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JACOBIANS OF CERTAIN TRANSFORMATIONS OF
SINGULAR MATRICES

Abstract. In this study various Jacobians of transformations of singular
random matrices are found. An alternative proof of Uhlig’s first conjecture
(Uhlig (1994)) is proposed. Furthermore, we propose various extensions of
this conjecture under different singularities. Finally, an application of the
theory of singular distributions is discussed.

1. Introduction. The Jacobian computations of matrix transforma-
tions play a fundamental role in several areas of multivariate statistics,
especially in the theory of distributions and its applications. This topic
has been the objective of many papers in statistical literature. For exam-
ple, the literature concerning the Lebesgue measure, i.e. when the random
and constant matrices in the transformations have complete rank, includes
Deemer and Olkin (1951), Olkin (1953), James (1954), Olkin and Sampson
(1972), Muirhead (1982), Mathai (1997), Olkin (1998) and Olkin (2002);
they have proposed several Jacobians for a lot of linear and non-linear
transformations of random matrices (random vectors). Recently, some works
in the context of singular random matrices have been published; specif-
ically, they treat the densities and the measures with respect to these
densities (Hausdorff measure) and the computation of the Jacobians of
the transformations; see Khatri (1968), Uhlig (1994), Dı́az-Garćıa et al.
(1997), Dı́az-Garćıa and Gutiérrez (1997), Srivastava (2003), Dı́az-Garćıa
and Gutiérrez-Jáimez (2006), Dı́az-Garćıa and González-Faŕıas (2005a),
Dı́az-Garćıa and González-Faŕıas (2005b), Ip, Wong and Liu (2007) and
Dı́az-Garćıa (2007).
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Now observe that, for a given singular random matrix Y ∈ RN×m, if the
measure (dY ) with respect to Y has a density, then the explicit form of (dY )
can be given as a function of a certain decomposition of the matrix Y ; that
function will depend on the choice of the base and the coordinate system of
the subspace where the measure is defined. In particular, when the QR de-
composition of the matrix X is considered (see Eaton (1983, p. 160)), we get

(1) (dY ) =
q∏
i=1

tN−iii (H ′1dH1)(dT )

where H1 is a semi-orthogonal matrix, i.e. H ′1H1 = Iq, and T is a quasi-
triangular matrix (see Dı́az-Garćıa and González-Faŕıas (1999) and/or Dı́az-
Garćıa and González-Faŕıas (2005a)).

In general, it is possible to propose alternative definitions to (1) for
the measure (dY ), as a function of other decompositions. Under alternative
decompositions, the explicit form of the measure (dY ) has been studied
in Dı́az-Garćıa and González-Faŕıas (1999) and Dı́az-Garćıa and González-
Faŕıas (2005a) and some applications to the theory of distributions were
given in Dı́az-Garćıa and González-Faŕıas (2005b) and Dı́az-Garćıa (2007).

In the present article, we propose an alternative proof to that given by
Dı́az-Garćıa and Gutiérrez (1997) of Uhlig’s first conjecture (Uhlig (1994);
see Theorem 2.1). An extension of this latter result is studied for other
singularities (see Theorem 2.3). Two Jacobians that involve the Moore–
Penrose inverse are proposed in Theorems 2.2 and 2.4. The study concludes
by applying some of the Jacobians studied in Section 3 to the theory of
singular distributions.

2. Jacobians. In this section we propose an alternative proof for Uh-
lig’s first conjecture, and an extension to more general cases. First, however,
some notation should be established.

Let Lm,N (q) be the linear space of all N × m real matrices of rank
q ≤ min(N,m) and L+

m,N (q) be the linear space of all N ×m real matrices
of rank q ≤ min(N,m) with q distinct singular values. The set of matrices
H1 ∈ Lm,N such that H ′1H1 = Im is a manifold, denoted Vm,N and called
the Stiefel manifold. In particular, Vm,m is the group O(m) of orthogonal
matrices. Denote by Sm the homogeneous space of m×m positive definite
symmetric matrices, and by S+

m(q) the (mq− q(q− 1)/2)-dimensional mani-
fold of rank q positive semidefinite m×m symmetric matrices with q distinct
positive eigenvalues.

Now, consider the following preliminary results.

