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ANGIOGENESIS PROCESS WITH VESSEL IMPAIRMENT
FOR GOMPERTZIAN AND LOGISTIC TYPE OF

TUMOUR GROWTH

Abstract. We propose two models of vessel impairment in the process of
tumour angiogenesis and we consider three types of treatment: standard
chemotherapy, antiangiogenic treatment and a combined treatment. The
models are based on the idea of Hahnfeldt et al. that the carrying capacity
for any solid tumour depends on its vessel density. In the models proposed
the carrying capacity also depends on the process of vessel impairment. In
the first model a logistic type equation is used to describe the neoplastic
cell dynamics, while in the second one we use the Gompertz type of growth.
Simulations of solutions show that a vascular dormant state of the tumour
can be reached in two different ways. In addition in each case efficiency of
treatments is different.

1. Introduction. In adults, the normal physiological role of angio-
genesis—the process of new vessel formation—is restricted to wound healing,
menstrual cycle and pregnancy. In addition, angiogenesis is critical during
fetal development. Unfortunately, it is also essential to the growth and de-
velopment of solid tumours. After reaching an avascular dormant state, a
tumour can grow further only by inducing vessels in host tissue to sprout
capillary tubes which migrate towards and ultimately penetrate the tumour,
providing it with a circulating blood supply and, therefore, an additional
source of nutrients [20, 21].

Despite the essential role of angiogenesis in tumour growth, it has been
discovered that tumour angiogenesis is highly pathological. Incorrect struc-
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ture and poor efficiency of newly formed vessels are common tumour features
[20, 21]. In some experiments to investigate tumour biology it has been shown
that most of the administered dose of chemotherapy was not even absorbed
by the tumour. Moreover, the absorbed part was not evenly distributed in
different tumour regions. This makes effective treatment difficult, because
cells which do not get sufficient amount of drug can survive and even if they
are only few, repeated tumour growth is inevitable.

Healthy tissues are nourished by straight vessels, which ramify in a pre-
dictable way to smaller ones and at the end to capillary tubes. Vessels which
were build due to tumour stimuli are instead arranged in tangled knots. They
connect with each other in a random way, some of their branches are exces-
sively big, there appear additional immature capillary tubes, or what can be
even worse, they do not exist in some tumour regions. In addition tumour
vessels work poorly, because they are build incorrectly. It has been discovered
that in some vessels the blood stream is excessively rapid, in others exces-
sively slow and in some of them it turns back periodically. This makes even
distribution of drugs very difficult. In addition, some sections of vessel walls
are poorly permeable, whereas others are very leaky. This is caused by incor-
rect structure of pores in vessel walls, which can have diameter almost one
hundred times larger than in healthy tissue. Hence, it is almost impossible
to maintain correct pressure gradient, which is essential in efficient exchange
of oxygen, nutrient and drugs between vessel and cells. This also causes an
increase of interstitial pressure, which may lead to necrosis in some tumour
regions.

It has been experimentally confirmed that pathological angiogenesis is
caused by long lasting overexpression of proangiogenic factors, like e.g. VEGF,
vascular endothelial growth factor [20, 21]. In healthy tissue proangiogenic
factors are balanced by natural inhibitors, like e.g. trombospodin.

Influencing the process of angiogenesis is currently one of the most im-
portant methods in cancer treatment. This method was proposed by Folk-
man [13]. However, its implementation was possible due to the discovery
of anti-angiogenic drugs by O’Reilly et al. [30, 31] (see also [14, 15]). This
method owes its effectiveness to a very small group of substances that cause
formation of new blood vessels. Thus, it is easier to create universal drugs to
fight cancer. Increased survivorship of patients in the case when chemother-
apy and antiangiogenic therapy were combined was observed in clinical trials.
An explanation is that dosing angiogenic inhibitors causes normalization of
tumour vasculature; then chemotherapy reaches optimal effectiveness. Pre-
viously some studies incorporated mathematical models for the development
of tumour under angiogenic signalling: see the review in [28] and references
therein or [8], where also other processes connected with tumour growth are
presented.
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The most important model from the biological point of view was pro-
posed by Hahnfeldt et al. in [19]. Its importance is caused by the biological
validity confirmed by lab experiments. On the basis of the general idea of
this model, a slightly different one was formulated in [12], where also the
optimal scheduling of radiotherapy and angiogenic inhibitors was proposed.
A family of models based on the Hahnfeldt et al. model is an object of study
of several groups of researchers. We should mention d’Onofrio and Gandolfi
[9, 10, 11], who studied such models from the mathematical point of view
and from the point of view of anti-angiogenic therapy, while in the papers
of Świerniak and Świerniak et al. [33–35] optimal control problems for the
models were formulated and analysed. Slightly different control problems
for the angiogenesis process and anti-angiogenic therapy were studied by
Ledzewicz and Schättler [24–27]. On the other hand, in the literature we can
also find models built on different assumptions, like those proposed in [3, 2],
and models combining different approaches to angiogenesis (see e.g. [6]).

