) with ũ replaced by ξũ, we
obtain, for k sufficiently large,

�

R
dξ

�

R2

ξ4|ũ|2|x′|−2µ−2 dx′ ≤ ca2
1

�

R
dξ

�

R2

|ũ|2|x′|−2µ−4 dx′(3.64)

+
c

a2
2

�

R
dξ

�

R2

ξ4|ũ|2|x′|−2µ dx′.

Using (3.64) in (3.63) and assuming that a1 is sufficiently small and a2

sufficiently large we obtain

(3.65)
3∑
i=0

�

R
dξ |ξ|2i‖ũ‖2

H3−i
−µ (R2)

≤ c
1∑
i=0

�

R
dξ |ξ|2i‖f̃‖2

H1−i
−µ (R2)

.

Continuing, we get

(3.66)
l+2∑
i=0

�

R
dξ |ξ|2i‖ũ‖2

Hl+2−i
−µ (R2)

≤ c
l∑

i=0

�

R
dξ |ξ|2i‖f̃‖2

Hl−i
−µ (R2)

.

From (3.66) we obtain (3.57). This concludes the proof.

In view of Lemma 3.5 the solution uδ of problem (3.1) satisfies the esti-
mate

(3.67) ‖uδ‖Hl+2
−µ (R3) ≤ c‖fδ‖Hl

−µ(R3).

We have to underline that (3.67) holds if uδ and fδ belong to the correspond-
ing spaces. Letting δ → 0 and using Lemma 3.1 yields

Lemma 3.6. Assume that f ∈ H l
−µ(R3) for some l ∈ N and µ ∈ R+ \ Z.

Then there exists a solution to problem (3.1) such that u ∈ H l+2
−µ (R3) and

estimate (3.57) holds.

Proof. Since we have estimates for solutions to problem (3.1) (see Lem-
mas 3.3, 3.5) our aim now is to prove their existence. But we have the
existence of solutions to problem (3.2) (see Lemma 3.1). Hence, we have to
show that uδ, defined by (3.5), is a solution to (3.1). For this purpose we
examine problem (3.4) which is exactly problem (3.2) in coordinates τ, ϕ, z.
Now we have to examine the behaviour of the derivatives of uδ with respect
to τ in a neighbourhood of τ = − ln δ. For τ = − ln δ we have uδ = 0, so
(3.4)1 takes the form

(3.68) −uδ,ττ = e−2τfδ for τ = − ln δ.

Assuming that

(3.69) fδ|τ=− ln δ = 0
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we obtain

(3.70) lim
τ→− ln δ+

uδ,ττ = 0

For τ > − ln δ we have uδ = 0, so

(3.71) lim
τ→− ln δ−

uδ,ττ = 0,

because
uδ|τ=− ln δ = 0.

Assuming that fδ is a smooth function with respect to ϕ and z we deduce
from Lemma 3.1 that uδ,τ , uδ are also smooth with respect to ϕ and z. We
show that uδ,τ is continuous at τ = − ln δ in [5].

In view of the above considerations we see that uδ is a solution to problem
(3.1) under the assumption that fδ satisfies (3.69).

Since uδ is a solution to problem (3.1) and belongs to H2
−µ(R3) we obtain

from Lemmas 3.1 and 3.3 the existence in H2
−µ(R3) and the estimate

(3.72) ‖uδ‖H2
−µ(R3) ≤ c‖fδ‖L2,−µ(R3),

with the constant c independent of δ.
Letting δ → 0 and using the density of smooth uδ and fδ in the cor-

responding spaces we obtain the existence of solutions to problem (3.1) in
H2
−µ(R3) and estimate (3.29).
To show the existence of solutions to problem (3.1) in H l+2

−µ (R3) we have
to examine the behaviour of ∂l+2

τ uδ in a neighbourhood of τ = − ln δ. Re-
peating the above considerations we can see that ∂j+2

τ uδ|τ=− ln δ = 0 for all
j up to j = l − 1 under the assumption that ∂jτfδ|τ=− ln δ = 0.

Thus, as uδ is a solution to problem (3.1) and belongs to H l+2
−µ (R3),

estimate (3.57) holds in the form
‖uδ‖Hl+2

−µ (R3) ≤ c‖fδ‖Hl
−µ(R3).

Applying a density argument and letting δ → 0 we obtain the existence of
solutions to (3.1) in H l+2

−µ (R3) and estimate (3.57). This concludes the proof.

4. Existence in a bounded domain. In this section we prove Theo-
rems 1.2. The proof of Theorem 1.3 is similar. Finally, Theorem 1.1 follows
from Theorems 1.2 and 1.3. Consider a cylinder Cδ of radius δ such that near
the points where L meets S, the cylinder is orthogonal to S. We assume the
boundary condition ϕ = 0 on the boundary of the cylinder. Let us denote
Ωδ = Ω \ Cδ. In the domain Ωδ we have the existence of solutions to prob-
lem (1.6) (by using a partition of unity and [2, Ch. 4; 3, Ch. 4]) such that
ϕδ ∈ H l+2(Ωδ) and

(4.1) ‖ϕδ‖Hl+2(Ωδ)
≤ c‖bδ‖Hl+1/2(Sδ)

,

where Sδ = S \ Cδ and bδ is the restriction bδ = b|Sδ and bδ = 0 for r ≤ δ.
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Repeating the proof of Lemma 3.6 and assuming that

∂jτ bδ|τ=− ln δ = 0, j ≤ l − 1,

we will show that solutions to problem (1.6) such that ϕδ = ϕ|Ωδ , ϕδ = 0
for r < δ, satisfy the estimate

