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THE ONSET OF NECROSIS IN A 3D CELLULAR
AUTOMATON MODEL OF

EMT6 MULTI-CELLULAR SPHEROIDS

Abstract. A 3-dimensional (3D) extension to a previously reported scaled
2-dimensional Cellular Automaton (CA) model of avascular multi-cellular
spheroid growth is presented and analysed for the EMT6/Ro cell line. The
model outputs are found to compare favourably with reported experimen-
tally obtained data for in vitro spheroids of the same cell line. Necrosis (un-
programmed central cell death) is observed to be delayed when compared
with the experimental data. Furthermore, it is found that necrosis arises
in the model due to subcritical nutrient conditions and not due to toxicity
(modelled as the production of H+ ions) as suggested by some authors. In-
deed, central pH conditions, which can be followed in a facile manner in the
CA setup, are never observed to reach critical levels. Implications of these
results are considered both for the CA model approach and the underlying
understanding of tumour metabolism and progression.

1. Introduction. Recently it has been realized that cells cultivated in
3-dimensional (3D) contexts behave differently from those studied as mono-
layers (see e.g. [14]). Hence, it can be argued that a 3D modelling context
is an important element of effective tissue modelling. Indeed, in the present
study, we study a mathematical model that follows a widely used in vitro
experimental approach in which multicellular spheroids (MCS), i.e. spher-
ical aggregates of cells, are grown and studied. It should be noted that in
such experiments biologists are only able to investigate the mechanisms gov-
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erning the tumour development in the first stage of neoplastic disease, i.e.
the avascular tumour growth phase.

In the modelling literature there exist several cellular automata (CA)
and agent based (AB) models in which a 3D approach has been attempted
(see e.g. [10], [11] or [23]). Here we extend our previously reported 2D CA
model ([17], [18]) to the 3D CA context. In the present approach the basic
cellular metabolism and proliferation are described on the mesoscopic (cell)
level and this allows us to investigate the macroscopic properties of growing
tumours at the tissue level. In particular, rather than employ the abstrac-
tion of dimensionless concentration and length units, we seek to fully scale
the model space so that experimentally observable features are accessible
to the inquirer. This approach not only affords the opportunity to bring
the model to conformity with currently available experimental data, but
enables predictions for future experimental observations to be confirmed or
otherwise.

Our goal was to investigate the onset and progression of necrosis within
the in vitro cultivated MCS. Our main finding is that necrosis (unpro-
grammed cell death) appears in the central region of the model tumour
due to the subcritical concentration of nutrients (CHO) that arises from
the reaction-diffusion dynamics of the system. It is to be noted that this
finding occurs despite the inclusion of a plausible waste (acid) producing
metabolism scenario for cells in the developing tumour model. That is, the
results of the present work in 3D concur with those of our earlier work in 2D
([17]) that waste products modelled only as acidic metabolic by-products are
not sufficient to induce necrosis at the appreciably earlier times observed in
vitro. Thus, we use the results of this model to identify some requirements
for additional modelling elements that are required to reproduce the results
of in vitro studies with higher fidelity. As part of our study, we also extend
the peripheral mitotic growth theory to account for the bulk dynamics of such
CA approaches and to motivate our novel many-to-one scaling assumption
that makes feasible the modelling of large (approaching clinically observable
sizes) tumour spheroids.

This paper is organized as follows: Section 2 introduces the peripheral
mitotic growth theory for the 3D CA, Section 3 contains the detailed de-
scription of the proposed CA model, while in Section 4 the main numerical
results are presented and compared with the experimental data. Finally, in
Section 5 these results are discussed with particular reference to the necrotic
process together with a description of future directions for this research.

