
APPLICATIONES MATHEMATICAE

36,2 (2009), pp. 139–147

E. M. Shokry (Cairo)
A. N. Ahmed (Cairo)
E. A. Rakha (Suez)
H. M. Hewedi (Suez)

NEW RESULTS ON THE NBUFR AND NBUE
CLASSES OF LIFE DISTRIBUTIONS

Abstract. Some properties of the “new better than used in failure rate”
(NBUFR) and the “new better than used in expectation” (NBUE) classes
of life distributions are given. These properties include moment inequalities
and moment generating functions behaviors. In addition, nonparametric es-
timation and testing of the survival functions of these classes are discussed.

1. Introduction. Let X ≥ 0 be a random life with distribution function
(df) F and survival function (sf) F = 1 − F . Assume that X has a finite
mean µ = E(X) =

	∞
0 F (x) dx. Thus throughout this paper it is assumed

that 0 < µ <∞.
In practice, X is often assumed to be (but need not be) absolutely con-

tinuous with probability density function (pdf) f(x). One of the commonly
applied concepts of positive aging which is based on a property of the failure
rate r(t) of the distribution is the NBUFR class of life distributions. This
class is defined and studied in [5] and [1].

Precisely, we have the following definition:

Definition 1.1 ([1]). An absolutely continuous distribution function F
for which limx→0+ F (x)/x exists is said to be new better (resp. worse) than
used in failure rate, denoted by NBUFR (resp. NWUFR), if

(1.1) F (x+ t) ≤ (≥)F (x)e−r(0)t for all x, t ≥ 0,
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where r(t) = f(t)/F (t) is the failure rate of F and f is the density corre-
sponding to F . Equation (1.1) is equivalent to r(t) ≥(≤) r(0) for all t ≥ 0.

The NBUFR class is wider than NBU, since every NBU (resp. NWU)
distribution is NBUFR (resp. NWUFR). It is known that any k-out-of-n,
1 ≤ k < n, system has the NBUFR property (see [1]), a property that only
the NBUFR enjoys among all known aging classes.

The present work addresses additional probability and inferential prop-
erties of the NBUFR and NWUFR classes. These properties have not been
dealt with before. In Section 2, we give moment inequalities for these two
classes. Section 3 gives upper bounds for the moment generating functions
of the two classes that guarantee their existence and finiteness. In Section 4,
we estimate F (x) whenever assumed to be NWUFR and demonstrate its
consistency with the rate of convergence. Finally, testing in these classes is
discussed in Section 5.

2. Moment inequalities. The following result gives the moment in-
equality for the NBUFR class.

Theorem 2.1. Let F be NBUFR such that for some integers r, s ≥ 0,
µ(r+s+2) = E(Xr+s+2) <∞. If λ(r) = µ(r)/r!, r ≥ 0, then

λ(r+s+2) ≤ λ(r+1)[1/r(0)]s+1.

Proof. Since F is NBUFR, we have

F (x+ t) ≤ F (x)e−r(0)t.

Thus for all integers r, s ≥ 0,

(2.1)
∞�

0

∞�

0

xrtsF (x+ t) dx dt ≤
∞�

0

xrF (x) dx
∞�

0

tse−r(0)t dt.

The right-hand side of (2.1) is equal to

[1/r(0)]s+1s!
∞�

0

xrF (x) dx = [1/r(0)]s+1s!E
X�

0

xr dx(2.2)

=
µ(r+1)

r + 1
s![1/r(0)]s+1.

The left-hand side of (2.1) is equal to

(2.3)
∞�

0

u�

0

(u− v)rvsF (u) dv du =
∞�

0

ur+s+1F (u) du
1�

0

ws(1− w)r dw

= β(r + 1, s+ 1)
∞�

0

ur+s+1F (u) du =
µ(r+s+2)

(r + s+ 2)
r!s!

(r + s+ 1)!
.

The result follows from (2.2) and (2.3).
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Remark 2.1. Theorem 2.1 above may be extended as follows. The def-
inition of NBUFR is equivalent to the following. Let x1, . . . , xk+1 be non-
negative. Then F is NBUFR if and only if

F
(k+1∑
i=1

xi

)
≤ F (x1)e−r(0)

Pk+1
i=2 xi .

