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FINITE ELEMENT APPROXIMATIONS FOR
THE STATIONARY LARGE EDDY SIMULATION MODEL

Abstract. Some approximation procedures are presented for the system
of equations arising from the large eddy simulation of turbulent flows. Exis-
tence of solutions to the approximate problems is proved. Discrete solutions
generate a strongly convergent subsequence whose limit is a weak solution
of the original problem. To prove the convergence theorem we use Young
measures and related tools. We do not limit ourselves to divergence-free
functions and our results are in particular valid for finite element approxi-
mations where one usually does not use functions with divergence equal to
zero.

1. Introduction. We will consider steady turbulent flows of fluids in a
bounded set Ω in Rd (d = 2 or 3). Equations for the velocity v : Ω → Rd

and pressure p : Ω → R are given by

v · ∇v − divA(y,Dv)− ν∆v +∇q = f,

div v = 0,
(1.1)

with viscosity ν > 0 and the boundary condition

(1.2) v(x) = 0 on ∂Ω,

whereDv = 1
2(∇v+∇vT ) denotes the symmetric part of the gradient and y is

defined by y = (ṽ, Dṽ, ṽv, ˜|Dv|Dv). The tilde denotes convolution with some
smooth filter function, namely ṽ(x) =

	
Ω v(y)ϕδ(x − y)dy (see Subsection

1.2 for the definition of the filter function). The nonlinear and nonlocal term
A (the so-called turbulent term) is given by

(1.3) A(y,Dv) = c(y)|Dv|Dv
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with a function c continuous with respect to all variables and satisfying the
condition

(1.4) 0 < α ≤ c ≤ β <∞.

The equations come from the Large Eddy Simulation (LES) of turbulent
incompressible flows. The idea of this approach bases on decomposing the
quantities which describe the flow (velocity, pressure, body forces) into two
parts: one part containing the large flow structures (large scales) and the
remainder containing the small scales. In LES, the large flow structures are
defined by averaging the velocity, pressure, etc. in space. A usual way is to
define the spatial average by convolving these quantities with an appropriate
filter function with a filter width δ > 0. This filter function should filter out
the small scale structures, of size smaller than O(δ). In LES only large flow
structures are computed accurately.

This approach makes sense in applications. Usually, the behaviour of
large eddies is important and more significant than all the small eddies.
However, prediction of the behaviour of large eddies is not possible without
taking into account the interaction coming from the small eddies.

The derivation of the equations for the large scales is now rather clear.
First we convolve the Navier–Stokes equations with some function (filter).
This leads to the so-called space-averaged Navier–Stokes equations. To ob-
tain equations for the large scales quantities we add a constitutive relation
modeling the contribution of small structures into the flow. Different types
of modeling are studied; for details see [9] or [11]. In this paper we consider
a slight generalization of the Germano model where the turbulent term is
defined by (1.3) with assumptions (1.4). This leads to the equations (1.1).
We refer to [7] for more details on the derivation of the model.

In [5] existence, convergence and error estimate for approximate solutions
to the Smagorinsky–Ladyzhenskaya model were studied. One can consider
this model as a simplification of the Germano model, namely the Germano
model with constant and positive function c; see [9] for details. Unfortu-
nately, the methods proposed are not sufficient when an additional nonlocal
and nonlinear term, namely the dependence of the function c on y, occurs.

In this paper we present and analyse some approximation procedures for
(1.1). In contrast to [8] we do not limit ourselves to divergence-free function
spaces. Our results are in particular valid for finite element approximations
where one usually does not use functions with divergence equal to zero.

1.1. Numerical motivation. The ideal approach is to compute a nu-
merical approximation of the solution of the Navier–Stokes equations di-
rectly by using some finite element approximations. This approach, called
direct numerical simulation (DNS), tries to solve the Navier–Stokes equa-
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tions in such a way that all persisting eddies are resolved. If the Reynolds
number Re of the flow becomes very large, small flow structure will develop.
Using the Kolmogorov law (see [2]) one can estimate the number of mesh
cells needed to capture all persisting eddies. Such calculations show that
DNS is possible on present day computers only to very limited values of the
Reynolds number. Another difficulty for a DNS is that the boundary must
have the precision which is required by the smallest scales of the flow. For
real applications like geophysical flows it seems to be impossible to obtain
precise boundary data. The impossibility of prescribing precise initial and
boundary conditions causes the resulting flow to have random character.
Thus DNS is not feasible for most turbulent flows.