In this paper, following the ideas presented in [32] we propose two qualita-
tive models for tumour growth under angiogenic stimulator/inhibitor control
that includes vascular impairment. On the basis of these models, we investi-
gate effects of therapy that combines administration of angiogenic inhibitors
and chemotherapy.

2. Model presentation. According to clinical and laboratory obser-
vations, usage of Gompertz [18] (cf. also [22, 23, 4, 5, 36]) or logistic type
(cf. e.g. [16, 5, 36, 29]) equations in modelling of avascular tumour growth
gives good qualitative results. It illustrates well the empirically observed
phenomenon that a tumour without vasculature grows only to a finite size
(about 2-3 mm of diameter). Let T denote the total neoplastic cell mass. Let
Tmax be the environmental capacity of its growth, that is, the maximal mass
till which the tumour without vasculature can grow. The logistic equation
for T has the form

(1) Ṫ = λ1T

(
1− T

Tmax

)
,

while the Gompertzian type of growth is described by the equation

(2) Ṫ = −β1T ln
(

T

Tmax

)
,

where λ1 and β1 are the parameters that describe the dynamics of tumour
growth in the respective equations. It should be noticed that in the original
Hahnfeldt et al. model [19] of angiogenesis the Gompertzian type of growth
was used. However, in the papers of d’Onofrio and Gandolfi (see e.g. [9])
or Świerniak (see [33]), the logistic type was used as well. In the following,
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instead of equation (1) or (2) we will use the general form

(3) Ṫ = Th

(
T

Tmax

)
,

where h is either linear (for (1)) or logarithmic (for (2)).
Following Hahnfeldt et al. [19], we assume that during angiogenesis the

environmental capacity for neoplastic cell mass increases. Due to increased
ability of supplying nutrients inside tumour, its further growth is possible.
Let V denote the mass of vessels that supply the tumour with additional nu-
trients. It is obvious that with the increase of V , the environmental limitation
rises as well. However, vessel growth inside the tumour does not proceed as
in a healthy tissue [20, 21, 32]. Prolonged lack of balance between angio-
genic stimulators and inhibitors can yield progressive impairment of already
formed vessels. The diameter of pores in vessel walls gets larger, which re-
sults in a rapid decrease of the diffusion process efficiency and a simultaneous
increase of pressure inside the tumour. Thus, the entropy of the whole vessel
structure increases, causing vascular walls to collapse.

Let I denote the percentage of impaired vessels inside the tumour. Ac-
cording to the assumption that environmental limitation increases, (3) takes
the form

(4) Ṫ = Th

(
T

Tmax + f(V, I)

)
,

where f(V, I) ≥ 0 (see [32]). To determine the form of the function f let
ε1 > 0 be the coefficient of healthy vessel efficiency, and γ1 > 0 the vessel
efficiency decrease at a fixed level of vasculature impairment. Suppose that
ε1 > γ1, which reflects the fact that even if the impairment of vasculature
reaches 100%, the vessels still supply the tumour in some amount of nutri-
ents. Therefore, as the environmental limitation is proportional to V and
we assume that the effectiveness of vasculature decreases with increasing
impairment, let the equation for T have the following form:

(5) Ṫ = Th

(
T

Tmax + V (ε1 − γ1I)

)
.

