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UNBIASED ESTIMATION OF RELIABILITY FOR
TWO-PARAMETER EXPONENTIAL DISTRIBUTION

UNDER TIME CENSORED SAMPLING

Abstract. The problem considered is that of unbiased estimation of re-
liability for a two-parameter exponential distribution under time censored
sampling. We give necessary and sufficient conditions for the existence of
uniformly minimum variance unbiased estimator and also provide a char-
acterization of a complete class of unbiased estimators in situations where
unbiased estimators exist.

1. Introduction. Let the life-lengthX of an item follow a two-parameter
exponential distribution with unknown real parameters µ and λ (> 0), to
be denoted hereafter as exp(µ, λ) distribution, defined by the probability
function (p. f.)

(1) f(x |µ, λ) =
1
λ
e−(x−µ)/λ, x > µ.

An important characteristic of the life distribution is its reliability function
viz.

(2) R(t) = P (X > t) =
{

1, t ≤ µ,
e−(t−µ)/λ, t > µ,

and a problem of interest in reliability theory is to estimate R(t) at a given
finite time point t (> 0) through a life testing experiment.

In this paper we consider the problem of unbiased estimation of R(t)
under a time censored sampling plan wherein a random collection of n
identical items are put on test and the experiment is terminated after a
pre-assigned finite time T (> 0). For t ≤ T , an unbiased estimator of R(t)
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under time censored sampling based on a sufficient statistic was obtained
in Bartoszewicz [1] through Rao–Blackwellization of a simple unbiased esti-
mator

(3) R̂(t) = 1−D0/n

where D0 is the number of items failed up to time t. Sengupta [3] showed
that the condition t ≤ T is necessary as well for the existence of an unbi-
ased estimator and also obtained an alternative unbiased estimator of R(t)
based on the sufficient statistic for t ≤ T . Bartoszewicz [1] showed that the
sufficient statistic is not, however, complete except for n = 1, 2 (see also
Section 4) and as such the well known Lehmann–Scheffe theorem can not
generally be applied to obtain the uniformly minimum variance unbiased
estimator (UMVUE) of R (t) in situations where unbiased estimators exist.

Our main purpose in this article is to study the existence of the UMVUE
of R(t) under time censored sampling for an exp (µ, λ) distribution. It is
proved that for n > 2, there does not exist UMVUE of R(t) for t ≤ T . We
also provide a characterization of a complete class of unbiased estimators of
R(t) for values of t for which R(t) is unbiasedly estimable.

2. Preliminaries. For a time censored sample, the data consist of D
and X(0), X(1), . . . , X(D), where D is the number of items failed up to pre-
assigned time T (> 0) out of n test items, X(i) being the life-length of the
ith failed item, 1 ≤ i ≤ D and X(0) = 0. Let p = R(T ) and note that D
follows a binomial distribution with mean nq, q = 1− p. The joint p.f. of D
and X(0), X(1), . . . , X(D) is (see Bartoszewicz [1])

(4) p(d, x(0), x(1), . . . , x(d))

=


pn, d = 0,

d!
(
n

d

)
pn−dI(T > µ)

1
λd

e−
Pd

i=1(x(i)−µ)/λI(x(1) > µ),

1 ≤ d ≤ n, x(1) < · · · < x(d) ≤ T,

where I(A) is the indicator function of the set A. Clearly a sufficient statistic
is V = (D,ZD) where

(5) Zd =


X(d), d = 0, 1,(
X(1), Sd =

d∑
i=2

(X(i) −X(1))
)
, 2 ≤ d ≤ n.
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The p.f. of V is given by (see Bartoszewicz [1])

(6) p(d, zd) =


pn, d = 0,
npn−1qI(T > µ)p(x(1) | d), d = 1,(
n

d

)
pn−dqdI(T > µ)p(x(1) | d)p(sd | d, x(1)), 2 ≤ d ≤ n,

where for d ≥ 1,

(7) p(x(1) | d) = the conditional p.f. of X(1) given D = d

=
d

λqd
e−(x(1)−µ)/λ[e−(x(1)−µ)/λ − e−(T−µ)/λ]d−1, µ < x(1) ≤ T,

and for d ≥ 2,

(8) p(sd | d, x(1)) = the conditional p.f. of Sd given D = d and X(1) = x(1)