1.2. Filtering technique. We will assume that every filter function ϕδ
satisfies the following conditions:

1. ϕδ is a nonnegative C∞-function of compact support contained in Ω,
2. the filter width δ is a positive function that depends on x and Ω,

namely δ(x) = dist(x, ∂Ω),
3. the support of ϕδ shrinks to a one-point set near the boundary,
4. the mass of the filter remains 1.

To be more precise, let ϕ ∈ C∞0 (Ω) be nonnegative such that
	
Ω ϕ(y) dy = 1,

ϕ(x) = ϕ(−x). Then we define the filter ϕδ(x) by

ϕδ(x)(y) =
1

δ(x)3
ϕ

(
y

δ(x)

)
and the filtering is defined by

ṽ(x) =
�

Ω

v(y)ϕδ(x)(x− y) dy.

For brevity, we will usually write ϕδ instead of ϕδ(x) but throughout this
paper we assume that δ depends on x.

For applications of filters with nonuniform filter width in numerical anal-
ysis we refer to [14].

Remark. Conditions 1–4 above imply that the filter functions tend to
Dirac δ-distributions on the boundary in the sense that

lim
δ(x)→0

�

Ω

v(y)ϕδ(x)(x− y) dy = v(x).

1.3. Function spaces and notation. This section sets the notation
used in the paper and describes the function spaces employed. The notation
used is standard for the most part. The Lp(Ω) norm is explicitly denoted
as ‖ · ‖Lp(Ω). The Sobolev spaces W k,p(Ω) are defined in the usual way [1].
The associated norm is denoted by ‖·‖Wk,p(Ω). The space L2(Ω) is a Hilbert
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space with inner product and norm

(u, v) :=
�

Ω

u · v dx, ‖u‖L2 := (u, u)1/2 for u, v ∈ L2(Ω).

L2
0(Ω) denotes the space of functions in L2(Ω) with mean zero,

L2
0(Ω) :=

{
u ∈ L2(Ω) :

�

Ω

u dx = 0
}
.

For simplicity, the domain Ω is sometimes omitted (e.g., L2(Ω) = L2) and
function spaces for vector-valued functions are denoted in the same way as
function spaces for scalar functions.

Now we introduce some nonstandard function spaces used in the paper.
By D(Ω) we denote the space of all C∞-functions with compact support in
Ω with values in Rd (d = 2 or 3). Let us define

V := {u : u ∈ D(Ω),div u = 0},

V := completion of V in the norm ‖u‖V =
( �
Ω

|Du|3 dx
)1/3

,

V ′ := the dual space of V.

The duality pairing between V and V ′ will be denoted by 〈·, ·〉.

1.4. Weak solutions. In [8] the following existence theorem was proved
(which we will also use as the definition of a weak solution to (1.1)):

Theorem 1.1. Given f ∈ V ′ there exists a weak solution to the station-
ary problem (1.1), i.e. the equation�

Ω

(v · ∇v · φ+A(y,Dv) ·Dφ+ ν∇v · ∇φ− f · φ) dx = 0

is satisfied for all φ ∈ V.
It will be useful to introduce the trilinear form

(1.5) b(u, v, w) :=
�

Ω

(u · ∇v · w) dx

defined for u, v, w ∈ V.

2. Young measure tools. For the convenience of the reader we collect
below all the necessary and non-standard tools concerning Young measures
used in the proof of Theorem 5.1 below. For more details, definitions and
proofs, we refer the reader to Chapter 3 in [10].

Lemma 2.1. Suppose that a sequence of maps zj : Ω → Rd generates
a Young measure ν. Let F : Ω × Rd → R be a Carathéodory function (i.e.
measurable in the first argument and continuous in the second). Moreover
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assume that the sequence of the negative parts F−(x, zj(x)) is weakly rela-
tively compact in L1(Ω). Then

lim inf
j→∞

�

Ω

F (x, zj(x)) dx ≥
�

Ω

�

Rd

F (x, λ) dνx(λ) dx.