2. Peripheral mitotic growth & the CA approach. We shall in-
vestigate a 3D CA model on a regular orthogonal lattice (see Fig. 1, right).
To investigate the growth mechanism of the CA approach, we propose an
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Fig. 1. Geometry of the 3D space, showing radius, r, and proliferative surface interpre-
tation of the site side-length, u (left); implementation of many-to-one assumption in the
cut-away 3D lattice (right)

extension of the 2D peripheral mitotic growth theory (presented in an ear-
lier work, [17], [18]) to the 3D case. Namely, we shall assume that the mi-
totic region of the tumour is concentrated at the periphery of the tumour
mass. Indeed, although not widely acknowledged in the literature, the CA
approach forces this assumption since any inner tumour mass site that is
completely surrounded by filled sites will be restricted from generating a
daughter site nearby. It should also be noted that the one-to-one assump-
tion carries with it the implication that the peripheral boundary is of only
one CA site thickness. For a standard one-to-one setup, this would imply
that the proliferating region is of thickness close to the diameter of a sin-
gle cell, namely, around 10 µm. Or in other terms, it is assumed by the
one-to-one assumption that a cell/site at just two sites (or about 20 µm)
inside the surface of the growing tumour mass would be unable to produce
a daughter cell nearby due to contact inhibition.

In contrast, our approach relaxes the one-to-one assumption by assuming
a many-to-one approach where any number N of cells can be considered
to reside in a single CA site. Not only does this approach allow for the
peripheral mitotic region to expand to realistic widths (on the order of
100 µm, [21, 5]), but also it allows the effective study of very much larger
tumour masses (up to the scale of 1×106 cells) whilst keeping the number of
computational elements within implementable margins (e.g. on the order of
1×104). Clearly, one loses a degree of detail in the results as a consequence
of this approach, since all cells inhabiting a single site are effectively treated
as a homogeneous packet.

We can progress this discussion by formalising the implications of the
many-to-one assumption on bulk tumour properties. We shall focus on the
MCS growth before the necrosis in the middle of the tumour occurs. Thus, we
consider a proliferating boundary of thickness equivalent to the side-length
of one CA site (refer to Fig. 1, left), i.e. thickness u in the figure. Under this
assumption, we may consider the following equation:

(2.1)
dC(t)
dt

= kNε(t)



72 S. D. Angus and M. J. Piotrowska

for the rate of tumour cell count (C(t)) progression at time t, where k is
the rate constant (units t−1), N is the fixed number of cells per CA site as
defined above (units cells per site) and ε(t) is the number of CA sites at the
proliferation boundary of the tumour mass at time t (units sites).

We note that the sites of proliferation now sit on the entire surface of
the sphere, and hence we obtain

(2.2) ε(t) = 4π
(
r(t)
u

)2

for the expected number of sites at the surface (of course, assuming the CA
tumour mass can be approximated by a smooth sphere of radius r at time t).
Similarly, assuming that the total number of CA sites is equal to the ratio
of total idealised sphere volume to the volume of one CA site we obtain for
the total cell count in the developing tumour,

(2.3) C(t) =
4
3
πN

(
r(t)
u

)3

.

After rearrangement and substitution we can rewrite (2.1) as the following
separable dynamic equation:

(2.4)
dC(t)
dt

= k(4πN)1/3(3C(t))2/3.

The general solution to this system is easily found to be

(2.5) C(t) =
[(

4
3 πN

)1/3
kt+ C1/3(0)

]3
.

Hence, taking into account the fact that u3 = N/ρ, where ρ is the cells pack-
ing density, one obtains the following formula for the diameter progression
with time:

(2.6) d(t) = 2k(N/ρ)1/3t+ d(0),

where d(0) = 2(3C(0)/4πρ)1/3 is the initial MCS diameter. This scheme re-
covers the familiar linear relationship between diameter and time of growth
(2.6), and suggests a cubic relationship between cell count and time (2.5).
Importantly, this theory indicates that the scaling assumption made con-
cerning the number of cells per site (N) in the CA setup can be used to
rescale any particular data into a regime of a different scale. This suggests
that the scaling assumption does not interfere with the bulk tumour prop-
erties in any meaningful way.

3. The MCS model. The present 3D approach is a natural extension of
previous results for a 2D model reported in [17]. Indeed the model analysed
in this work follows almost identically in setup, scaling and calibration with
only the dimensionality of the context differing between the two works. Thus,
the reader is referred to the more complete description of the model setup
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in the reference. However, some minor modifications and extensions to these
elements have been made and will be described below.

We shall briefly review the main elements of this setup. First, the model
geometry used is 3D in nature (refer to Fig. 1). The “world” is divided into
equally spaced, square lattice sites in which it is envisaged that the tumour
cells sit. We assume no cellular “migration” to or from nutrient sources (as
is assumed in e.g. [12]), instead occupied tumour sites may only become
unoccupied due to cell-death, or propagate to an adjacent neighbouring site
via cell division.