Using the same methodology, if F is NBUFR then

λ(
Pk+1
i=1 ri+k+1) ≤ λ(r+1)[1/r(0)]

Pk+1
i=2 ri+k.

We state the following interesting special cases:

Corollary 2.1. If r = s = 0, then µ(2) ≤ 2µ(1)/r(0).

Corollary 2.2. If s = 0, then µ(r+2) ≤ (r + 2)µ(r+1)/r(0).

Corollary 2.3. If r = 0, then µ(s+2) ≤ (s+ 2)!µ(1)[1/r(0)]s+1.

Next, we give an analogous result for the NBUE class. Toward this end
we define the equilibrium life time X̃ whose sf is defined by

F (1)(x) =
1
µ

∞�

x

FX(u) du.

It can be shown that F is NBUFR if and only if F(1) is NBUE. Using this
result, we can prove the following theorem.

Theorem 2.2. Let F be NBUE such that for some integers r, s ≥ 0,
µ(r+s+3) = E(Xr+s+3) < ∞. If λ(r+1) = µ(r+1)/(r + 1)!, r ≥ 0, then
λ(r+s+3) ≤ λ(r+2)[µ]s+1.

Proof. Let µ̃(r) denote the rth moment of X̃. Then

µ̃(r) = r

∞�

0

xr−1F (1)(x) dx =
r

µ

∞�

0

xr−1
∞�

x

FX(u) du dx(2.4)

=
r

µ

∞�

0

FX(u)
u�

0

xr−1 dx du =
1
µ

∞�

0

urFX(u) du

=
1
µ
E

X�

0

xr dx =
µ(r+1)

(r + 1)µ
.

But F is NBUFR, so F(1) is NBUE and thus using Theorem 2.1 we get
µ̃(r+s+2)

(r + s+ 2)!
≤

µ̃(r+1)

(r + 1)!
[µ]s+1,

since r(0)(1) = 1/µ, where r(t)(1) is the failure rate of the survival function
F (1)(x). The result follows in light of (2.4).
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Remark 2.2. The above result admits the following generalization:

λ(
Pk+1
i=1 ri+k+2) ≤ λ(r1+2)[µ]

Pk+1
i=2 ri+k.

We state the following interesting special cases:

Corollary 2.4. If r = s = 0, then µ(3) ≤ 3µ(2)µ.

Corollary 2.5. If s = 0, then µ(r+3) ≤ (r + 3)µ(r+2)µ.

Corollary 2.6. If r = 0, then µ(s+3) ≤
(s+3)!

2 µ(2)(µ)s+1.

Remark 2.3. Several authors derived moment inequalities for different
families of life distributions such as IFR, IFRA, NBU, NBUE, DMRL and
HNBUE (see e.g. [3], [4], and [9]). Thus the above results contribute to the
literature for the NBUE and NBUFR classes.

3. Existence of moments generating functions. In this section, we
show that the moments generating function (mgf) of X exists and is finite
for the NBUFR class if µ(1) exists. Actually, an upper bound of the mgf is
given. Precisely, we have the following result.

Theorem 3.1. If F is NBUFR and if µ < ∞, then for all nonnegative
θ 6= r(0),

ϕ(θ) ≤ 1 +
µθ

1− θ/r(0)
,

where ϕ(θ) = E(eθX).

Proof. Note that

ϕ(θ) = 1 + θ

∞�

0

eθxF (x) dx

for

1 + θ

∞�

0

eθxF (x) dx = 1 + θE

X�

0

eθx dx = 1 + E(eθX − 1) = ϕ(θ).

Since F is NBUFR, we have

(3.1)
∞�

0

∞�

0

eθxF (x+ t) dx dt ≤
∞�

0

eθxF (x) dx
∞�

0

e−r(0)t dt.

The left-hand side of (3.1) is equal to
∞�

0

u�

0

eθ(u−r)F (u) dr du =
1
θ

[∞�
0

eθuF (u) du− µ(1)

]
(3.2)

=
1
θ2

(ϕ(θ)− 1)− µ

θ
.
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The right-hand side of (3.1) is equal to

(3.3)
1
r(0)

∞�

0

eθxF (x) dx =
1
r(0)

1
θ

(ϕ(θ)− 1).

The result follows from (3.2) and (3.3).

It follows from the above result that if F is NBUFR and if µ <∞ then
all moments of F exist and are finite.