If, in addition, the sequence of functions x 7→ |F |(x, zj(x)) is weakly rela-
tively compact in L1(Ω), then

(2.6) F (·, zj(·)) ⇀
�

Rd

F (x, λ) dνx(λ) in L1(Ω).

Remark. The second part of the above theorem can be easily extended
to vector-valued functions F .

Lemma 2.2. Let uj : Ω → Rd and vj : Ω → Rd be measurable and
suppose that uj → u a.e. while vj generates a Young measure ν. Then the
sequence of pairs (uj , vj) : Ω → Rd+d‘ generates the Young measures x 7→
δu(x) ⊗ νx.

Lemma 2.3. Suppose that a sequence zj of measurable functions from Ω
to Rd generates a Young measure ν : Ω →M(Rd). Then

(2.7) zj → z in measure if and only if νx = δz(x) a.e.

3. Discretization. Since we are particularly interested in finite element
approximations let us introduce some typical assumptions that are used in
this type of approximation.

For simplicity we assume that Ω is a polygonal domain and a regular
and admissible finite-element triangulation Kh is given (see Definition 5.1
in [3]), where h > 0 is a discretization parameter that tends to zero.

Restriction to admissible and regular triangulations is not crucial. It
guarantees the existence of finite-dimensional spaces which we will use for
finite-element approximation and it will also allow us to omit some technical
difficulties.

Next we define two finite-dimensional spaces

Xh ⊂W 1,3
0 and P h ⊂ L2

0

such that
⋃
h↓0X

h is dense in W 1,3
0 and

⋃
h↓0 P

h is dense in L2
0. We will

use these spaces to seek for an approximate solution (velocity and pressure
respectively).

We will assume that XK , the set of restrictions of the functions in Xh

to a single simplex K in the triangulation, is a subset of the set containing
all the polynomials defined on K of degree at most l (l is a fixed integer).
Recently a very popular example of a finite-element function space satisfying
the above conditions is the space consisting of Taylor–Hood elements (see
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[4] for details). Other examples of finite-dimensional function spaces defined
on regular and admissible triangulations can be found in [3] and [4].

Let us also define a subspace V h of Xh by

V h := {vh ∈ Xh : (qh,div vh) = 0, ∀qh ∈ P h}
with the corresponding norm

‖u‖V h := ‖∇u‖L3 .

We assume that V h is nonempty. Working in this subspace will allow us to
simplify our approximation problem. Note that most often V h 6⊂ V. Thus,
we need an extension of the trilinear form b(u, v, w) of the following form.
For u, v, w ∈W 1,3,

(3.8) b(u, v, w) :=
1
2

�

Ω

(u · ∇v · w − u · ∇w · v) dx.

By direct calculation, we can see that if u, v, w ∈ V, then (3.8) gives

(3.9) b(u, v, w) :=
�

Ω

(u · ∇v · w) dx,

which coincides with the original definition (1.5). Hence the extension is
well defined. The extension above enables us to pursue the discussion in the
finite-dimensional subspace V h without losing some symmetry properties.

Now we approximate (1.1) by the following discrete problem:

(LPh) Find a pair (uh, ph) ∈ Xh × P h such that

(A(yh, Duh), Dwh) + b(uh, uh, wh) + ν(∇uh,∇wh)− (ph,divwh) = (f, wh),

(qh, div uh) = 0,

(3.10)

for all wh ∈ Xh, and qh ∈ P h.
Next we formulate another problem in V h associated with (LPh), which

(without loss of generality) will simplify our considerations:

(LQh) Find uh ∈ V h such that for all wh ∈ V h:

(3.11) (A(yh, Duh), Dwh) + b(uh, uh, wh) + ν(∇uh,∇wh) = (f, wh).

In our further discussion we will concentrate only on the (LQh) problem.
We assume that the so-called inf-sup condition is satisfied.

Definition 3.1. The pair of finite-dimensional subspaces Xh and P h

satisfies the inf-sup condition if there exists a constant β > 0, independent
of h, such that

inf
q∈Ph, q 6=0

sup
v∈Xh, v 6=0

(div v, q)
‖q‖L2‖∇v‖L2

≥ β.
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The inf-sup condition guarantees that for a given solution uh to (LQh),
there exists ph such that (uh, ph) satisfies (LPh). See [4] for details.