Second, the key many-to-one assumption of the previous work has been
retained. As in [17] the CA lattice sites are assumed to be unit-cubes con-
tainingN cells. The value of side-length u is calculated analogously to [17] by
taking into account the cell packing density (ρ) which gives u = (N/ρ)1/3 in
µm. Thus, the choice of N becomes the key scaling parameter in this setup.
As elaborated in [17] the choice of N is guided by the value of the resulting
site side-length u. This is because in a strict CA approach as we describe in
this work the majority of division events will occur at sites at the periph-
ery of the tumour (since sites at the periphery are guaranteed to have free
adjacent sites available for placing daughter cells into). Hence, we can say
that u is also the approximate thickness of the peripheral cell rim, which
according to [21, 5] is of the order of 100 µm. For the model to follow, N is
thus set to a constant value of 400 such that u obtains the length 100 µm.

It is assumed that the model spheroid grows in a well-mixed, constant
concentration substrate laced with glucose and oxygen at nex and oex respec-
tively. The pH of the substrate is also held constant at 7.4. This assumption
is justified by the periodic replenishment of substrate reported in the stan-
dard experimental method (e.g. [5]). We note that although our “world” is
only a factor of approximately two times greater than the spheroidal size,
in reality, this factor would be at least two orders of magnitude larger, and
hence the consumption of the tumour cells would have little effect on the
substrate concentrations under periodic replenishment.

Each site undergoes a basic cellular metabolism process involving the
uptake of nutrients in the form of oxygen and glucose and the production of
H+ ions. There are various approaches to this metabolism reported in the lit-
erature (see e.g. [16], [20] or [8]). In the present approach, we have employed
a somewhat simplified approach compared to some of the more complex
metabolism models available. Following [17] we assume that sites may exist
in one of five states: aerobic proliferation, anaerobic proliferation, aerobic
quiescence, anaerobic quiescence, and finally, site death. It is assumed in the
model that cells (proliferating and quiescent) living in insufficient oxygen
conditions perform anaerobic metabolisms which, since it is less efficient
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than the aerobic metabolism, forces hypoxic cells to consume much more
glucose when compared to cells living in an oxygen-rich environment.

The determination of which state a site is in at any time-step is deter-
mined by the state transition algorithm which is reproduced from [17] in
Fig. 2 below. The values of critical levels of glucose, oxygen and pH that
determine each step in the algorithm follow identically those reported in
Table 1 of [17]. Note that in this work, as in our previously reported 2D
approach, there is no differentiation between programmed (apoptosis) and
unprogrammed (necrosis) site death, instead, it is assumed that each site
death is of an unprogrammed (necrotic) nature.
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Fig. 2. The state selection algorithm Update site states applied to each site following [17]

Due to the discretized nature of the CA world, a numerical diffusion
algorithm is applied within the tumour to mimic the diffusion of nutrients
from the external solution into the tumour mass. To accomplish the internal
diffusion we track the nutrients concentrations (CHO and O2) as well as pH
for all lattice sites. The diffusion process can be represented for site i as

(3.1) xt+1
i = xt

i + α

(
1
18

∑
j∈N i

xt
j − xt

i

)
,

where xt
i is the quantity of nutrients at site i at time t and N i is the

18-member neighbourhood surrounding site i (diagonal corners removed).
A numerical diffusion coefficient α stands in for the standard diffusion co-
efficient and is equal to Dn, Do and DH+ for glucose, oxygen and acid,
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respectively. Section 3 below details the determination of the values of the
numerical diffusion coefficients.

A relevant update in this work is to recalculate the probabilities for
diffusion and cell-division on the 3D lattice to ensure isotropy of growth
and nutrient transfer (i.e. to overcome square or diamond morphologies as
observed in e.g. [22] or [9]). One can attempt to naturally extend the 2D
algorithm reported for the 2D case in [17]. However, after some algebra,
it is apparent that an isotropic solution does not exist on a square lattice
when all 26 adjacent sites are included as potential diffusion or division
neighbours. However, an isotropic solution is obtainable if the problem is
reduced to only the 18 von Neumann type neighbours; that is, without the
diagonal corners included (Fig. 3). If one defines the speed of progression