Lemma 2.1. Let Z ∈ L+
m,N (N) be such that Z = V DW ′1 with W1 ∈

VN,m, V ∈ O(N) and D = diag(d1, . . . , dN ), d1 > · · · > dN > 0. Then
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(2) (dZ) = 2−N |D|m−N
N∏
i<j

(d2
i − d2

j )(dD)(V ′dV )(W ′1dW1)

where (dD) ≡
∧N
i=1 dDii, and

(W ′1dW1) ≡
N∧
i=1

m∧
j=i+1

w′jdwi and (V ′dV ) ≡
N∧
i=1

N∧
j=i+1

v′jdvi

define an invariant measure on VN,m and on O(m), respectively (see Uhlig
(1994) and/or James (1954)).

Lemma 2.2. Under the assumptions of Lemma 2.1, define S = Z ′Z =
W ′1LW1 ∈ S+

m(N), where L = diag(l1, . . . , lN ), l1 > · · · > lN > 0. Then

(dS) = 2−N |L|m−N
N∏
i<j

(li − lj)(dL)(W ′1dW1),

(dZ) = 2−N |L|(N−m−1)/2(dS)(V ′dV ).

Proof. This follows from Lemma 2.1 and from Theorem 2 in Uhlig (1994)
(see also Dı́az-Garćıa et al. (1997)).

Lemma 2.3. Let X ∈ L+
m,N (q), let A ∈ L+

N,p(rA) and B ∈ L+
n,m(rB)

be constant , and let Y ∈ L+
n,p(q), with rA ≥ q and rB ≥ q. Let rC , rE

satisfy q = min(rC , rE). Let C ∈ L+
rC ,N

(rC) and E ∈ L+
m,rE

(rE) be such that
X = CZE with Z ∈ L+

rE ,rC
(q). If Y = AXB, then

(3) (dY ) =

∏rC
i=1 chi(ACC ′A′)rE/2

∏rE
j=1 chj(B′E′EB)rC/2∏rC

i=1 chi(CC ′)rE/2
∏rE
j=1 chj(E′E)rC/2

(dX),

where chi(M) is the ith non-null eigenvalue of M .

Proof. The proof is given in Dı́az-Garćıa (2007).

When the matrices A and B are non-singular, and when X and Y have
full rank, the result follows from Lemma 2.3: just take N = p = rA and
m = n = rB, thus C = IN and E = Im (see e.g. Deemer and Olkin (1951,
Theorem 3.6) and Muirhead (1982, Theorem 2.1.5, p. 58)).

The Jacobian studied in Theorem 2.1 below was proposed as a conjecture
in Uhlig (1994). An indirect proof was provided in Dı́az-Garćıa and Gutiérrez
(1997) based on the following idea:

Let X and Y be random matrices with density functions fX(X) and
gY (Y ), respectively. Let X = h(Y ) be a transformation such that Y =
h−1(X). Then by the change of variables theorem,

fX(X) = gY (h−1(X))|J(Y → X)|.
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Finally, it is assumed that both density functions, fX(X) and gY (Y ), are
known explicitly. Then

|J(Y → X)| = fX(X)
gY (h−1(X))

.

This approach can be used in all circumstances in which both density
functions, fX(X) and gY (Y ), are known. Unfortunately, this is not always
so. In the next result we propose an alternative proof of this Jacobian, which
can be applied under more general conditions, as shown below.

Theorem 2.1 (First Uhlig’s conjecture). Let X,Y ∈ S+
m(N) be such

that X = B′Y B, with B ∈ L+
m,m(m) fixed. Additionally , let X = G1KG

′
1

and Y = H1LH
′
1 with G1, H1 ∈ VN,m and K = diag(k1, . . . , kN ), k1 > · · · >

kN > 0, L = diag(l1, . . . , lN ), l1 > · · · > lN > 0. Then

(dX) = |G′1BH1|m+1−N |B|N (dY )(4)
= |H ′1B′G1|m+1−N |B|N (dY )

= |K|(m+1−N)/2|L|−(m+1−N)/2|B|N (dY )(5)

with

(dY ) = 2−N |L|m−N
N∏
i<j

(li − lj)(dL)(H ′1dH1).

Proof. Let Z ∈ L+
m,N (N) be such that Y = Z ′Z. Then

(6) X = B′Y B = B′Z ′ZB = Λ′Λ with Λ = ZB.

From Lemma 2.2,

(7) (dΛ) = 2−N |K|(N−m−1)/2(dX)(V ′dV ).