Growth and decay of vessels are caused by lack of balance between an-
giogenic stimulators (e.g. VEGF, vascular endothelial growth factor) and
natural inhibitors (e.g. angiostatin, trombospodin and endostatin) [20, 21].
Let U denote the difference between the amount of proangiogenic factors
and angiogenic inhibitors. Thus, when U > 0, the process of vascular growth
begins, and when U < 0, the process of vascular decay begins. Suppose that
when U = 0, the amount of vessels does not change. Due to endothelial
cell death or disaggregation, the amount of vessels always changes, but the
process is so slow that it can be ignored in the model [6].
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The rate of vessel growth is proportional to the magnitude of unbalance
between stimulators and inhibitors. It is also proportional to the amount of
already existing vessels, because new vessels are their new branches. It can
also be assumed that the rate of vessel growth is decreased by the impair-
ment of vasculature. Therefore, on that assumption, the equation for the
rate of vessel mass change has the form

(6) V̇ = λ2UV (1− I).

As I represents the proportion of impaired vessel amount to the total amount
of vessels, it can only take values in [0, 1]. Simultaneously, the dynamics of
I’s change is highest when its value is near 1/2, because the probability of
the impairment change is than the highest. Accordingly, the equation for I
has the form

İ = g(T, V, U)I(1− I).

The rate of vasculature impairment change also depends on the level of
unbalance between angiogenic enzymes [20, 21]. The impairment starts in-
creasing when proangiogenic unbalance appears, and its rate of change is
proportional to its magnitude. On the other hand, vasculature starts to nor-
malize when U gets below zero. However, even when the level of unbalance is
very high, at the beginning of angiogenesis, new vessels cannot get impaired
immediately. Till some instance, even high unbalance causes only high rate
of change in the vessel amount. Accordingly, the equation for I takes the
form

(7) İ = λ3U

(
V

T

)α
I(1− I),

where α ≥ 1.
Angiogenic stimulators and natural inhibitors are secreted by neoplastic

cells and their surroundings. A larger neoplastic cell mass yields a larger
amount of proangiogenic factors. Together with the vessel development, a
larger amount of angiogenic inhibitors appears.

The rate of angiogenic factors secretion also depends on the level of ves-
sel impairment. If I is higher, the ability of angiogenic factors to penetrate
the surroundings is compromised. Thus, we propose the following equation
for U :

(8) U̇ = (λ4T − λ5V )(1− I).

Combining equations (5)–(8), we propose the following system of four ODEs
describing tumour development under angiogenic signalling with dependence
on vessel impairment:
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(9)



Ṫ = Th

(
T

Tmax + V (ε1 − γ1I)

)
,

V̇ = λ2UV (1− I),

İ = λ3U

(
V

T

)α
I(1− I),

U̇ = (λ4T − λ5V )(1− I)

with positive coefficients and ε1 > γ1. Let (9a) and (9b) denote the sys-
tem (9) with the Gompertzian and logistic type of neoplastic cell growth,
respectively.

2.1. Basic properties. We analyze equations (9) in the phase space S=
{(T, V, I, U) : T > 0, V ≥ 0, I ∈ [0, 1], U ∈ R} assuming that all the
parameters are positive.

Theorem 1. The set S is positively invariant for the systems described
by (9a) and (9b).

Proof. Due to the positivity of Ṫ for every x ∈ {(T, V, I, U) : 0 < T <
Tmax, V ≥ 0, I ∈ [0, 1], U ∈ R}, no state with T ≤ 0 can be reached from S
by any solution to (9a) or (9b).

Moreover, for every state from S with V = 0, we have V̇ = 0. Therefore,
no state with V < 0 can be reached from S.

Similarly, no state with I /∈ [0, 1] can be reached from S by any solution
to (9a) or (9b). This is caused by the identity İ = 0 at all points from S for
which I = 0 or I = 1.

Additionally, there are no limitations on U , which together with the pre-
vious conclusions implies that S is invariant for the systems described by
(9a) and (9b).

Theorem 2. For every x∗ ∈ S the systems described by (9a) and (9b)
have a unique solution through x∗ for every t ≥ 0.

If the last coordinate of x∗ ∈ S is positive, i.e. U(0) > 0, then the solution
to (9b) is defined for every t ≥ 0. If additionally the first coordinate is
uniformly bounded , i.e. there exists T̄ ≥ Tmax such that T (t) ≤ T̄ for t ≥ 0,
then the solution to (9a) is defined for every t ≥ 0.