Fig. 3. The reduced neighbourhood used to ensure isotropy for the discrete numerical
diffusion algorithm and the daughter cell placement algorithm. The black site indicates
the centre of the cube with sites at the faces (grey) and first-order diagonals (white) also
shown.

in the x axis (orthogonal to the face, i.e. the grey points in the figure) as
ex and the same in the direction of a first-diagonal (the edge points, i.e.
the white points in the figure) as exy, and the probability of placing a new
element at a face position and edge position as p and q respectively, then
one obtains the simultaneous equation system

ex = 1p+ 4q,(3.2)

exy =
√

2 p+ 2
√

2 q,(3.3)

which for ex = exy = 1 has solution p∗ = 0.4142 and q∗ = 0.1464. Utilisation
of these calculated values of p∗ and q∗ gives the spherical tumour morphology
as desired.
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With the model geometry as outlined above all experimentally measured
parameters such as consumption rates, medium glucose concentration etc.
are rescaled based on the site size that arises after the choice of the scaling
parameter N .

An overview of the timing of the present model is given in Algorithm 1.
After scaling and initialisation, the main loop is entered, running until the
specified experiment time T has been reached (set to 19 days in the results
that follow). As noted above, the external (medium) nutrient concentrations
of glucose and oxygen are first updated to simulate spheroid growth in a
large, well mixed vessel. The numerical diffusion algorithm then works on
only the subset of sites which are occupied by cells, which is followed by
nutrient accumulation by each site. This step mimics the osmotic transfer
across the cell membrane.

Algorithm 1. Main simulation loop (pseudo-code)
1: Scale parameters
2: Initialise world
3: while t ≤ T do
4: t← t+ ∆t
5: Replenish boundary conditions
6: Apply diffusion
7: Acquire nutrients from world
8: Update site states
9: Metabolise nutrients

10: Site death
11: Site division
12: end while

Next, given the levels of nutrients obtained by each site during the nu-
trient acquisition step, all sites have their state updated, which guides the
metabolism actions in the following step. For instance, sites in the aerobic
proliferation state will consume Cp and Co from their glucose and oxygen
stores respectively, whilst also updating their mitotic register by one time
step. (Other actions can be compared with the data given in Table 1 in [17].)
Site-death is then enacted for those sites in the death state, which in the
present setup means that the site becomes immediately vacant.

Finally, mitosis (site division) is handled in our setup by initialising all
lattice sites (cell packages) with their own, unique mitotic register, pi. This
register is advanced by ∆t for any time-step that the site spends in one of
the two proliferative (aerobic or anaerobic) state regimes. In this way, it is
assumed that proliferative sites are always preparing for a mitotic event.
Moreover, each site is endowed with its specific site-cycle (mitotic) time at
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“site-birth” (when a packet of cells is placed in the site) which is chosen from
a normally distributed population p̄ ∼ N(p0, σ0), where p0 is the average
cell cycle time and σ0 is the standard deviation. The normal distribution has
been chosen for each site’s cycle-time for two reasons. First, genetic differ-
ences between cells contribute to variation in cycle times that theoretically
and experimentally appear to fit this distribution, [19], [15], and second,
this variation helps to overcome a numerical artefact that could arise with
constant cycle times, namely, an unnatural “step” growth phenomenon (all
sites proliferating in synchronicity). The lattice sites which have accrued
their own cycle-time in the proliferation register pi become candidates for
division. Hence, mitosis occurs for any sites that have accumulated at least
their specific cell cycle time and have a free neighbour site in their 18 neigh-
bours. It should be mentioned here that during the division the whole new
package of N homogeneous cells appears in the system.

Diffusion coefficient calibration. Due to the difficulties of matching
reported diffusion coefficients to those of the cellular automata 3D setup, a
calibrative approach had to be used. In this sense, the value of the numer-
ical diffusion coefficient was the key control parameter of the model. The
approach taken was to calibrate the glucose diffusion coefficient such that
the diameter growth rate for given glucose and oxygen substrate concentra-
tions matched closely the reported diameter growth rate from [5] for the first
7 days of the experiment before the necrosis in the middle of the growing
tumour occurs. The diffusion coefficients for oxygen and acidic waste were
then calculated from the resulting glucose numerical diffusion coefficient ac-
cording to the experimentally reported ratios of oxygen and waste (acid) to
glucose diffusion as reported in the literature.

