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ON THE BELLMAN EQUATION FOR ASYMPTOTICS OF
UTILITY FROM TERMINAL WEALTH

Abstract. The asymptotics of utility from terminal wealth is studied.
First, a finite horizon problem for any utility function is considered. To study
a long run infinite horizon problem, a certain positive homogeneity (PH)
assumption is imposed. It is then shown that assumption (PH) is practically
satisfied only by power and logarithmic utility functions.

1. Finite horizon problem. Consider a market with d assets, the prices
of which are modelled in discrete time by the formula

(1.1)
Si(n+ 1)
Si(n)

= ζi(z(n), ξ(n)) := ζi(n),

where Si(n) is the price of the ith asset at time n, (z(n)) is a Markov
process of economic factors taking values in a measurable space D, and
(ξ(n)) is a sequence of i.i.d. random variables. We denote by ζ(n) the vector
of ratios Si(n+ 1)/Si(n). Starting with an initial wealth W we invest in
assets, denoting by πni the portion of capital invested at time n in the ith
asset. It is clear that the vector πn consisting of the πni for i = 1, . . . , d is our
investment strategy at time n and πn ∈ S = {η ∈ Rd : ηi ≥ 0,

∑d
i=1 ηi = 1}.

The wealth process W (n) at time n is then given by the formula

(1.2) W (n) = W (n− 1)(πn−1 · ζ(n− 1)) = W (0)
n−1∏
i=0

(πi · ζ(i))

with · standing for the scalar product. Consider now an increasing concave
continuous function U : (0,∞) → R which is called a utility function. We
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study first the following problem. Given a fixed time horizon T , initial wealth
W (0) = W and initial value of the process of economic factors z(0) = z,
find an investment strategy V = (π0, π1, . . . , πT−1) for which the value of
EW,z{U(W (T ))} is maximal, where by EW,z we denote the conditional ex-
pectation given initial values W and z of the wealth and economic factors
respectively. Let a measurable function νT : (0,∞)×D → R be such that

(1.3) U(νT (W, z)) = sup
V
EW,z{U(W (T ))}.

We would like to characterize the function νT and to find a recursive formula
for optimal investment strategies. For this purpose we introduce the following
system of Bellman equations:

(1.4)

νTT (W, z) := W,

νTT−1(W, z) := sup
πT−1∈S

U−1
(
Ez
{
U(νTT (W (πT−1 · ζ(T − 1)), z(1)))

})
,

νTT−2(W, z) := sup
πT−2∈S

U−1
(
Ez
{
U(νTT−1(W (πT−2 · ζ(T − 2)), z(1)))

})
,

· · ·
νT0 (W, z) := sup

π0∈S
U−1

(
Ez
{
U(νT1 (W (π0 · ζ(0)), z(1)))

})
,

where by Ez we denote the conditional expectation given initial value z of
the process (z(n)).

Theorem 1.1. We have

(1.5) νT0 (W, z) = sup
π0∈S

U−1
(
Ez
{

sup
π1∈S

Ez(1){ sup
π2∈S

Ez(1){. . . sup
πT−1∈S

Ez(1){U(W (πT−1 · ζ(T − 1)) . . . (π0 · ζ(0)))}}}
})

= νT (W, z).

Let π̂t : (0,∞) ×D → S be a selector, i.e. a Borel measurable function for
which the supremum in

(1.6) νTt (W, z) = sup
πt∈S

U−1
(
Ez
{
U(νTt+1(W (πt · ζ(t)), z(1)))

})
is attained. Then the control

V̂ = (π̂0(W, z), π̂1(W (1), z(1)), . . . , π̂T−1(W (T − 1), z(T − 1)))

is optimal for (1.3).

Proof. Notice first that since U−1 is increasing we are allowed to change
the order of the sup and U−1. Therefore substituting the value of νTT−1 in
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the definition of νTT−2 we obtain

νTT−2(W, z) = sup
πT−2∈S

U−1
(
Ez
{
U( sup

πT−1∈S

U−1(Ez(1){U(W (πT−1 · ζ(T − 1))(πT−2 · ζ(T − 2)))}))
})

= sup
πT−2∈S

U−1
(
Ez
{

sup
πT−1∈S

Ez(1){U(W (πT−1 · ζ(T − 1))(πT−2 · ζ(T − 2)))})
})
.

Hence by backward induction we obtain the first part of the formula (1.5).
Using standard arguments (see [3] or [8]) we see that νT0 = νT and that the
control V̂ is optimal.