Proof. The vector field Φ(T, V, I, U) of the system described by (9a) or
(9b) is of class C∞ in the whole set S. Hence, every x∗ ∈ S has a neighbour-
hood Q for which supx=(T,V,I,U)∈Q |Φ(x)| = M and Φ satisfies the Lipschitz
condition with respect to (T, V, I, U). From the Picard–Lindelöf theorem (see
e.g. [7]) one gets the existence of a local solution to (9a) and (9b).

To prove the global (for t ≥ 0) existence we show that all coordinates of
the solution and their derivatives are bounded by some smooth functions of
t for all t ≥ 0.
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We start our analysis from (9b). Positivity of T and V (ε1 − γ1I) implies
that Ṫ ≤ λ1T . Therefore, T (t) ≤ T (0) exp(λ1t) for every t ≥ 0.

For every state from S we have U̇ ≤ λ4T , which yields

U(t) ≤ U(0) +
λ4

λ1
T (0) exp(λ1t) ≤ CU exp(λ1t),

where CU = U(0) + λ4
λ1
T (0).

Assume now that U(t) > 0 for every t ≥ 0. Therefore, from the second
equation of (9b) one gets

V̇ ≤ λ2CU exp(λ1t)V, so V (t) ≤ V (0) exp(Aeλ1t) for A =
λ2

λ1
CU .

From the last equation of (9b) we obtain U̇ ≥ −λ5V , and hence

U(t) ≥ U(0)− cU exp(Aeλ1t) with cU =
λ5V (0)
λ1A

.

To get an estimate for İ one needs to estimate X = V/T . If T is bounded
away from 0, e.g. T ≥ Tmax, then it is easy to see that

X(t) ≤ V (0)
Tmax

exp(Aeλ1t).

If T < Tmax, then estimating Ẋ we obtain

Ẋ =
(
λ2U(1− I)− λ1

(
1− T

Tmax + V (ε1 − γ1I)

))
X ≤ λ2UX,

which, just as for V , implies X(t) ≤ C exp(Beλ1t) for some B,C > 0. Thus,
in both cases X(t) ≤ CX exp(BXeλ1t), where BX = max{A,B} and CX =
max{C, V (0)/Tmax}. Finally,
− λ3cU exp(Aeλ1t)(CX exp(BXeλ1t))α

≤ İ ≤ λ3CU exp(λ1t)(CX exp(BXeλ1t))α.

The above inequalities show that in the set S until U is positive the
variables T , V , I, U of (9b) and their derivatives are bounded by smooth
(in fact at most double exponential) functions of t. On the other hand, if
there exists t̄ > 0 such that U(t̄) = 0 and U(t) < 0 in the right-hand
side neighbourhood of t̄, then V and I decrease (or do not change) until
U < 0, and hence V (t) ≤ V (t̄) and I(t) ≤ I(t̄) for t in this neighbourhood.
Therefore, the estimations obtained can be easily extended for such t. Hence,
every solution in S with U(0) > 0 is defined for every t ≥ 0.

To prove global existence for (9a) we assume that T (t) ≤ T̄ for t ≥ 0.
Then U̇ ≤ λ4T̄ and hence U(t) ≤ U(0) + λ4T̄ t, so U(t) ≤ CU exp(At) for
some A,CU > 0. Further estimations are exactly the same as in the case
of (9b).
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It can be easily seen that for any parameter values there always exists a
steady state. However, it is in a 2-dimensional manifold:

(10) ϕ(v, u) = (Tmax + v(ε1 − γ1), v, 1, u),

where (v, u) ∈ [0,∞) × R. Moreover, for 1 > ε1λ4−λ5
γ1λ4

there exists another
manifold consisting of steady states, which is the line:

(11) ψ(s) =
(

Tmaxλ5

λ5 − λ4ε1 + λ4γ1s
,

Tmaxλ4

λ5 − λ4ε1 + λ4γ1s
, s, 0

)
,

where s ∈ [0,1]∩
(
ε1λ4−λ5
γ1λ4

,∞
)
. Therefore, we can expect that depending on

the initial values, the solutions can tend to different steady states.

3. Numerical simulations of tumour growth. This section presents
the results of numerical simulations of the systems (9a) and (9b). In the
simulations we have used the parameter values estimated in [32] (cf. also
Appendix at the end of this paper). The following parameters are fixed for
all simulations:

(12) Tmax = 3, λ1 = 0.69, β1 = 0.192, ε1 = 4, γ1 = 2, λ2 = 0.5, α = 2.