4. Existence of the solution to the discrete problem. The fol-
lowing result is a consequence of the Brouwer fixed point theorem (see e.g.
[6]).

Theorem 4.1. For every fixed h problem (LQh) has at least one solution
in V h. Moreover, if uh is a solution, then

(4.12)
k

2
‖uh‖3V h + ν‖∇uh‖2L2 ≤ K‖f‖(V h)′

for some positive constants K and k.

Proof. First we will prove the existence. Let P : V h → V h be defined by

[P (v), w] =
�

Ω

c(y)|Dv|Dv ·Dwdx(4.13)

+ ν(∇v,∇w) + b(v, v, w)− 〈f, w〉 ∀ v, w ∈ V h.

Taking w = v in (4.13), using the properties of c and the Korn inequality,
we obtain

[P (v), v] = ν‖∇v‖2L2(Ω) +
�

Ω

c(y)|Dv|3 dx− 〈f, v〉

≥ ν‖∇v‖2L2(Ω) + α
�

Ω

|Dv|3 dx− ‖f‖(V h)′‖v‖V h

≥ ν‖∇v‖2L2(Ω) + k‖v‖3W 1,3(Ω) − ‖f‖(V h)′‖v‖V h

≥ ν‖∇v‖2L2(Ω) + ‖v‖V h(k‖v‖2V h − ‖f‖(V h)′).

Thus
[P (v), v] > 0 for ‖v‖V h ≤ K

where K > (‖f‖(V h)′/k)1/2. Therefore there exists a vh such that P (vh) = 0.
Now we can prove the energy estimate (4.12). Without loss of generality

we can assume that dim(V h) = n. Let {ωhi }ni=1 be a basis of V h. Then the
solution to (LQh) is defined by

(4.14) uh(x) =
n∑
i=1

λhi ω
h
i , λhi ∈ R,

where vh ∈ V h = span {ωh1 , . . . , ωhn} solves the system of equations

(4.15) (A(yh, Duh), Dωhi ) + b(uh, uh, ωhi ) + ν(∇uh,∇ωhi ) = (f, ωhi )

for i = 1, . . . , n. Multiplying (4.15) by λhh and summing over i yields

(4.16) (A(yh, Duh), Duh) + ν(∇uh,∇uh) = (f, uh).

This immediately leads to the estimate (4.12).
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5. Convergence theorem. Throughout this section we will not use
subsequence indices even if a certain property, particularly convergence,
holds only for a subsequence.

Theorem 5.1. Assume v is a weak solution to (1.1) and uh solves
(LQh). Then there exists a subsequence of uh such that

(5.17) lim
h→0
‖v − uh‖V h = 0.

Before proving Theorem 5.1 note that y ∈ Rd×Sd×Sd×Sd and Dv ∈ Sd
where Sd denotes the set of symmetric matrices in Rd×d. Noting that Sd ⊂
Rd2 we see that A is a mapping from R2d+4d2 to Rd2 . For simplicity we set
m = 2d+ 4d2 and n = d2. Now we can turn to the proof of Theorem 5.1.

Proof. Due to the energy estimate (4.12) it follows that there exists
u ∈ V such that

(5.18) uh ⇀ u in V,

which implies that there exist Ā and χ such that

(5.19)

uh → u in Lq(Ω) for 1 ≤ q <∞,
b(uh, uh, φ)→ b(u, u, φ) for all φ ∈W 1,3,

A(yh, Duh) ⇀ Ā in L3/2(Ω),

|Duh|Duh ⇀ χ in L3/2(Ω).

Using the properties of convolution one can show (see Appendix for details)
that

(5.20) yh → y in L∞(Ω)

where yh = (ũh, Dũh, ũhuh, ˜|Duh|Duh) and ȳ = (ũ, Dũ, ũu, χ̃). Now, letting
h↘ 0 in (LQh) we obtain

(5.21) b(u, u, φ) +
�

Ω

Ā ·Dφdx+ ν(∇u,∇φ) = 〈f, φ〉.

We claim that u solves (1.1). To prove it we will show that Ā = A(y,Du)
and

lim
h→0
‖u− uh‖V h = 0.