=
1

λd−1(1− e−(T−x(1))/λ)d−1
e−sd/λfd(sd, T−x(1)), 0<sd≤(d−1)(T−x(1)),

with

(9) fd(u,w) =
1

Γ (d− 1)

d−1∑
j=0

(−1)j
(
d− 1
j

)
(u− jw)d−2I(u > jw).

In particular, for d = 2, 3,

f2(u,w) = 1, 0 < u ≤ w,(10)

f3(u,w) =
{
u, 0 < u ≤ w,
2w − u, w < u ≤ 2w.

(11)

In view of sufficiency of V it is enough to restrict to estimators based on V
to study unbiased estimation of R(t). In the following lemma we obtain a
representation of the expectation of an estimator based on V which plays
an important role in the derivation of the results in the subsequent sections.

Lemma 1. Let g(V ) be an estimator based on the sufficient statistic V
with g(0, 0) = g(0). Then

(12) E[g(V )]

=


g(0) for µ ≥ T ,

g(0)pn +
n

λ

∞�

µ

e−n(x(1)−µ)/λg∗(x(1), λ)I(x(1) ≤ T ) dx(1) for µ < T ,
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where

(13) g∗(x(1), λ)

=
1

λn−1

∞�

0

e−s/λ
{
g(1, x(1))(s− (n− 1)(T − x(1)))n−2I(s > (n− 1)(T − x(1)))

Γ (n− 1)

+
n−1∑
d=2

(
n−1
d−1

)
ud(x(1), s)I(s > (n− d)(T − x(1)))

Γ (n− d)

+ g(n, x(1), s)fn(s, T − x(1))I(s ≤ (n− 1)(T − x(1)))
}
ds

and for 2 ≤ d ≤ n− 1,

(14) ud(x(1), s) =

s−(n−d)(T−x(1))�

0

g(d, x(1), sd)(s−sd−(n−d)(T−x(1)))
n−d−1fd(sd, T − x(1)) dsd,

(n− d)(T − x(1)) < s ≤ (n− 1)(T − x(1)),
n−d−1∑
c=0

acds
c, (n− 1)(T − x(1)) < s <∞.

with

(15) acd = (−1)n−d−c−1

(
n− d− 1

c

)

×
(d−1)(T−x(1))�

0

g(d, x(1), sd)(sd+(n−d)(T −x(1)))
n−d−c−1fd(sd, T −x(1)) dsd.

Proof. For µ ≥ T , we have D = 0 with probability 1 and hence (12) is
obvious. For µ < T , it can be readily verified using (6)–(8) that E[g(V )] is
of the form (12) where

g∗(x(1), λ) = e−(n−1)(T−x(1))/λg(1, x(1))(16)

+
n∑
d=2

(
n− 1
d− 1

)
1

λd − 1
e−(n−d)(T−x(1))/λ

×
(d−1)(T−x(1))�

0

g(d, x(1), sd)e
−sd/λfd(sd, T − x(1)) dsd.
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Now for 1 ≤ d ≤ n− 1,

(17) e−(n−d)(T−x(1))/λ

=
1

Γ (n− d)λn−d

∞�

0

e−y/λ(y−(n−d)(T−x(1)))
n−d−1I(y > (n−d)(T−x(1))) dy

so that for 2 ≤ d ≤ n− 1, the dth term in the sum on the RHS of (16), on
substituting s = y + sd, can be expressed as

(18)
(
n− 1
d− 1

)
1

Γ (n− d)λn−1

∞�

0

e−s/λud(x(1), s)I(s > (n− d)(T − x(1))) ds

where

(19)
ud(x(1), s) =

∞�

0

g(d, x(1), sd)(s− sd − (n− d)(T − x(1)))
n−d−1fd(sd, T − x(1))

× I(sd ≤ (d− 1)(T − x(1)))I(s− sd > (n− d)(T − x(1))) dsd.