We vary the remaining parameters λ3, λ4 and λ5. The initial conditions are
fixed for all simulations:

(13) T0 = 3, V0 = 0.1, I0 = 0.001, U0 = 0.01.

Fig. 1. Solutions to (9a) and (9b) for λ3 = 1, λ4 = 2 and λ5 = 10
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In Figures 1–4 we see the comparison between the dynamics of solutions
to (9a) and (9b). Every figure consists of four graphs which compare the
behaviour of coordinates of both systems.

The solutions in Fig. 1 show that a dormant state of tumour can be
reached due to high secretion of inhibitors during the vascularisation pro-
cess. A high secretion rate of natural inhibitors also leads to the oscilla-
tory behaviour of solutions. Convergence of solutions to the steady state
is caused by dumping oscillations of U around zero. This case shows that
solutions tend to a positive steady state with oscillatory behaviour. A low
level of impairment during the whole vascularisation process indicates that
the tumour has proper vessel structure. Thus, this type of tumour should
be sensitive to anti-angiogenic treatment and chemotherapy. We see that
the Gompertzian type of tumour growth causes slower dynamics of this
growth and higher amplitudes of oscillations compared to the logistic type
of growth. Both solutions tend to some steady states with similar values of
variables.

Fig. 2. Solutions to (9a) and (9b) for λ3 = 5, λ4 = 2.9 and λ5 = 9

The solutions in Fig. 2 also show convergence to the steady state caused
by dumping oscillations of U around zero, but impairment stabilizes on a
much higher level. Again, in the solution with the Gompertzian equation,
slower dynamics of the tumour growth is observed. However, the two solu-
tions differ much in the tumour mass of the steady state reached.
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Fig. 3. Solutions to (9a) and (9b) for λ3 = 1.7, λ4 = 1 and λ5 = 2

In simulations presented in Fig. 3 we can also see that the solutions
tend to a positive steady state. However, in this case the dormant state is

Fig. 4. Solutions to (9a) and (9b) for λ3 = 2.7, λ4 = 2.6 and λ5 = 9.9
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attained due to the high level of vasculature impairment that tends to its
greatest value equal to 1. By changing the parameter values the same type of
convergence to the steady state can be achieved but with strictly increasing
values of each coordinate. The high level of impairment indicates that the
tumour has incorrect and highly inefficient vessel structure. Thus, in this
type of tumour growth, lowest efficiency of treatment is expected. Solutions
to (9a) and (9b) differ in tumour growth dynamics and the steady state
values reached.

Simulations in Fig. 4 show a prolonged exponential growth of tumour.
It seems that the growth is unlimited, but the graph of the vasculature im-
pairment I suggests that both solutions should reach a steady state in finite
time. In this case the difference between the two types of growth function is
the most pronunced.

Summarising the results of simulations, similarly to [32] we can state the
following:

Corollary 3. Independently of the assumed type of neoplastic cell dy-
namics, a vascular dormant state of tumour can be achieved in two different
ways: due to almost 100% impairment of vasculature, that is, due to I → 1
and I ≈ 1, or due to dumping oscillations of unbalance around zero with
U → 0.

It should be remarked that each case is different in the final level of
impairment and unbalance, so treatments should differ in efficiency. It can
also be seen that oscillatory behaviour of the state variables is very domi-
nant in the simulations. This is caused by reaction of the host tissue against
too high proangiogenic factor level and vessel mass. Because of higher se-
cretion of natural angiogenic inhibitors, for short periods of time the unbal-
ance U is brought down below zero. This causes a temporary degradation of
newly formed vessels and therefore a temporary decrease in tumour mass.
By changing the values of parameters so that the reaction of the host tissue
is weak from the beginning of tumour angiogenesis, all oscillations can be
dumped.

4. Chemotherapy and antiangiogenic treatment. To include an-
tiangiogenic therapy in the model, we modify the last equation of (9) to

(14) U̇ = (λ4T − λ5V − λ6ga(t))(1− I).