Table 1. A comparison of diffusion coefficients available in the literature, scaled values
and the calibrated values as used is in the model. See text for details.

Diffused Literature Source Direct Calibrated
substance value scaling numerical

value value

(cm2s−1) (u2s−2) (u2.∆t−1)

CHO 9.1×10−5 [1] 0.91 0.176
O2 1.8×10−5 [20] 0.18 0.035
H+ 1.1×10−5 [2] 0.11 0.021

The calibration study was carried out at the target glucose and oxy-
gen substrate concentrations of 5.5 mM and 0.28 mM, respectively with 10
trials conducted over a 7-day time-line with systematically varying numer-
ical diffusion coefficients in {0.1, 0.2, . . . , 0.5}. A linear least squares fit was
then obtained to the pooled diameter data for each condition to obtain a
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calibration curve for the daily diameter growth against numerical diffusion
coefficient. Following [5] a desired diameter growth rate of 75 µm/day was
read off from this calibration curve (using the interp1 procedure in Mat-
lab) and gave a numerical glucose coefficient of 0.176. Correspondingly, the
diffusion coefficients for oxygen and waste (acid) were obtained by a simple
ratio calculation from the literature values and came to 0.035 and 0.0212,
respectively (see Table 1 for a comparison).

4. Results. In this section we present the main results of the simula-
tion experiments performed with the Matlab programming language and
with an identical numerical simulation set-up to that of our previous 2D
experiments (see Table 1 in [17]) with the exception of the newly calibrated
numerical diffusion coefficient (procedure described above) (1).

Fig. 4. Example growing tumour mass visualisation for nex = 5.5 mM. Surface represents
result of applying smooth3 and isosurface procedures in Matlab. Lighting and colours
(see pdf file) are given as an aid to the reader only. Square box has side-length approx.
1400 µm in each case.

(1) It is to be noted that Table 1 of [17] incorrectly reported the value of N used
for the experiments, N = 400, as used in this work. All other parameters are correctly
reported.
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Since we shall be largely comparing the results of our study to those of
[5], we will similarly consider the effects of changes in the external/substrate
glucose concentration, whilst focussing (unless otherwise stated) on the case
where nex = 5.5 mM and oex = 0.28 mM as in [5] and [6]. To orientate
the reader, we present in Fig. 4 a visualisation of a characteristic tumour
evolution over the 19-day experiment. As can be seen in the figure, the tu-
mour’s final morphology is guided to some extent by the result of stochastic
placements of daughter cells after division at early time steps. For instance,
the small nodule apparent in the right middle-ground of the tumour at Day
10 in the figure is seen to mature further by Day 14 and Day 19 into a larger
growth.

Next we present in Fig. 5 an example progression of key bulk tumour
characteristics, again for the nex = 5.5 mM case. Pleasingly, each trial shows
close adherence to the expected linear diameter growth pattern over time
(Fig. 5(a)). Similarly, the Gompertz model of total cell count C(t), given by

(4.1) C(t) = C0 exp
[
A

B
(1− exp(−Bt))

]
is seen to fit the simulation data extremely well (Fig. 5(b)).

For comparison, several external glucose concentrations were studied
with the model while all other medium substance concentrations were fixed.
Results from the curve fitting exercise to these data are given in Table 2.

As expected, the external glucose concentration has little systematic ef-
fect on either the initial diameter θ0 or diameter growth rate α results. By
definition of the cellular automata spheroid, growth is concentrated at the
peripheral sites which always confront the substrate concentration of nutri-
ents and in each case studied is more than enough to sustain proliferation.
The values for θ0 are all a little larger than the actual 100 µm that the seed
site would give but this is understandable given that the model spheroid
takes some time to approximate a spherical object. After the calibration as
described, the diameter growth rates are all close to the 75 µm recorded by
Freyer and Sutherland ([5]) for the same tumour cell line (see Table 2).