Since

I(sd ≤ (d− 1)(T − x(1)))I(s− sd > (n− d)(T − x(1)))

=


I(sd ≤ (d− 1)(T − x(1))) for (n− 1)(T − x(1)) < s <∞,
I(s− sd > (n− d)(T − x(1)))

for (n− d)(T − x(1)) < s ≤ (n− 1)(T − x(1)),

it readily follows that the RHS of (19) is equal to the RHS of (14). Thus for
µ < T , (12) follows from (16)–(18).

3. Complete class of unbiased estimators. We recall that under
time censored sampling, R(t) is unbiasedly estimable if and only if t ≤ T .
For t ≤ T , we obtain a characterization of a complete class of unbiased
estimators of R(t) in the following theorem.

Theorem 1. For t ≤ T , g(V ) is an unbiased estimator of R(t) based on
the sufficient statistic V if and only if it satisfies the following:

g(0) = g(0, 0) = 1,(20)

g(1, x(1)) =

{ 1 if x(1) ≥ t,
n− 1
n

if x(1) < t,
(21)
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(22)
d∑
c=2

(−1)d−c
(
n−1
c−1

)(
n−c−1
d−c

)
Γ (n− c)

×
(c−1)(T−x(1))�

0

g(c, x(1), sc)(sc + (n− c)(T − x(1)))
d−cfc(sc, T − x(1)) dsc

=



(−1)d−2
(
n−2
d−1

)
(n− 1)d−1(T − x(1))d−1

Γ (n− 1)
if x(1) ≥ t,

n− 1
n

(−1)d−2
(
n−2
d−1

)
{(n− 1)d−1(T − x(1))d − 1− (t− x(1))d−1}

Γ (n− 1)
if x(1) < t,

for 2 ≤ d ≤ n − 1. For x(1) ≥ t, m(T − x(1)) < sn ≤ (m + 1)(T − x(1)),
m = 0, 1, . . . , n− 2,

(23)

g(n, x(1), sn)fn(sn, T − x(1)) +
n−1∑

d=n−m

(
n−1
d−1

)
Γ (n− d)

sn−(n−d)(T−x(1))�

0

g(d, x(1), sd)

× (sn − sd − (n− d)(T − x(1)))
n−d−1fd(sd, T − x(1)) dsd =

sn−2
n

Γ (n− 1)
.

For x(1) < t, 0 < sn ≤ t− x(1),

(24) g(n, x(1), sn) = 0.

For x(1) < t, max(t − x(1),m(T − x(1))) < sn ≤ (m + 1)(T − x(1)), m =
0, 1, . . . , n− 2,

(25)

g(n, x(1), sn)fn(sn, T −x(1)) +
n−1∑

d=n−m

(
n−1
d−1

)
Γ (n− d)

sn−(n−d)(T−x(1))�

0

g(d, x(1), sd)

× (sn − sd − (n− d)(T − x(1)))
n−d−1fd(sd, T − x(1)) dsd

=
n− 1
n

1
Γ (n− 1)

(sn − (t− x(1)))
n−2.

Further, a subclass of unbiased estimators g(V ) with

(26) g(V ) = 1 if X(1) ≥ t

is a complete class of unbiased estimators of R(t).
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Proof. Let t ≤ T and g(V ) be an unbiased estimator of R(t). Since
R(t) = 1 for µ ≥ T , (12) implies (20). Also since for µ < T ,

(27) R(t) = pn +
n

λ

∞�

µ

g0(x(1), λ)e−n(x(1)−µ)/λI(x(1) ≤ T ) dx(1)

with

(28) g0(x(1), λ) =

{ 1 for x(1) ≥ t,
n− 1
n

e−(t−x(1))/λ for x(1) < t,

and the distribution of the smallest order statistic is complete for a com-
plete random sample of size n from an exp(µ, λ) distribution with known
λ, we have, by (12) and (20), g∗(x(1), λ) = g0(x(1), λ) for all λ > 0, where
g∗(x(1), λ) is given by (13). Note that (28) can also be expressed as

(29) g0(x(1), λ)

=



1
Γ (n− 1)λn−1

∞�

0

e−s/λsn−2 ds for x(1) ≥ t,

n− 1
n

1
Γ (n− 1)λn−1

∞�

0

e−s/λ(s− (t− x(1)))
n−2I(s > t− x(1)) ds

for x(1) < t.