4. Estimating NWUFR survival functions. In this section, we
address the question of estimating F (x) given that it is NWUFR. Let
X1, . . . , Xn denote a random sample from a life distribution F . With no
restrictions on F , the empirical df Fn(x) = n−1

∑n
i=1 I(x−Xi), I(x) = 1

if x ≥ 0 and 0 otherwise, is a widely used nonparametric estimate of F (x).
When F is NWUFR, we shall modify Fn(x) and offer an estimate that is
NWUFR. To this end we need the following simple result.

Lemma 4.1. Let F be a df and define F ∗(x) = inft>0 F (x+t)er(0)t. Then
F ∗ = 1− F ∗ is NWUFR.

Proof. Note that

F ∗(x+ y) = inf
t>0

F (x+ y + t)er(0)t = inf
t>0

F (x+ y + t)er(0)(y+t)e−r(0)y

= inf
u>y

F (x+ u)er(0)ue−r(0)y ≥ inf
u>0

F (x+ u)er(0)ue−r(0)y

= F ∗(x)e−r(0)y.

We then propose to estimate F (x) by

(4.1) F ∗n(x) = inf
t>0

Fn(x+ t)er(0)t.

Note that F ∗n(x) is NWUFR and also that for computational needs one can
write

(4.2) F ∗n(x) = min
1≤i≤n

Fn(x+X(i))e
r(0)X(i) ,

where X(1), . . . , X(n) are order statistics. Note also that the estimate in (4.1)
or (4.2) assumes that r(0) is known. Let us address this case first; then we
will show how to deal with the case when r(0) is unknown. To show the
consistency of F ∗n(x) and its rate of convergence, the following lemma is
essential.

Lemma 4.2. Let Dn = supx |Fn(x)− F (x)|. Then for any x ≥ 0,

|F ∗n(x)− F (x)| ≤ 3Dn.



144 E. M. Shokry et al.

Proof. Recall that er(0)t ≥ 1 for all t ≥ 0 and Fn(x + t) ≥ Fn(x)e−r(0)t

for NWUFR. Hence

|F ∗n(x)− F (x)| = inf
t>0
|Fn(x+ t)er(0)t − F (x)|

= inf
t>0
|[Fn(x+ t)− F (x)e−r(0)t]er(0)t|

= inf
t>0
|[Fn(x+ t)− F (x)e−r(0)t + Fn(x)e−r(0)t − Fn(x)e−r(0)t]er(0)t|

= inf
t>0
|[Fn(x+ t)− F (x+ t) + F (x+ t)− F (x)e−r(0)t

+Fn(x)e−r(0)t − Fn(x)e−r(0)t]er(0)t|

= inf
t>0
|{[Fn(x+ t)− F (x+ t)] + [Fn(x)e−r(0)t − F (x)e−r(0)t]

+ [F (x+ t)− Fn(x)e−r(0)t]}er(0)t|

≤ |[Fn(x+ t)− F (x+ t)]er(0)t|+ |[Fn(x)− F (x)]|

+ |[F (x+ t)− Fn(x)e−r(0)t]er(0)t|

≤ |Fn(x+ t)− F (x+ t)|+ |Fn(x)− F (x)|+ |F (x+ t)− Fn(x+ t)|
≤ 3Dn.

Theorem 4.1.
(i) Let r ≥ 1 be an integer. Then

E|F ∗n(x)− F (x)|r ≤ r(9/2)r/2Γ (r/2)n−r/2.

(ii) |F ∗n(x)− F (x)| = Owp1(n−1/2(ln lnn)1/2).

Proof. (i) Note that from Lemma 4.2, E|F ∗n(x)− F (x)|r ≤ 3rE(Dr
n).

But using Corollary 3 of [8], we have

E(Dr
n) = r

∞�

0

xr−1P (Dn > x) dx = r

∞�

0

xr−1P (n1/2Dn > n1/2x) dx

= rn−r/2
∞�

0

ur−1P (n1/2Dn > u) du

≤ 2rn−r/2
∞�

0

ur−1e−2u2
du =

rn−r/2

2r/2
Γ (r/2).

The result is now immediate.
(ii) follows directly from Lemma 4.2 and the standard law of iterated

logarithm for Dn (see [7, p. 207]).