The following assumption will be important:

(PH) for a bounded positive random variable X the mapping

t 7→ U−1Ez{U(tX)}

is positively homogeneous, i.e. for t > 0 we have

U−1Ez{U(tX)} = tU−1Ez{U(X)}.

Consider now the following system of Bellman equations:

(1.7)

ν̄TT−1(z) := sup
πT−1∈S

U−1
(
Ez{U((πT−1 · ζ(T − 1)))

})
ν̄TT−2(z) := sup

πT−2∈S
U−1

(
Ez
{
U((πT−2 · ζ(T − 2))ν̄TT−1(z(1)))

})
· · ·

ν̄T0 (z) := sup
π0∈S

U−1
(
Ez
{
U((π0 · ζ(0))ν̄T1 (z(1)))

})
.

Proposition 1.2. Under (PH) we have Wν̄T0 (z) = νT (W, z), which
means that optimal expected utility from terminal wealth is positively homo-
geneous with respect to the initial value of the wealth. Moreover, the control
V̄ = (π̄0(z), π̄1(z(1)), . . . , π̄T−1(z(T − 1))), where π̄t : D → S is a selector,
i.e. a Borel measurable function for which the supremum in

(1.8) ν̄Tt (z) := sup
πt∈S

U−1
(
Ez
{
U((πt · ζ(t))ν̄Tt+1(z(1)))

})
is attained, is optimal.

Proof. Using (PH) we have

ν̄TT−2(z) = sup
πT−2∈S

U−1
(
Ez
{

sup
πT−1∈S

(Ez(1){U((πT−2 · ζ(T − 2))(πT−1 · ζ(T − 1))ν̄TT−1(z(1)))})
})
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whence, as in the proof of Theorem 1.1, we obtain

ν̄T0 (z) = sup
π0∈S

U−1
(
Ez
{

sup
π1∈S

Ez(1){ sup
π2∈S

Ez(1){. . . sup
πT−1∈S

Ez(1){U((πT−1 · ζ(T − 1)) . . . (π0 · ζ(0)))}}}
})

and by (PH) again it coincides with (1/W )νT (W, z). The form of the optimal
strategy V̄ follows from [3] or [8].

We then see that the problem of finite horizon utility from terminal
wealth can be solved for any utility function, but under assumption (PH) the
problem can be simplified. A natural question is to evaluate optimal asymp-
totics, i.e. to find λ such that U(eλn) ∼ supV E{U(W (n))} for sufficiently
large n. This problem leads to a suitable infinite horizon Bellman equation
which has been studied in particular in [6] and [7], or [5] (see also references
therein) for power and logarithmic utility functions. The problem is to find
a unified general approach for any utility function. We formulate below such
a Bellman equation. From its form a certain positive homogeneity condition
(satisfied under (PH)) should be satisfied. As we show below in Section 3,
condition (PH) only holds for power or logarithmic utility functions, possibly
shifted by a constant.

2. Infinite horizon asymptotics Bellman equation. Consider an
infinite horizon problem. We want to find a continuous bounded function
ν : (0,∞)×D → R and a constant λ such that for W ∈ (0,∞), z ∈ D and
K ∈ (0,∞),

(2.1) Keν(W,z) = sup
π∈S

U−1(Ez{U((π · ζ(0))e−λKeν(W (π·ζ(0)),z(1)))}).

The form of this Bellman equation is justified by the following

Theorem 2.1. If there is a continuous bounded function ν : (0,∞) ×
D → R and a constant λ such that for any W ∈ (0,∞), z ∈ D and K ∈
(0,∞) equation (2.1) is satisfied then

(2.2) λ = sup
V

lim inf
T→∞

1
T

lnU−1(Ez{U(W (T ))}).

Furthermore, if π̃ : (0,∞) × D → S is a selector of the right hand side of
(2.1), then the control Ṽ = (π̃(W (i), z(i))) is optimal, i.e. for this control
the value of lim infT→∞ T−1 lnU−1(Ez{U(W (T ))}) is equal to λ.

Proof. Notice first that by (2.1) the mapping

(2.3) K 7→ sup
π∈S

U−1
(
Ez
{
U((π · ζ(0))e−λKeν(W (π·ζ(0)),z(1)))

})
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is positively homogeneous. Therefore iterating (2.1) we have

eν(W,z) = sup
π∈S

U−1
(
Ez
{
U((π · ζ(0))e−λ sup

π1∈S

U−1(Ez(1){U((π1 · ζ(1))e−λeν(W (π·ζ(0))(π1·ζ(1)),z(1)))})
})

= e−2λ sup
π∈S

U−1
(
Ez
{

sup
π1∈S

(Ez(1){U((π · ζ(0))(π1 · ζ(1))eν(W (π·ζ(0))(π1·ζ(1)),z(1)))})
})

and, by induction, we obtain

(2.4) eν(W,z) = e−nλ sup
π∈S

U−1
(
Ez
{

sup
π1∈S

Ez(1){. . . sup
πn−1∈S

Ez(1){U((π · ζ(0))
n−1∏
i=1

(πi · ζ(i))eν(W (π·ζ(0))
Qn−1

i=1 (πi·ζ(i)),z(1)))}}
})
.