(4.2) ‖ϕδ‖Hl+2
−µ (Ω) ≤ c‖bδ‖Hl+1/2

−µ (S)
,

where c does not depend on δ. Letting δ → 0 proves Theorem 1.2.
Finally, we prove estimate (4.2) for solutions to problem (1.6). Note that

Lemma 3.6 gives an estimate of type (4.2) only locally near L.
Let {ζ(k)} be a partition of unity as in Section 2. Take ζ(k) such that

supp ζ(k) ∩ L 6= ∅. Let ϕ(k) = ϕζ(k), f (k) = fζ(k). Then problem (1.6) takes
the form (where f follows from the extension of boundary condition (1.6)2)

(4.3)
∆ϕ(k) = f (k) + 2∇ζ(k)∇ϕ+∆ζ(k)ϕ,

n · ∇ϕ(k) = ϕn · ∇ζ(k).

For k = 1 problem (4.3) transforms into

(4.4)
∆ϕ(1) = f (1) + 2∇ζ(1)∇ϕ+∆ζ(1)ϕ,

ϕ(1)|∂Ω(1) = 0.

In the case k = 2 and after the change of variables (2.9) problem (4.3)
assumes the form

(4.5)
−∇2

zϕ̃
(2) = −(∇2

z −∇2
Ψ )ϕ̃(2) + 2∇Ψ ζ̃(2)∇Ψ ϕ̃+∇2

Ψ ζ̃
(2)ϕ̃+ f (2),

nz · ∇zϕ̃(2) = (nz − nΨ ) · ∇ϕ̃(2) + ϕ̃nΨ · ∇Ψ ζ̃(2),

where we use the notation introduced before (2.10). Since nz = (0, 0, 1)
problem (4.5) is considered in the half-space z3 > 0.

Let us choose a function η̃(2) such that

(4.6)
∂

∂z3
η̃(2)

∣∣∣∣
z3=0

= (nz − nΨ ) · ∇zϕ̃(2) + ϕ̃nΨ · ∇Ψζ(2).

Then the function

(4.7) ψ̃(2) = ϕ̃(2) − η̃(2)

is a solution to the problem

(4.8)

−∇2
zΨ̃

(2) = ∇2
z η̃

(2) − (∇2
z −∇2

Ψ )ϕ̃(2) + f̃ (2)

+ 2∇Ψ ζ̃(2)∇Ψ ϕ̃+∇2
Ψ ζ̃

(2)ϕ̃ ≡ F̃ , z3 > 0,

∂ψ̃(2)

∂z3

∣∣∣∣
z3=0

= 0.
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After reflection with respect to the plane z3 = 0, problem (4.8) assumes the
form of problem (4.4),

(4.9)
−∇2

zψ
′(2) = F̃ ′,

ψ̃′(2)|∂Ω′(2) = 0,

where η′ means that η′(z′, z3) = η(z′, z3) for z3 > 0, z′ = (z1, z2) and
η′(z′, z3) = η(z′,−z3) for z3 < 0. In view of Lemma 3.5, for solutions to
problems (4.3) and (4.9) we obtain the estimate

(4.10) ‖ϕ(k)‖Hl+2
−µ (R3)

≤ c(‖f (k)‖Hl
−µ(R3) + ‖∇ϕ‖Hl

−µ(R3∩supp∇ζ(k)) + ‖ϕ‖Hl
−µ(R3∩supp∇ζ(k))),

where k is either 1 or 2 and in the case of problem (4.9) we have used (4.7)
and the fact that diam suppΩ(2) is sufficiently small.

To estimate the last two terms on the r.h.s. of (4.10) we need the estimate

(4.11) ‖ϕ‖Hl+2(Ω) ≤ c‖f‖Hl(Ω),

which is well known for solutions to problem (1.6), where f = ∆b̃ and b̃ is
an extension of the boundary data such that n · ∇b̃|S = b.

Let us consider the case µ ∈ (0, 1). Using the Hardy inequality we es-
timate the last two terms on the r.h.s. of (4.10) by c‖f‖Hl(Ω). Using the
boundedness of Ω we obtain from (4.10) the estimate

(4.12) ‖ϕ(k)‖Hl+2
−µ (R3) ≤ c‖f‖Hl

−µ(Ω),

where k is either 1 or 2. Choosing now ζ(k) such that dist{supp ζ(k), L} > 0,
we obtain problems similar to (4.3), (4.5), where k is either 3 or 4. Using
(4.11) for solutions of these problems we obtain the estimate

(4.13) ‖ϕ(k)‖Hl+2(R3) ≤ c‖f‖Hl(Ω),

where k is either 3 or 4. Summing up inequalities (4.12) and (4.13) over all
admissible k we obtain

(4.14) ‖ϕ‖Hl+2
−µ (Ω) ≤ c‖f‖Hl

−µ(Ω).

Let us now consider the case µ ∈ (1, 2). Then to estimate the last two
terms on the r.h.s. of (4.10) we use (4.14) for µ ∈ (0, 1) and the Hardy
inequality. Repeating the above considerations we obtain (4.14) for µ ∈ (1.2).

Continuing the above considerations and assuming that ϕ ∈ H l+2
−µ (Ω),

µ ∈ (k − 1, k), we obtain (4.14) for µ ∈ (k, k + 1), k ∈ N.
The existence at each step can be proved by applying the construction

of ϕδ. This concludes the proof of Theorem 1.2.

Similarly, we prove Theorem 1.3. Theorems 1.2 and 1.3 imply Theo-
rem 1.1.
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