The function ga(t) represents the amount of inhibitors administered at a
given time. It generally includes partially cleared contributions from prior
administration at earlier times t′ < t. Under the usual pharmacokinetic
assumptions, we use the following expression for ga(t) (see [19]):
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(15) ga(t) =
t�

0

ca(s) exp(−θa(t− s)) ds,

where ca(s) is the rate of administration of the inhibitor concentration at
time s and θa is the clearance rate. We assume that the inhibitors are ad-
ministered as boli, so we use the density of normal distribution to determine
the function ca(s). Let ta1, . . . , tan be the sequence of time instances at which
the inhibitors are administered. We propose the following equation for ca(s):

(16) ca(s) = Da

n∑
i=1

1
h
√

2π
exp
(
−(s− tai )2

2h2

)
,

where h is some small positive parameter and Da is the administered dose
of inhibitors.

Chemotherapy effectiveness is highly dependent on the possibility of its
even distribution in all tumour regions. Thus, a higher ratio of vessel mass
to neoplastic cell mass implies higher effectiveness. Simultaneously, a higher
level of vessel impairment yields lower quality of matter distribution. Hence,
chemotherapy is incorporated in the following change in the first equation
of (9):

(17) Ṫ = Th

(
1− T

Tmax + V (ε1 − γ1I)

)
− τ1T

(
1 +

V

T
(τ2 − τ3I)

)
gc(t),

where τ1 > 0 and 0 < τ3 < τ2. The function gc(t) is determined in the same
way as the function ga(t), so it has the form

(18) gc(t) =
t�

0

Dc

n∑
i=1

1
h
√

2π
exp
(
−(s− tci )2

2h2

)
exp(−θc(t− s)) ds.

Exemplary plots of ga(t) are presented in Fig. 5.

Fig. 5. Exemplary plots of ga(t)

4.1. Numerical simulations of tumour treatment. This section presents
the results of numerical simulations of the system described by (9a) with
different types of treatment. Results for (9b) with the logistic type of tu-
mour growth are qualitatively the same. However, they can be obtained for
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Fig. 6. Solution to (9a) for the parameters as in Fig. 1 under different treatment condi-
tions. Dose Da = 9 of inhibitors is administered from time ta1 = 50 on. Dose Dc = 2 of
chemotherapy is administered from time tc1 = 50 on.

different parameter values than those used in simulations of (9a). Some of
the results for (9b) were presented in [32].

In view of current methods of treatment the interval between each admin-
istration of inhibitors is set to one day for each simulation. For chemotherapy
it is set to one week. The following parameters are fixed for all simulations:

(19) h = 0.1, θa = 1.7, θc = 0.4.

We change only the dose and the time of first administration of drugs.
The solution in Fig. 6 shows that in the case of a tumour dormant state

with low vasculature impairment, every treatment gives good results in tu-
mour mass reduction. The graphs also show that a combined therapy does
not improve the treatment results significantly. Slightly better results occur
only at the beginning, and what is more important, the simulations reveal
that removing all vessels by administering angiogenic inhibitors leads to a
decrease of chemotherapy effectiveness. It seems that in this case it is better
to use chemotherapy only.

A qualitative change of effectiveness can be seen in Fig. 7. In the case of
tumour dormancy caused by the full vasculature impairment, only a com-
bined therapy reduces the tumour mass effectively. However, as Fig. 7 shows,
better results of a combined treatment may occur with some delay. A high
dose of angiogenic inhibitors (compared to the previous case) does not even
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Fig. 7. Solution to (9a) for the parameters as in Fig. 3 under different treatment condi-
tions. Dose Da = 20 of inhibitors is administered from time ta1 = 45 on. Dose Dc = 2 of
chemotherapy is administered from time tc1 = 45 on.

stop the tumour growth. Administering chemotherapy weekly causes only a
temporary and insignificant tumour mass reduction.

The simulation in Fig. 8 shows that in the case of persistent exponential
growth of tumour, a much higher dose of angiogenic inhibitors than in the
first case is needed to successfully reduce the tumour mass, even though im-
pairment is at a similar level. Nevertheless, the low level of vessel impairment
and the high ratio of vessel mass to neoplastic cell mass during the whole
growth allows chemotherapy reach high effectiveness. Combining angiogenic
inhibitors with chemotherapy gives similar results as in the case of a dormant
state with low vessel impairment.

In Fig. 9 an unfavourable effect of antiangiogenic treatment is presented.
Administering a too small dose of angiogenic inhibitors changes the be-
haviour of the solution presented in Fig. 3. Due to that change the tumour
reaches another dormant state with higher mass.