The function A(yh, Duh) ·Duh satisfies the inequality

A(yh, Duh) ·Duh ≥ α|Duh|3,

which ensures that the negative part of this function is equal to zero. Thus
the sequence A(yh, Duh) · Duh is certainly weakly relatively compact in
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L1(Ω). Applying Lemma 2.1 we conclude that

(5.22) lim sup
h→0

�

Ω

A(yh, Duh) ·Duh dx ≥
�

Ω

�

Rm×Rn

A(s, ξ) · ξdµx(s, ξ) dx

where µx is the Young measure generated by the sequence (yh, Duh). How-
ever, according to Lemma 2.2 we are able to characterize this Young measure
more precisely. Since

yh → y in L∞(Ω)

and Duh generates the Young measure νx, the Young measure µx generated
by this pair satisfies µx = δy(x) ⊗ νx. Therefore we can integrate

(5.23)
�

Ω

�

Rm×Rn

A(s, ξ) · ξdµx(s, ξ) dx =
�

Ω

�

Rn

A(y(x), ξ) · ξ dνx(ξ) dx.

In the same way we obtain

(5.24)
�

Ω

�

Rm×Rn

A(s, ξ) dµx(s, ξ) dx =
�

Ω

�

Rn

A(y(x), ξ) dνx(ξ) dx.

Since the sequence |A(yh, Duh)| (due to the energy estimate (4.12)) is
bounded in L3/2(Ω), it is weakly relatively compact in L1(Ω) and it fol-
lows that

(5.25) A(yh, Duh) ⇀ A in L3/2(Ω)

where

(5.26) A(x) =
�

Rn×Rm

A(s, ξ) dµx(s, ξ).

The approximate equation yields�

Ω

A(yh, Duh) ·Duh dx = −ν‖Duh‖2L2 +
�

Ω

fuh dx,

and thus due to the lower semicontinuity of the norm,

(5.27) lim sup
h→0

�

Ω

A(yh, Duh) ·Duh dx ≤ −ν‖Du‖2L2 +
�

Ω

fu dx.

Thus, combining (5.22)–(5.27) we obtain
�

Ω

�

Rn

A(y(x), ξ) dνx(ξ) ·Dudx (5.24)
=

�

Ω

�

Rn×Rm

A(s, ξ) dµx(s, ξ) ·Dudx

(5.26)
=

�

Ω

A ·Dudx

(5.27)

≥ lim sup
h→0

�

Ω

A(yh, Duh) ·Duh dx
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(5.22)

≥
�

Ω

�

Rm×Rn

A(s, ξ) · ξdµx(s, ξ) dx

(5.23)
=

�

Ω

�

Rn

A(y, ξ) · ξ dνx(ξ) dx,

and so

(5.28)
�

Ω

�

Rn

A(y(x), ξ) dνx(ξ) ·Dudx ≥
�

Ω

�

Rn

A(y, ξ) · ξ dνx(ξ) dx.

From the monotonicity of A in the last variable we can deduce that

(5.29)
�

Ω

�

Rn

H(ξ) dνx(ξ) dx ≥ 0,

where H is defined by

(5.30) H(ξ) := [A(y, ξ)−A(y,Du)] · [ξ −Du].

Simple calculations imply that�

Ω

�

Rn

H(ξ) dνx(ξ) dx =
�

Ω

�

Rn

A(y, ξ) · ξdνx(ξ) dx(5.31)

−
�

Ω

�

Rn

A(y, ξ)dνx(ξ) ·Dudx,

which together with (5.28) ensures that

(5.32)
�

Ω

�

Rn

H(ξ) dνx(ξ) dx ≤ 0.

Then (5.29) and (5.32) imply that
	
Rn H(ξ) dνx(ξ) = 0 for a.a. x ∈ Ω. More-

over, since νx ≥ 0 is a probability measure and H(ξ) is strictly monotone,
we have

(5.33) supp{νx}
a.e.= {Du(x)}.

Note that the single point on the right-hand side set is located a.e. at the
point Du(x), where Du is the weak limit of the sequence (Duh). Hence we
conclude that νx = δDu(x) a.e. A direct application of Lemma (2.3) shows
that

Duh → Du in measure.