Hence, by the completeness of the exponential distribution, (13) and (29)
imply for 0 < s <∞,

(30)
n−1∑
d=2

(
n−1
d−1

)
ud(x(1), s)I(s > (n− d)(T − x(1)))

Γ (n− d)

+ g(n, x(1), s)fn(s, T − x(1))I(s ≤ (n− 1)(T − x(1)))

=
1

Γ (n− 1)
{w(x(1), s)

− g(1, x(1))(s− (n− 1)(T − x(1))
n−2I(s > (n− 1)(T − x(1))))}

with

(31) w(x(1), s) =

{
sn−2 for x(1) ≥ t,
n− 1
n

(s− (t− x(1)))n−2I(s > t− x(1)) for x(1) < t,
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and also for (n− 1)(T − x(1)) < s <∞,

(32)
n−1∑
d=2

(
n−1
d−1

)
Γ (n− d)

n−d−1∑
c=0

acds
c =

n−3∑
c=0

sc
n−c−1∑
d=2

(
n−1
d−1

)
acd

Γ (n− d)

=



1
Γ (n− 1)

{sn−2 − g(1, x(1))(s− (n− 1)(T − x(1)))
n−2} for x(1) ≥ t,

1
Γ (n− 1)

{
n−1
n

(s− (t− x(1)))
n−2−g(1, x(1))(s−(n−1)(T−x(1)))

n−2

}
for x(1) < t,

where ud(x(1), s) and acd are defined respectively by (14) and (15). Equating
the coefficients of sn−c−2, c = 0, 1, . . . , n − 2, on both sides of (32) we get
(21) and

(33)
c+1∑
d=2

(
n−1
d−1

)
a(n−c−2)d

Γ (n− d)

=


(−1)c−1

(
n−2
c

)
(n− 1)c(T − x(1))c

Γ (n− 1)
for x(1) ≥ t,

n− 1
n

(−1)c−1
(
n−2
c

)
{(n− 1)c(T − x(1))c − (t− x(1))c}

Γ (n− 1)
for x(1) < t,

which yields (22). Finally, (23)–(25) are obtained from (30). This completes
the proof of the first part of the theorem.

Now let g(V ) be an unbiased estimator of R(t) not satisfying (26) and
let

g′(V ) =
{ 1 if X(1) ≥ t,
g(V ) if X(1) < t.

It can then be verified using (12) and (16) that g′(V ) is an unbiased estimator
of R(t) satisfying (26) and further E[g(V )]2−E[g′(V )]2 = 0 for µ ≥ T , while
for µ < T ,

E[g(V )]2 − E[g′(V )]2 =
n

λ

T�

max(µ,t)

g∗∗(x(1), λ)e−n(x(1)−µ)/λ dx(1) ≥ 0

with strict inequality for µ < t where

g∗∗(x(1), λ) =
n∑
d=2

(
n− 1
d− 1

)
1

λd − 1
e−(n−d)(T−x(1))/λ

×
(d−1)(T−x(1))�

0

[g(d, x(1), sd)− 1]2e−sd/λfd(sd, T − x(1)) dsd.

Thus given any unbiased estimator of R(t) based on V not satisfying (26),
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there exists a better unbiased estimator based on V satisfying (26), and this
proves the second part of the theorem.

4. Existence of UMVUE. We finally study the existence of UMVUE
of R(t) for t ≤ T . The following characterization of the class of unbiased
estimators of zero based on the sufficient statistic V is useful for this purpose.