Here Λ = V DG′1, with V ∈ O(N), G1 ∈ VN,m and D2 = K. Note that
dΛ = dZB, and so (dΛ) = |B|N (dZ), from which, substituting in (7), we
obtain

(8) |B|N (dZ) = 2−N |K|(N−m−1)/2(dX)(V ′dV ).

Now Y = Z ′Z, and from Lemma 2.2,

(9) (dZ) = 2−N |L|(N−m−1)/2(dY )(V ′zdVz)

where Z = VzDzH
′
1, D2

z = L and Vz ∈ O(N). Moreover, note that, due
to the uniqueness of Haar measure, (V ′dV ) = (V ′zdVz) (see James (1954)).
Thus, substituting (9) in (8), we obtain

(dX) = |L|(N−m−1)/2|K|−(N−m−1)/2|B|N (dY )

= |K|(m−N+1)/2|L|−(m−N+1)/2|B|N (dY ).
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Finally, note that

|K| = |G′1XG1| = |G′1B′Y BG1| = |G′1B′H1LH
′
1BG1|

= |G′1B′H1| |L| |H ′1BG1|,
from which, taking into account that |A| = |A′|, we obtain the other expres-
sions for (dX).

The non-singular case follows from the expression (4) when m = N ; this
result was studied by other authors (see Deemer and Olkin (1951, Theorem
3.7), Olkin (2002) or Mathai (1997, Theorem 1.20, p. 32)).

Remark 2.1. Alternative expressions, with respect to different explicit
forms of the measure (dY ), can be obtained for (5), with alternative decom-
positions, like QR decomposition, polar decomposition and LDM , etc.

Now, let us assume that A and B have a non-singular Wishart distri-
bution; the matrix R = A−1/2BA′−1/2 then has a multivariate F (or beta
type II) distribution, in which A1/2 is a root of the matrix A, such that
A = A1/2A′1/2 (see Srivastava and Khatri (1979, p. 92) and Gupta and Na-
gar (2000, p. 190)). An alternative definition, proposed by various authors,
is given by the expression R1 = B1/2A−1B′1/2 (see James (1964), Muirhead
(1982, p. 449) and Gupta and Nagar (2000, p. 192)). A similar situation
occurs in the case of the beta type I distribution (Srivastava (1968) and
Dı́az-Garćıa and Gutiérrez (2001)). We now present various results that en-
able us to extend the densities of R and R1 to the case in which both B
and A are singular random matrices. First, however, consider the following
lemma, the proof of which is given in Dı́az-Garćıa and Gutiérrez-Jáimez
(2006).

Lemma 2.4. Assume that X ∈ S+
m(N) and let Y = X+ (the Moore–

Penrose inverse of X, see Campbell and Meyer (1979)). Then

(dY ) = |K|−2m+N−1(dX)

with X = G1KG
′
1, K = diag(k1, . . . , kN ), k1 > · · · > kN > 0.

Theorem 2.2. Let X,Y ∈ S+
m(N) be such that X = B′Y +B with B ∈

L+
m,m(m) fixed. Moreover , let X = G1KG

′
1 and Y = H1LH

′
1 with G1, H1 ∈

VN,m and K = diag(k1, . . . , kN ), k1 > · · · > kN > 0, L = diag(l1, . . . , lN ),
l1 > · · · > lN > 0. Then

(10) (dX) = |K|(m+1−N)/2|L|−(5m+3−3N)/2|B|N (dY ).

Proof. Define Z = Y +. Then from Theorem 2.1,

(dX) = |K|(m−N+1)/2|L|−(m−N+1)/2|B|N (dZ).

The result follows from Lemma 2.4, upon observing that (dZ) =
|L|−2m+N−1(dY ).
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We now generalize the results from Theorems 2.1 and 2.2 to the case in
which B is a fixed singular matrix such that r(B) ≥ N .

Theorem 2.3. Let X,Y ∈ S+
m(n) be such that X = B′Y B with B ∈

L+
m,m(r) fixed and r ≥ n. Moreover , let X = G1KG

′
1 and Y = H1LH

′
1

with G1, H1 ∈ Vn,m and K = diag(k1, . . . , kn), k1 > · · · > kn > 0, L =
diag(l1, . . . , ln), l1 > · · · > ln > 0. Then

(dX) = |G′1BH1|m+1−n
(∏n

i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

)
(dY )

= |H ′1B′G1|m+1−n
(∏n

i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

)
(dY )

= |K|(m+1−n)/2|L|−(m+1−n)/2

(∏n
i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

)
(dY )

where Y = Q′U ′UQ with U ∈ L+
n,n(n) and Q ∈ L+

m,n(n).