5. Summary. We have proposed two models of tumour growth de-
scribed by systems of four ODEs that involve neoplastic cell mass T , vessel
mass V , level of vessel impairment I (measured as the percentage of vessels
impaired) and angiogenic factor unbalance U (measured as the difference
between stimulators and inhibitors). The models proposed differ in the type
of neoplastic cell dynamics assumed. We have assumed either the logistic or
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Fig. 8. Solution to (9b) for the parameters as in Fig. 4 under different treatment condi-
tions. Dose Da = 25 of inhibitors is administered from time ta1 = 50 on. Dose Dc = 2 of
chemotherapy is administered from time tc1 = 50 on.

Fig. 9. Unfavourable influence of antiangiogenic treatment on the solution to (9a) for the
parameters as in Fig. 3. Dose Da = 20 of inhibitors is administered from time ta1 = 15 on.
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Gompertzian type of growth. We have mainly focused on the comparison
between the dynamics of both systems. In both models three types of treat-
ment have been included: standard chemotherapy, antiangiogenic therapy
and a combined treatment.

In Section 1 we have explained the process of vessel impairment, while
in Section 2 the models have been proposed. Moreover, in Subsection 2.1
some basic mathematical properties of the models have been described. It
has been proven that for every x in the invariant set found, there exists a
unique solution to both systems through x and under some conditions it
exists globally in time (for t ≥ 0). Two different sets of steady states have
been found and only one of them exists independently of the parameter
values.

The numerical simulations of growth in Section 3 show that a dormant
state of tumour can be reached in two different ways, either due to increas-
ing the vessel impairment to its maximal level equal to 1, or due to dump-
ing oscillations of the unbalance between stimulators and inhibitors. These
types of tumour dynamics do not depend on the type of growth assumed.
All the types of outcomes obtained for (9b) and presented in [32] can also
be obtained for (9a). Therefore, the qualitative behaviour of both systems
described by (9a) and (9b) is very similar. However, there are quantitative
differences—the same type of behaviour has been found for different param-
eter values.

Section 4 presents results for three types of treatment for (9a). These
results are very similar to those obtained in [32] for (9b). We have compared
three types of treatment: anti-angiogenic therapy, that is, administration of
inhibitors of the angiogenesis process, chemotherapy and a combined ther-
apy. Numerical simulations show that in each case different qualitative results
occur. It should be remarked that although a combined therapy seems to be
better in most cases, there are parameter values for which simulations suggest
using only chemotherapy. On the other hand, it may also happen that the
influence of anti-angiogenic treatment occurs with some delay. This suggests
that even if at the beginning the combined therapy is not more efficient than
chemotherapy, it can become so after some time. It should also be remarked
that even if the combined therapy seems to give better results, administration
of angiogenic inhibitors should be stopped at some time, when the impair-
ment reaches a sufficiently low level. The low level of impairment means that
the vessel structure has been improved during the drug administration, and
better vessel structure can help in better chemotherapy administration.

6. Appendix. In this appendix, following [32] we explain estimation of
some parameter values for (9). We use gram as mass unit and day (average
time of cell division) as time unit.
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At the beginning of avascular tumour growth, when its mass is small, the
number of its cells should approximately double each day. This yields the
estimate λ1 = log(2) ≈ 0.69. Following Hahnfeldt et al. [19] the value of β1

is fixed at 0.192. We assume that one gram of vessels can support four grams
of neoplastic cells (ε1 = 4) and full impairment causes a decrease of vessel
efficiency by half (γ1 = 2). Suppose λ2 = 0.5, because the vessel growth
dynamics is lower than tumour growth.

Therefore, the following parameters are fixed for all simulations:
Tmax = 3, λ1 = 0.69, β1 = 0.192, ε1 = 4, γ1 = 2, λ2 = 0.5.

Also the initial conditions are fixed for all simulations:
T0 = 3, V0 = 0.1, I0 = 0.001, U0 = 0.01.

The initial condition T0 = Tmax = 3 reflects the fact that in most cases the
tumour gets the ability to secrete proangiogenic factors after being in the
avascular dormant state for some time. This state is achieved for maximal
avascular tumour size Tmax. Values of the other initial conditions mean that
tumour angiogenesis has started, especially that proangiogenic factors are
secreted, which is reflected by U0 > 0.
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