The model initial doubling times appear to be positively related to exter-
nal glucose concentration which is somewhat counter-intuitive; one should
expect that higher nutrient concentrations would lead to faster early growth
rates and so lower initial doubling times. However, it should be noted that
these results are from the non-linear Gompertz fitting procedure and are
sensitive to fitting methods and early data where in the case of the model
spheroids the early time-periods correspond to when the model least accu-
rately conforms to a true “spheroidal” shape. For comparison, experimental
data under the same conditions as reported in [6] show initial doubling times
varying in the range 23–26 hours with no discernible relationship to glucose
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(a)

(b)

Fig. 5. Diameter (a) and cell count (b) progression of model tumour with time of growth
for nex = 5.5 mM. Results from three experiments are shown with different symbols, the
lines of best fit are to all data. (a) Linear fit has slope 57.9 µm/day and intercept 379 µm;
(b) Gompertz non-linear fit has coefficients C(0) = 261.7, A = 0.735 and B = 0.141.
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substrate concentration. A direct comparison of experimental and model
doubling times under equivalent conditions yields a close match with glu-
cose concentrations of 5.5 mM and 16.5 mM in [6] giving initial doubling
times of 23 and 26 hours respectively where the model gave 22.6 and 30.1
hours (see col. 7, Table 2).

Table 2. Coefficients resulting from curve fitting to diameter and cell count data as for
Fig. 5 (medium nox = 0.28mM and pH = 7.4).

Diametera Cell countb Thickness

nex θ0 α C0 A B Initial C(∞)c of viable

dbl. time cell rimd

(mM) (µm) (µm/day) (hrs) ×10−4 (µm)

2.8 310.4 65.7 261.1 0.808 0.202 20.6 1.43 323.4

5.5 378.7 57.9 261.7 0.735 0.141 22.6 4.80 358.2

8.0 396.0 54.6 326.2 0.626 0.115 26.6 7.44 387.3

10.0 330.8 57.1 360.4 0.568 0.100 29.3 10.35 474.2

13.0 394.9 51.3 374.3 0.555 0.097 30.0 11.21 na

16.5 365.8 58.7 375.1 0.553 0.097 30.1 11.36 na

Notes
a The linear diameter versus time model θ(t) = θ0 + αt was estimated by OLS to pooled
data from all trials for a given substrate glucose concentration experiment.
b Cell count versus time data was estimated by the fminsearch procedure in Matlab to
fit the standard Gompertz model C(t) = C0 exp

ˆ
A
B

(1− exp(−Bt))
˜
.

c Saturation cell count computed from fitted Gompertz coefficients.
d Thickness of viable cell rim determined as mean thickness of cell rim after onset of
necrosis, defined as the point at which necrotic volume fraction was larger than 1%; ‘na’
indicates insufficient necrosis observed to justify measurement.

Of interest to the literature is the relationship between the saturation
spheroid cell count and the substrate concentration. The CA is a facile
system to obtain such results, which are presented in tabular form in the
penultimate column of Table 2 and graphically in Fig. 6. For ease of com-
parison with experimental data obtained under the same conditions, data
from Freyer and Sutherland’s 1986 study ([6]) are also shown in the figure.
However, although qualitatively the present study produces accurately the
overall shape of this relationship, quantitively it does not. Recalling that the
substrate conditions for the model were nex = 5.5 mM and oex = 0.28 mM it
can be seen that the equivalent saturation cell counts reported in [6] (closed
squares) are approximately an order of magnitude larger. Indeed, the present
study appears to match closely the experimental condition of oex = 0.07mM
studied by [6] (open squares in the figure). This finding indicates that fur-
ther work is required to adequately calibrate experimentally determined
diffusion coefficients to numerical diffusion coefficients used in our mod-
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Fig. 6. The relationship between saturation cell count (Gompertz method) and substrate
glucose concentration. Mean model data (×, average of three trials) is compared with
experiment data for [O2] = 0.28 mM (�) and [O2] = 0.07 mM (�) as reported in [6]
(Table 2, p. 3507).

elling approach. Nonetheless, given that the error in this case appears to be
something of a simple y-shift with the shape of the experimental functional
relationship accurately recovered by the model, one can be confident that
further calibration should narrow the quantitative model-experiment gap.