Theorem 2. An estimator h(V ) based on the sufficient statistic V is an
unbiased estimator of zero if and only if it satisfies the following:

h(0) = h(0, 0) = 0,(34)
h(1, x(1)) = 0,(35)

(36)
d∑
c=2

(−1)d−c
(
n−1
c−1

)(
n−c−1
d−c

)
Γ (n− c)

×
(c−1)(T−x(1))�

0

h(c, x(1), sc)(sc + (n− c)(T − x(1)))
d−cfc(sc, T − x(1)) dsc = 0

for 2 ≤ d ≤ n− 1,

h(n, x(1), sn) = 0 for 0 < sn ≤ T − x(1),(37)

h(n, x(1), sn)fn(sn, T − x(1))(38)

+
n−1∑

d=n−m

(
n−1
d−1

)
Γ (n− d)

×
sn−(n−d)(T−x(1))�

0

h(d, x(1), sd)(sn − sd − (n− d)(T − x(1)))
n−d−1

× fd(sd, T − x(1)) dsd = 0

for m(T − x(1)) < sn ≤ (m+ 1)(T − x(1)), m = 1, 2, . . . , n− 2.

The proof of the theorem is similar to that of Theorem 1. As an immedi-
ate corollary we have the following result also obtained by Bartoszewicz [1].

Corollary 1. The sufficient statistic V is complete if and only if n =
1, 2.

Proof. For n = 1, 2, the corollary follows trivially from (34), (35) and
(37). For n > 2, a non-trivial unbiased estimator of zero is h0(V ) satisfying
(34)–(38), with

(39) h0(2, x(1), s2) =
{−c, 0 < s2 ≤ (T − x(1))/2,
c, (T − x(1))/2 < s2 ≤ T − x(1),

where c is a non-zero real constant.
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Thus for n = 1, 2 and t ≤ T , R̂(t) defined in (3) is the unique unbiased
estimator based on V and is the UMVUE of R(t). To study the existence
of UMVUE for n > 2, we make use of the following result given in Rao ([2],
p. 317).

Theorem 3. An unbiased estimator g(V ) is the UMVUE of R(t) if and
only if

(40) E[g(V )h(V )] = 0 for every µ, λ

for every unbiased estimator h(V ) of zero.

In fact, in what follows we prove that for n > 2 and t ≤ T there does not
exist UMVUE of R(t). Not to obscure the essential steps of the reasoning,
we first prove some necessary results in the following lemmas.

Lemma 2. For t ≤ T , g(V ) is an unbiased estimator of R(t) satisfying
(40) for every unbiased estimator h(V ) of zero only if for x(1) < t,

(41) g(2, x(1), s2) =
n− k − 1

n

for n > 2 and further

(42) g(3, x(1), s3) =
(n− k − 1)(n− k − 2)

n(n− 2)

for n > 3, where k = k(x(1)) = (t− x(1))/(T − x(1)).

Proof. Let t ≤ T , n > 2 and g(V ) be an unbiased estimator of R(t) such
that h∗(V ) = g(V )h(V ) satisfies (34)–(38) with h replaced by h∗ for every
h(V ) satisfying (34)–(38). Then for x(1) < t and d = 2, (22) and (36) imply

(43)
T−x(1)�

0

g(2, x(1), s2)f2(s2, T − x(1)) ds2 =
(n− k − 1)(T − x(1))

n
.

and

(44)
T−x(1)�

0

h∗(2, x(1), s2)f2(s2, T − x(1)) ds2 = 0

for every h satisfying

(45)
T−x(1)�

0

h(2, x(1), s2)f2(s2, T − x(1)) ds2 = 0.