By positive homogeneity again we have

(2.5) Weν(W,z) = e−nλ sup
π∈S

U−1
(
Ez
{

sup
π1∈S

Ez(1){. . . sup
πn−1∈S

Ez(1){U(W (n)eν(W (n),z(1)))}}
})

and

Weν(W,z)±‖ν‖ = e−nλ sup
π∈S

U−1
(
Ez
{

sup
π1∈S

Ez(1){. . . sup
πn−1∈S

Ez(1){U(W (n)eν(W (n),z(1))±‖ν‖)}}
})
,

where ‖ν‖ = supW∈(0,∞), z∈D |ν(W, z)|. Consequently,

(2.6) enλWeν(W,z)−‖ν‖ ≤ sup
π∈S

U−1
(
Ez
{

sup
π1∈S

Ez(1){. . . sup
πn−1∈S

Ez(1){U(W (n))}}
})
≤ enλWeν(W,z)+‖ν‖.

Taking the logarithm in (2.6), dividing by n and letting n → ∞ we obtain
(2.2). The optimality of Ṽ follows from standard arguments (see [3] or [8]).

Notice that under (PH) the equation (2.1) can be written in the form

eν(W,z)+λ = sup
π∈S

U−1
(
Ez
{
U((π · ζ(0))eν(W (π·ζ(0)),z(1)))

})
and ν, as in Proposition 1.1, may not depend on W . Consequently, we may
look for a solution to the equation

(2.7) eν(z)+λ = sup
π∈S

U−1
(
Ez
{
U((π · ζ(0))eν(z(1)))

})
.

By similar considerations to the proof of Theorem 2.1 we have
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Corollary 2.2. If there exists a continuous bounded function ν : D →
R and a constant λ for which the equation (2.7) is satisfied then

λ = sup
V

lnU−1(E{U(W (T ))})

and an optimal strategy is Ṽ = (π̃(z(i))), where π̃ is a selector for which the
supremum on the right hand side of (2.7) is attained.

Remark 2.3. If the random rate of return (1.1) does not depend on the
process of economic factors (z(n)), then the optimal strategy is stationary,
i.e. we choose the same portfolio strategy π at each time and it coincides with
the finite horizon optimal strategy given by a suitable version of Proposition
1.2. If we consider proportional transaction costs then as in [5] (see also [6]
and [7]) the solutions to Bellman equations depend on the current value of the
process π before a possible transaction. In Theorem 2.1 and Corollary 2.2 we
assume the existence of a bounded solution to the Bellman equations (2.1) or
(2.7). Sufficient conditions for the existence of solutions to Bellman equations
in particular cases of power and logarithmic utilities are formulated in [5]–[7].

3. Characterization of the class of utility functions satisfying
condition (PH). We first consider the case of condition (PH) within the
class of binomial random variables X taking one value, say x, with a fixed
probability a and a second value, say y, with probability 1− a.

Theorem 3.1. Let a ∈ (0, 1) be fixed. Suppose that U : (0,∞)→ R is a
continuous and strictly monotonic function. Then

(3.1) U−1(aU(tx) + (1− a)U(ty)) = tU−1(aU(x) + (1− a)U(y))

for all t, x, y > 0 if and only if there are A,B ∈ R, A 6= 0, such that either

U(t) = Atp +B, t > 0,

or

U(t) = A log t+B, t > 0.

Proof. By the assumption on U the set J := U((0,∞)) is an open inter-
val. For any u, v ∈ J there are unique x, y ∈ (0,∞) such that x = U−1(u),
y = U−1(v). Substituting these values in (3.1) and taking the value U of
both sides we obtain

(U ◦ tU−1)(au+ (1− a)v) = a(U ◦ tU−1)(u) + (1− a)(U ◦ tU−1)(v)

for t > 0, u, v ∈ J , which means that, for any fixed t > 0, the function
γ := U ◦ tU−1 satisfies the equation

γ(au+ (1− a)v) = aγ(u) + (1− a)γ(v)
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for u, v ∈ J. Applying the Dároczy–Páles identity (see [2])
u+ v

2
= a

(
a
u+ v

2
+ (1− a)v

)
+ (1− a)