The final column of Table 2 reports the relationship between external
glucose concentration and viable cell rim thickness. On the whole, it would
appear that the model thickness values are larger than those of the exper-
imental tumours. For instance, [3] reports a viable cell rim after necrosis
of 251 µm ([CHO] = 5.5 mM, [O2] = 0.28 mM), or [6] has the same as
203 µm whereas the model value was 358.2 µm. It should be noted that this
measurement is sensitive to the definition of “necrosis”, with the present
work considering the moment of onset of “necrosis” to be when the necrotic
volume fraction is larger than 1%. For instance, if instead the value of 10%
is used as the definition of necrosis onset, the mean viable thickness mea-
surements become 277 µm and 285 µm for substrate glucose concentrations
of 2.8 mM and 5.5 mM, respectively. Nevertheless, the measured thickness
is significantly larger than that of the experimental tumours.

5. Discussion. One of the key features of interest in the literature is
the onset and progression of necrosis ([13, 5, 6]). Our previous work with a
2D version of the present model ([17]) drew two conclusions regarding necro-
sis: first, that necrosis did not occur in the model due to toxic conditions
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resulting from anaerobic metabolism (as suggested, for example by [6]), but
rather necrosis occurred due to a critical glucose concentration, which was
reached in the centre of the tumour; and second, that when necrosis did
occur, it appeared later in the model tumour than in the experimental lit-
erature. Perhaps unsurprisingly, the present work utilising a 3D version of
the model concludes similarly.

Fig. 7. The onset and progression of necrosis for nex = 5.5 mM. Each point represents
mean of three trials at stated conditions.

The first finding is again supported by considering the evolution of the
central nutrient and acid concentrations as reported in Figs. 7 and 8 (com-
pare Fig. 10 in [17], though note nex = 16.5 mM for the plot in [17]). Fig. 7
shows a qualitatively sound progression of necrosis after onset at tumour
diameter of around 1000 µm (compare Table 3 (p. 520) in [5]) with the vi-
able cell rim progressing as half the spheroid diameter up until the point of
necrosis followed by a relatively sudden onset of depletion then stabilisation
of the viable cell rim progression.

In the central nutrient plot in Fig. 8 the vertical line represents the
point at which necrosis was initiated in the tumour (defined as the necrotic
volume fraction being larger than 1%). The plot is given with normalised
concentrations on the y-axis such that the upper-limit represents the exter-
nal (substrate) concentration each substance, whilst the lower-limit repre-
sents the critical concentration at which the cell death program would be
initiated in the model. As can be seen, whilst the toxicity of the central
environment does increase in concert with the increasingly hypoxic condi-
tions, both concentrations of oxygen and acid do not come close to their
critical cell-death values. Indeed, necrosis appears in the model simultane-
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Fig. 8. Mean central concentrations of glucose, oxygen and H+ for simulated spheroids
at nex = 5.5 mM. The y-axis has been normalised so that unity represents the substrate
concentration whilst zero represents the concentration at which the site would initiate
death due to critically low nutrient concentration (glucose, oxygen) or toxicity (pH).

ously with the approach of the central glucose concentration to within 10%
of its critical value. The values reported in the figure are mean data from
a 300 µm cube (i.e. the central 27 sites) at the centre of the tumour so
allow for subcritical concentrations within this area whilst the mean stays
supercritical but sufficiently close to critical. These data can be compared
with those obtained by bioluminescence imaging reported in [21] where, as
in the figure, oxygen depleted suddenly to its minimal value, followed later
by glucose approaching its minimal central value.

Furthermore, as can be seen on the x-axis of Fig. 8, necrosis begins at
a tumour diameter of approximately 1000 µm. This value compares with
413 µm and 468 µm as reported in [10] and [5] respectively for EMT6/Ro
spheroids under equivalent conditions. Indeed, the delay in the onset of
necrosis reported here for the 3D model is far greater than that reported
in our previous work where necrosis appeared for the same conditions at
a tumour diameter of 500 µm. This delay explains other anomalous data
as reported above such as the size of the viable cell rim after the onset of
necrosis (see last column in Table 2) which, as reported above, appears to
be approximately twice the size of the experimentally determined viable cell
rim length. If necrosis appears in the centre of the tumour when the tumour
is almost double the size of the experimental tumour, the viable cell rim is
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likely also to be approximately double the size of the experimental cell rim
throughout the progression of necrosis.

