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ESTIMATION OF THE SIZE
OF A CLOSED POPULATION

Abstract. The problem considered is that of estimation of the size (N)
of a closed population under three sampling schemes admitting unbiased
estimation of N . It is proved that for each of these schemes, the uniformly
minimum variance unbiased estimator (UMVUE) of N is inadmissible under
square error loss function. For the first scheme, the UMVUE is also the
maximum likelihood estimator (MLE) of N . For the second scheme and
a special case of the third, it is shown respectively that an MLE and an
estimator which differs from an MLE by at most one have uniformly smaller
mean square errors than the respective UMVUE’s.

1. Introduction. Capture-recapture sampling is widely used in ecol-
ogy and wild life studies to estimate the size (N) of a closed population and
associated demographic parameters such as survival rates. The basic proce-
dure is to initially catch, mark and release a sample of units into the target
population and then, assuming a thorough mixing of the marked units with
the population, to recatch marked and unmarked units randomly from the
population in one or more subsequent samples. Capture rates and marked to
unmarked ratios are the basis for parametric inference. We refer to Boswell
et al. (1988) and Seber (1982) for a comprehensive review of such sampling
and associated estimation procedures.

For unbiased estimation of N , a simple procedure (to be called proce-
dure 1) is to recatch and release units one by one until m (≤ k) of k initially
marked units are recaptured. If Sm is the number of trials required, then
Sm follows a negative binomial distribution with success probability k/N
and the uniformly minimum variance unbiased estimator (UMVUE) of N is
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obtained from the well known results on negative binomial distribution (see
Johnson and Kotz, 1969, p. 126) as N̂∗1 = (k/m)Sm.

If units are sampled one by one without being replaced into the popu-
lation until m (≤ k) of k initially marked units are recaptured (to be called
procedure 2), then Sm, the number of trials required, follows a negative
hypergeometric distribution and in this case the UMVUE of N is given by

N̂∗2 =
k + 1
m

Sm − 1

(see Johnson and Kotz, 1969, p. 157).
Another modification of the procedure 1 (to be called procedure 3) sug-

gested in the literature is as follows. Initially k population units are marked
and released into the target population and then units are sampled at ran-
dom and released one by one after marking an unmarked sampled unit
until m marked units are recaptured. The procedure is a special case of a
more general procedure suggested in Goodman (1953) and is termed capture-
mark-release-recapture (CMRR) sampling scheme. Uniformly minimum vari-
ance unbiased estimation of N for CMRR sampling had been discussed in
Goodman (1953), Darroch (1958) and Sengupta and De (1997) and maxi-
mum likelihood estimation had been studied in Darroch (1958) and Samuel
(1968) among others.

In this paper we consider the problem of estimation of N under the above
three sampling schemes for the special case of m = 1. We prove that for each
of these procedures, the UMVUE of N is inadmissible under square error
loss function. For procedure 1, the UMVUE is also the maximum likelihood
estimator (MLE) of N . For procedure 2 and for procedure 3 with k = 1, it
is shown respectively that an MLE and an estimator which differs from an
MLE by at most one have uniformly smaller mean square errors than the
respective UMVUE’s.

2. Inadmissibility of UMVUE. For procedure i, i = 1, 2, 3, let S
be the number of trials required to recapture the first marked unit and let
PiN (s) denote PN (S = s). It then follows that

P1N (s) =
(

1− k

N

)s−1 k

N
, s = 1, 2, . . . ,(2.1)

P2N (s) =
(

1− k

N

)(
1− k

N − 1

)
. . .

(
1− k

N − s+ 2

)
k

N − s+ 1
,(2.2)

s = 1, . . . , N − k + 1,

P3N (s) =
(

1− k

N

)(
1− k + 1

N

)
. . .

(
1− s+ k − 2

N

)
s+ k − 1

N
,(2.3)

s = 1, . . . , N − k + 1.
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The following lemmas are used in the derivation of the results that follow.