In the following result, we give the rate of convergence of the moment
generating function of |F ∗n(x)− F (x)|.
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Theorem 4.2. For any θ > 0,

Eeθ
√
n|F ∗

n(x)−F (x)| ≤ 1 + 3
√

2π θe18θ2 .

Proof. Using Lemma 4.2, we get

Eeθ
√
n|F ∗

n(x)−F (x)| ≤ Ee3θ
√
nDn .

Note that by Corollary 3 of [8],

Ee3θ
√
nDn = 1 + 3θ

∞�

0

eθxP (n1/2Dn > x) dx ≤ 1 + 6θ
∞�

0

eθxe−2x2
dx.

The result follows via integration.

Before closing this section, let us briefly discuss the case when r(0) is
unknown. Often r(0) is a function of a set of parameters and hence could
be estimated.

For example, if F (x;µ, θ) = exp{−(x/µ+θ(x+e−x−1))}, known as the
Makeham distribution, with the hazard rate h(x) = 1/µ+ θ(1− e−x), then
the value of r(0) = 1/µ could be estimated from the data.

5. Hypotheses testing. In this section, we want to test H0 : F is
exponential against H1 : F is NBUFR and not exponential. Again we assume
that r(0) is known and hence take it to be one. Thus under H1, F satisfies

F (x+ y) ≤ F (x)e−y, x, y ≥ 0.

In the spirit of the pioneering work of [6] on the NBU class, one can take
∆ as a measure of departure from H0, where

(5.1) ∆ =
∞�

0

∞�

0

[F (x)e−y − F (x+ y)] dF (x) dF (y).

The test based on ∆ is scale invariant, so we take µ = 1. If X1, . . . , Xn is a
random sample from F , then ∆ may be estimated by plugging the empirical
df Fn in place of F . An equivalent but much simpler approach is to weigh
in (5.1) by the null df which is the exponential with mean one.

Thus we take the measure of departure from H0 to be

δ∗1 =
∞�

0

∞�

0

[F (x)e−y − F (x+ y)]e−x−y dx dy.

Lemma 5.1. We can write

δ∗1 =
1
2

(Ee−X + 2EXe−X − 1).

Proof. Note that

δ∗1 =
1
2

∞�

0

F (x)e−x dx−
∞�

0

uF (u)e−u du.
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But

(5.2)
∞�

0

F (x)e−x dx = E

X�

0

e−x dx = 1− Ee−X .

Next,

(5.3)
∞�

0

uF (u)e−u du = E

X�

0

ue−u du = 1− Ee−X − EXe−X .

The result follows from (5.2) and (5.3).

We thus take δ1 = Ee−X + 2EXe−X − 1 as a measure of departure from
H0. This measure is estimated by

δ̂1 =
1
n

n∑
i=1

(e−Xi + 2Xie
−Xi − 1).

Note that δ̂1 is 0 under H0 and is positive under H1. We also see that√
n(δ̂1 − δ1) is asymptotically normal, with mean 0 and variance τ2 =

Var(2Xe−X + e−X − 1). Under H0, δ1 = 0 and τ2
0 = 2/27. To do the test,

reject H0 if
√
n δ̂1/(2/27)1/2 � Zα, the normal variate.

To assess the goodness of this procedure, we evaluate its Pitman As-
ymptotic Efficacy (PAE) and compare it to the values of the PAE of other
tests of this problem. Since there are no other tests for this problem, we
may compare the PAEs with those of smaller classes like NBU. The PAE is
defined in this case as

PAE(∆1θ0) =
∣∣∣∞�

0

e−xf ′θ0(x) dx+ 2
∞�

0

xe−xf ′θ0(x) dx
∣∣∣/τ0,

where f ′θ0(x) = dfθ(x)
dθ

∣∣
θ→θ0 . Consider the following commonly used alterna-

tive distributions:

(i) the linear failure rate: fθ(x) = (1 + θx)e−x−θ
2/2,

(ii) the Makeham: fθ(x) = (1 + θ(1− e−x))e−x−θ(e
2+x−1).

Calculating the PAEs of these alternative distributions, we get the values
0.919 and 0.510 respectively. The corresponding values of the [6] test for the
NBU are 0.580 and 0.25582 and those of [2] are 0.8065 and 0.28544. Hence
our test, which deals with the much larger class NBUFR, is better and also
simpler.
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