6. Conclusions. The present study has extended our previous work
([17]) from the 2D to the 3D modelling context. In particular, modelling
challenges such as retaining isotropy in the 3D context and diffusion coeffi-
cient calibration have been handled in our approach to yield relatively ac-
curate bulk tumour growth characteristics. As with our previous efforts, the
cellular-automaton model presented here is based on the key many-to-one
assumption which enables the study of tumour characteristics over a wide
diameter scale. The present work corroborates previous indications derived
from the 2D model that (a) the onset of necrosis occurs appreciably later in
the model setup than is observed in the experimental laboratory with real
spheroids; and (b) necrosis arises in the model due to a lack of nutrients
(specifically glucose) in the centre of the tumour and not due to high levels
of toxicity due to acid waste products.

Hence, these findings support those of our earlier work and suggest at
least two directions for further inquiry. First, it is clear that deficiencies in
the model setup could be solely to blame for the discrepancy between the
model and experimental tumours, and to this end, we address such concerns
below; and second, even if the model were to be improved in calibration or
parametrisation, it may still suggest the same result, which would indicate
that the fundamental theoretical basis of the model is wanting. Dealing with
this latter consideration presently, we note that the concept of “waste” per-
haps deserves further reflection in the literature. For instance, the elegant
experimental study of Freyer ([3]), where extract from the necrotic core of
spheroids was diluted and used as the substrate for subsequent spheroid
growth, reported marked decrease in doubling time, total number of cells,
and clogogenic efficiency with increased exposure to, or concentration of, the
spheroid extract substance. Clearly, the inner spheroid material is at least in-
hibitory, if not toxic, to the viable cells of the spheroid. However, the present
study has shown that if this extract (or by-product of cell metabolism) is
modelled as H+ ions, the central pH at the time of necrosis cannot be the
trigger for the onset of central cell death.

Addressing this issue in the original paper ([3]), Freyer points out that
the source of the toxic components in the extract could be from one of at least
three sources: by-products of metabolism (perhaps hypoxic metabolism);
by-products of the necrosis events themselves; or a reaction of by-products
from metabolism or necrosis with the local environment or the viable cells
that produces a further toxic compound. Taking the 2D ([17]) and 3D results
(this work) of our model together, we can tentatively suggest that the second
and third mechanisms proposed by Freyer cannot be wholly responsible for
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necrotic activity, at least not the onset of necrosis. The reason for this is
that both of these latter mechanisms rely on a positive feedback theory
that takes necrotic action as the cause of further necrosis. However, the
present work shows that the first stage of necrosis—its onset, and its further
progression, are most likely to occur due to subcritical nutrient levels, not
to high localised toxicity. We refer to the near zero slope of the central pH
data shown in Fig. 8 as support.

This discussion thus focusses attention on the basic metabolism driving
the cellular activity, and as such, the underpinning setup of the model. On
this front, the present approach shows promise. Several qualitative, and
some quantitative properties, of spheroid growth in the model match the
experimental evidence but the delay in the onset of necrosis is the most
stark feature that demands further adjustment. To this end, we are presently
reviewing the metabolism module of our setup with a view to including the
genetic phases of the cell cycle (G1, S, G2, and M phases) to enable close
inspection of the metabolism component with reference to the literature.
For instance, data presented in [5] (Fig. 6) and [7] (various figures) show
the progression of G1, S and G2 + M phase cells with tumour diameter
at different concentrations. Such data would enable close scrutiny of the
model’s metabolism which is presently unavailable. Furthermore, we are
aware that the waste metabolism processes of tumour cells is an area of
active research. A revisitation of this aspect of the model could also be
helpful (see discussion on this point in [17]). Nevertheless, for the reasons
outlined already above, we believe that an acid-induced necrotic initiation
is an unlikely outcome of such a revision, given (for example) the present
distance from critical levels that central pH obtains (see Fig. 8).

Finally, the present calibrated approach to the numerical diffusion co-
efficients would ideally be revisited in future work, yielding a truly scaled
approach as utilised for all other parameters. However, we are not at present
aware of a suitable approach to this problem. As mentioned, the reported val-
ues for diffusion coefficients are potentially corrupted by the innate difficulty
of measurement on the one hand, and their context of measurement being
two-, rather than three-, dimensional on the other. It is possible that a solu-
tion to a continuous diffusion equation could be used instead of the present
discretized numerical procedure, although our attempts at this method gave
rise to either very unrealistic or computationally costly outcomes.
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