Hence there exists a subsequence of (Duh) such that Duh → Du a.e. Using
the fact that νx = δDu(x) together with Lemma 2.1 and (5.27) yields

lim sup
h→0

�

Ω

A(yh, Duh) ·Duh dx ≤
�

Ω

A(y(x), Du) ·Dudx

≤ lim inf
h→0

�

Ω

A(yh, Duh) ·Duh dx.
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Hence we can set gh = A(yh, Duh) ·Duh, g = A(y,Du) ·Du and claim that

gh ≥ 0, g ∈ L1(Ω),
�

Ω

gh dx→
�

Ω

g, gh → g a.e. in Ω.

Noticing that

(5.34)
�

Ω

|gh − g| dx =
�

Ω

(gh − g) dx+ 2
�

{x : gh≤g}

max{g − gh, 0} dx

we conclude by Lebesgue’s Dominated Convergence Theorem that

A(yh, Duh) ·Duh → A(y,Du) ·Du in L1(Ω).

Thus by Vitali’s Theorem, A(yh, Duh) ·Duh is uniformly integrable. Due to
the coercivity condition, also the sequence |Duh|3 is uniformly integrable.
Using again Vitali’s Theorem yields

Duh → Du in L3(Ω).

We still have to prove that u solves (1.1). First, recall that

Duh
a.e.−→ Du

(the convergence may hold only for a subsequence). Hence

|Duh|Duh a.e.−→ |Du|Du,
which together with (5.19) implies that χ = |Du|Du a.e. in Ω. Thus y = ȳ
a.e. in Ω and also

c(yh)|Duh|Duh → c(y)|Du|Du a.e. in Ω.

The term c(yh)|Duh|Duh is bounded in L3/2(Ω). Thus we can conclude that

c(yh)|Duh|Duh ⇀ c(y)|Du|Du in L3/2(Ω),

which completes the proof.

6. Appendix. In the proof of the convergence theorem we used the fact
that

(6.35) yh → y in L∞(Ω).

In [12] and [13] analogous facts were proved for periodic boundary conditions
and for the time-dependent model respectively. In this paper we consider the
stationary case, we do not limit ourselves to periodic boundary conditions
and we also use a different filtering technique. For completeness we will
prove the convergence (6.35) although the reasoning is almost identical to
those presented in [12] and [13]. Let us start with the following lemma (we
use the notation introduced in the previous sections):

Lemma 6.1. Let the sequence (uh) converge weakly to v in V as h→ 0.
Then there exists χ ∈ L3/2(Ω) such that for h → 0 the following sequences
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converge almost everywhere in Ω:

ũh → ũ, ũhuh → ũu, D̃uh → D̃u.

We can extract a further subsequence of (uh) such that

˜|Duh|Duh → χ̃ a.e. in Ω.

Proof. Since the sequence uh is bounded in V , we also have Duh ⇀ Du
in L3(Ω) and uh ⇀ uh in L3(Ω), so that�

Ω

uhφdy →
�

Ω

uφ dy ∀φ ∈ L3/2(Ω).

We choose as test function φ(y) = ϕδ(x)(x − y) with parameter x ∈ Ω,
where ϕδ(x) is the filter. As the filter is a C∞-function of compact support,
φ(y) is in L3/2(Ω) unless the support is equal to one point and the filter
becomes a Dirac δ-distribution. But these are the points from the boundary
and therefore�

Ω

uh(y)ϕδ(x)(x− y)dy →
�

Ω

u(y)ϕδ(x)(x− y) dy for all x ∈ Ω,

which is equivalent to
ũh → ũ a.e. in Ω.

In the same way from the information on the symmetric part of the gradients
we conclude that

D̃uh → D̃u a.e. in Ω.

To get the limit of the sequence ũhuh we deduce from the strong conver-
gence of the sequence uh in L2(Ω) also the strong convergence of uhuh to
uu in L1(Ω). Of course strong convergence implies weak convergence; thus
analogous arguments yield

ũhuh → ũu a.e. in Ω.

Since Duh is bounded in L3(Ω), we conclude that |Duh|Duh is bounded in
L3/2(Ω); thus, for a subsequence,

|Duh|Duh ⇀ χ in L3/2(Ω).

Then again for the filtered terms we have

˜|Duh|Duh → χ̃ a.e. in Ω.

Now the convergence (6.35) follows immediately.
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