(
au+ (1− a)

u+ v

2

)
we hence get

γ

(
u+ v

2

)
= γ

(
a

(
a
u+ v

2
+ (1− a)v

)
+ (1− a)

(
au+ (1− a)

u+ v

2

))
= aγ

(
a
u+ v

2
+ (1− a)v

)
+ (1− a)γ

(
au+ (1− a)

u+ v

2

)
= a2γ

(
u+ v

2

)
+ a(1− a)[γ(v) + γ(u)] + (1− a)2γ

(
u+ v

2

)
,

whence
γ

(
u+ v

2

)
=
γ(u) + γ(v)

2
, u, v ∈ J,

that is, γ = U ◦ tU−1 is Jensen affine in J. The continuity of U ◦ tU−1 implies
that, for any t > 0, it is an affine function in J (see [4]). Consequently, for
any t > 0, there are unique m(t), k(t) ∈ R such that

(3.2) (U ◦ tU−1)(u) = m(t)u+ k(t), t > 0, u ∈ J.
The continuity of U ◦ tU−1 implies that the functions m, k : (0,∞)→ R are
continuous. Since U ◦ tU−1 is strictly increasing, we hence get

m(t) > 0, t > 0.

From (3.2), for arbitrary s, t > 0 and u ∈ J we have

(U ◦ stU−1)(u) = [(U ◦ sU−1) ◦ (U ◦ tU−1)](u)
= m(s)[(U ◦ tU−1)u] + k(s)
= m(s)m(t)u+m(s)k(t) + k(s),

and obviously, by (3.2),

(U ◦ stU−1)(u) = m(st)u+ k(st), s, t > 0, u ∈ J.
Both these equations imply that

(3.3) m(st) = m(s)m(t), s, t > 0,

and

(3.4) k(st) = m(s)k(t) + k(s), s, t > 0.

The continuity of U , (3.3) and Corollary of Theorem 14.4 from [1] imply that

(3.5) m(t) = tp, t > 0,

for some p ∈ R.
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Consider first the case when p 6= 0. From (3.4) we get

k(st) = spk(t) + k(s), s, t > 0.

Hence, by symmetry of the right-hand side,

spk(t) + k(s) = tpk(s) + k(t), s, t > 0,

we obtain
k(t)
tp − 1

=
k(s)
sp − 1

, s, t > 0,

which, together with the continuity of k, implies that, for some c ∈ R,

(3.6) k(t) = c(tp − 1), t > 0.

From (3.2), (3.5) and (3.6) we get

(U ◦ tU−1)(u) = tpu+ c(tp − 1), t > 0, u ∈ J.
Setting here u = U(1) we get

U(t) = Atp +B, t > 0,

for some A,B ∈ R, A 6= 0.
In the remaining case, when p = 0, in view of (3.5),

(3.7) m(t) = 1, t > 0.

Hence, taking into account (3.4) and Theorem 14.4 from [1] we get

k(st) = k(t) + k(s), s, t > 0,

whence, by the continuity of k, we obtain

(3.8) k(t) = A log t, t > 0,

for some A ∈ R. Now from (3.2), (3.7) and (3.8) we obtain

(U ◦ tU−1)(u) = u+A log t, t > 0, u ∈ J.
As U ◦ tU−1 is increasing, this implies that A > 0. Taking here u = U(1) we
obtain

U(t) = A log t+B, t > 0,

for some B ∈ R. This completes the proof.

We have just shown that condition (PH) is satisfied for specific bino-
mial random variables if utility functions are shifted by a constant power or
logarithmic utilities. Almost immediately we therefore obtain the following
equivalence

Corollary 3.2. Let (Ω,Σ, P ) be a probability space such that there is
an A ∈ Σ with µ(A) ∈ (0, 1), and let U : (0,∞) → R be a continuous and
strictly monotonic function. The following two conditions are equivalent:

1. for any random variable X : Ω → (0,∞),

U−1(E{U(tX)}) = tU−1(E{U(X)}) t > 0,
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2. there are A,B ∈ R, A 6= 0, such that either
U(t) = Atp +B, t > 0, or U(t) = A log t+B, t > 0.

Proof. To prove that condition 1 implies condition 2, for any x, y > 0 take
the random variable X = xIA + yIΩ\A. with P (A) = a ∈ (0, 1). Condition 1
then gives
U−1(aU(tx) + (1− a)U(ty)) = tU−1(aU(x) + (1− a)U(y)), t, x, y > 0,

that is, equation (3.1). By Theorem 3.1 we obtain the desired implication.
Since the reverse implication is obvious, the proof is complete.
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