By the same arguments used to prove Theorem 3, (43)–(45) and (10) imply

g(2, x(1), s2) =
(n− k − 1)(T − x(1))

n
	T−x(1)

0 f2(s2, T − x(1)) ds2
=
n− k − 1

n
,
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and this proves (41). If further n > 3, then for t < x(1), d = 3 and
h(2, x(1), s2) = 0, (22) and (36) along with (41) imply

(46)
2(T−x(1))�

0

g(3, x(1), s3)f3(s3, T − x(1)) ds3

=
(n− k − 1)(n− k − 2)(T − x(1))2

n(n− 2)
and

(47)
2(T−x(1))�

0

h∗(3, x(1), s3)f3(s3, T − x(1)) ds3 = 0

for every h satisfying

(48)
2(T−x(1))�

0

h(3, x(1), s3)f3(s3, T − x(1)) ds3 = 0.

As before, (46)–(48) and (11) imply

g(3, x(1), s3) =
(n− k − 1)(n− k − 2)(T − x(1))2

n(n− 2)
	2(T−x(1))

0 f3(s3, T − x(1)) ds3

=
(n− k − 1)(n− k − 2)

n(n− 2)
,

which proves (42).

Lemma 3. For n > 2 and t ≤ T , an unbiased estimator g(V ) of R(t)
satisfying (41) and (42) does not satisfy (40) for h(V ) = h0(V ), where h0(V )
satisfies (34)–(39).

Proof. Let t ≤ T and suppose that an unbiased estimator g(V ) of R(t)
satisfying (41) and (42) also satisfies (40) for h(V ) = h0(V ).

Consider first n = 3. By (10), (11), (25) and (38), it then follows that
for x(1) < t and T − x(1) < s3 < 2(T − x(1)),

h0(3, x(1), s3) 6= 0,(49)

g(3, x(1), s3)h0(3, x(1), s3)f3(s3, T − x(1))(50)

=
(2− k)(2(T − x(1))− s3)

3
h0(3, x(1), s3),

g(3, x(1), s3)f3(s3, T − x(1)) =
2(1− k)(2(T − x(1))− s3)

3
.(51)

Clearly (49) and (50) contradict (51) and hence g(V ) cannot satisfy (40) for
h(V ) = h0(V ).
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Consider now n > 3 and assume x(1) < t. For d = 3, (36) then implies

3∑
c=2

(−1)3−c
(
n−1
c−1

)(
n−c−1

3−c
)

Γ (n− c)

(c−1)(T−x(1))�

0

h0(c, x(1), sc)

× g(c, x(1), sc)(sc + (n− c)(T − x(1)))
3−cfc(sc, T − x(1)) dsc

=
(n− k − 1)(n− k − 2)

n(n− 2)

3∑
c=2

(−1)3−c
(
n−1
c−1

)(
n−c−1

3−c
)

Γ (n− c)

×
(c−1)(T−x(1))�

0

h0(c, x(1), sc)g(c, x(1), sc)

× (sc + (n− c)(T − x(1)))
3−cfc(sc, T − x(1)) dsc

− k(n− 1)(n− 3)(n− k − 1)
n(n− 2)Γ (n− 2)

×
T−x(1)�

0

h0(c, x(1), sc)(s2 + (n− 2)(T − x(1)))f2(s2, T − x(1)) ds2

= − k(n− 1)(n− 3)(n− k − 1)
n(n− 2)Γ (n− 2)

×
T−x(1)�

0

h0(c, x(1), sc)(s2 + (n− 2)(T − x(1))) ds2,

which is not zero, and this contradicts (36) with h(V ) replaced by g(V )h0(V )
for d = 3. Hence, g(V ) can not satisfy (40) for h(V ) = h0(V ). This completes
the proof of the lemma.

It follows from Lemmas 2 and 3 that for n > 2 and t ≤ T , there does
not exist any unbiased estimator g(V ) of R(t) satisfying (40) for every un-
biased estimator h(V ) of zero, and hence by Theorem 3, there does not
exist UMVUE of R(t). The results obtained above are summarized in the
following theorem.

Theorem 4. For exp(µ, λ) distribution, there exists UMVUE of R(t)
under time censored sampling if and only if n = 1, 2 and t ≤ T . Also for
n = 1, 2 and t ≤ T , R̂(t) defined in (3) is the UMVUE of R(t).
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