Proof. Let Z ∈ L+
m,n(n) be such that Y = Z ′Z. Then

(11) X = B′Y B = B′Z ′ZB = Λ′Λ with Λ = ZB.

From Lemma 2.2,

(12) (dΛ) = 2−n|K|(n−m−1)/2(dX)(V ′dV ).

Here Λ = V DG′1 with V ∈ O(n), G1 ∈ Vn,m and D2 = K. Note that
dΛ = dZB, and then by Lemma 2.3,

(13) (dΛ) =
∏n
i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

(dZ),

where Z = UQ with U ∈ L+
n,n(n) and Q ∈ L+

m,n(n). By substituting (13) in
(12), we have

(14)
∏n
i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

(dZ) = 2−n|K|(n−m−1)/2(dX)(V ′dV ).

Now from (11), Y = Z ′Z. Thus, applying Lemma 2.2 we obtain

(15) (dZ) = 2−n|L|(n−m−1)/2(dY )(V ′zdVz)

where Z = VzDzH
′
1, D2

z = L and Vz ∈ O(n). Moreover, note that, due to the
uniqueness of Haar measure, (V ′dV ) = (V ′zdVz) (see James (1954)). Thus,
by substituting (15) in (14), we obtain

(dX) = |L|(N−m−1)/2|K|−(N−m−1)/2

∏n
i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

(dY )

= |K|(m−N+1)/2|L|−(m−N+1)/2

∏n
i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

(dY ).
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Finally, observe that

|K| = |G′1XG1| = |G′1B′Y BG1| = |G′1B′H1LH
′
1BG1|

= |G′1B′H1| |L| |H ′1BG1|,

from which we obtain the other expressions for (dX) recalling that |A| =
|A′|.

Theorem 2.4. In Theorem 2.3, assume that X = B′Y +B. Then

(dX) = |K|(m+1−n)/2|L|(3n−5m−3)/2

(∏n
i=1 chi(B′Q′QB)n/2∏n
i=1 chi(Q′Q)n/2

)
(dY ).

Proof. The proof is immediate from Theorem 2.3 and Lemma 2.4.

3. Some applications. Finally, we present some applications of the
results obtained in Section 3.

Let us assume that S ∈ S+
m(rS) has a singular Wishart or pseudo-Wishart

distribution, that is, S ∼ Wm(n,Σ) with Σ ∈ S+
m(rΣ). Additionally, assume

that A ∈ S+
m(rA) is fixed and r(A) ≥ r(Σ) and r(A′ΣA) = r(Σ). Then

V = A′SA ∼ Wm(n,A′ΣA) with r(V ) = rV = rS = r(S). This result is
well known and can be obtained from the characteristic function technique.
Now the proof is obtained by applying the Jacobians found in Section 3.

From Dı́az-Garćıa et al. (1997), the function of S is given by

dGS(S) =
πn(rS−rΣ)/2|L|(n−m−1)/2

2nrΣ/2ΓrS
[

1
2n
]∏rΣ

i=1 chi(Σ)n/2
etr
(
−1

2Σ
−S
)
(dS)

where S = G1LG
′
1 is the non-singular part of the spectral decomposition

of S, with G1 ∈ VrS ,m, L = diag(l1, . . . , lrS ), l1 > · · · > lrS > 0, Σ− is a
symmetric generalised inverse of Σ and etr(·) ≡ exp(tr(·)). Let Σ = Q′Q.
Then from Theorem 2.3,

(dS) = |K|−(m+1−n)/2|L|(m+1−n)/2

( ∏rΣ
i=1 chi(Σ)n/2∏rΣ

i=1 chi(A′ΣA)n/2

)
(dV )

with K = diag(k1, . . . , krV ), k1 > · · · > krV > 0, such that V = W1KW
′
1 is

the non-singular part of the spectral decomposition of V , and W1 ∈ VrV ,m.
Then

dGV (V ) = gS(A′+V A+)|J(S → V )|(dV )

=
πn(rV −rΣ)/2|K|(n−m−1)/2

2nrΣ/2ΓrV
[

1
2n
]∏ryΣ

i=1 chi(A′ΣA)n/2
etr
(
−1

2(A′ΣA)−V
)
(dV )

where trΣ−S = trΣ−A
′+V A+ = trA+Σ−A

′+V = tr(A′ΣA)−V (see
Campbell and Meyer (1979)).
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