Lemma 2.1.
∞∑

s=j

P1N (s) =
N

k
P1N (j),(2.4)

N−k+1∑
s=j

P2N (s) =
N − j + 1

k
P2N (j),(2.5)

N−k+1∑
s=j

P3N (s) =
N

j + k − 1
P3N (j).(2.6)

Proof. It is easy to verify (2.4) from (2.1). Also note that (2.5) is trivially
true for j = N − k + 1. Hence, assuming that it is true for j + 1, we have

N−k+1∑
s=j

P2N (s) =
(

1− k

N

)
. . .

(
1− k

N − j + 2

)
×
{

k

N − j + 1
+
N − j
k

(
1− k

N − j + 1

)
k

N − j

}
=
(

1− k

N

)
. . .

(
1− k

N − j + 2

)
=
N − j + 1

k
P2N (j),

which proves (2.5). By similar arguments, (2.6) follows.

Lemma 2.2. Let EiN denote the expectation under procedure i, i =
1, 2, 3, for given N . Then for any given real-valued function f ,

kE1N

S∑
j=1

f(j) = NE1N [f(S)],(2.7)

kE2N

S∑
j=1

f(j) = E2N [(N − S + 1)f(S)],(2.8)

E3N

S∑
j=1

(j + k − 1)f(j) = NE3N [f(S)].(2.9)

Proof. By (2.4) we have

kE1N

S∑
j=1

f(j) = k

∞∑
s=1

P1N (s)
s∑

j=1

f(j) = k

∞∑
j=1

f(j)
∞∑

s=j

P1N (s)

= N

∞∑
j=1

f(j)P1N (j) = NE1N [f(S)],

which proves (2.7). Similarly, (2.8) and (2.9) follow, respectively, from (2.5)
and (2.6).
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In particular, for f(j) = 1 for all j, (2.7)–(2.9) yield EiN [N̂∗i ] = N ,
i = 1, 2, 3, where

N̂∗1 = kS,(2.10)

N̂∗2 = (k + 1)S − 1,(2.11)

N̂∗3 =
S+k−1∑

j=k

j =
(
S + k

2

)
−
(
k

2

)
.(2.12)

For m = 1, it is well known that S is complete sufficient for the parame-
ter space {N ≥ k}. Hence, it follows that N̂∗i is the UMVUE of N under
procedure i, i = 1, 2, 3.

For procedure i, i = 1, 2, 3, consider an alternative estimator N̂i = N̂i(S)
of N defined as

(2.13) N̂i = N̂∗i −X
where X = X(S) satisfies the following conditions:

X(s) = 0 for s = 1,(2.14)
X(s+ 1)−X(s) = 0 or 1 for s ≥ 1,(2.15)
X(s) > 0 for at least one s ≥ 2.(2.16)

In the theorem below we prove that any estimator of the form (2.13), though
negatively biased, dominates the UMVUE under square error loss function
for each of the three procedures. Thus, for m = 1 and for each i = 1, 2, 3,
the UMVUE of N for procedure i is inadmissible under square error loss
and we have a class of estimators dominating the UMVUE.

Theorem 2.3. For i = 1, 2, 3, EiN [N̂i−N ]2 ≤ EiN [N̂∗i −N ]2 with strict
inequality for all N ≥ N0, where for i = 1, N0 = k + 1 and for i = 2, 3,
N0 − k + 1 is the smallest integer s for which X(s) > 0.

Proof. Note that

EiN [N̂i −N ]2 = EiN [N̂∗i −X −N ]2(2.17)

= EiN [N̂∗i −N ]2 + EiN [X]2 − 2EiN [X(N̂∗i −N)].

Now, by (2.7)–(2.9), we have

NE1N [X] = kE1N

S∑
j=1

X(j) = kE1N

[
SX −

S−1∑
j=1

{X(S)−X(j)}
]

(2.18)

= E1N

[
N̂∗1X − k

S−1∑
j=1

{X(S)−X(j)}
]

= E1N

[
N̂∗1X − k

X∑
j=1

j
]

= E1N [N̂∗1X − kX(X + 1)/2],
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NE2N [X] = E2N [(S − 1)X + (N − S + 1)X](2.19)

= E2N

[
(S − 1)X + k

S∑
j=1

X(j)
]

= E2N

[
((k + 1)S − 1)X − k

S−1∑
j=1

{X(S)−X(j)}
]

= E2N

[
N̂∗2X − k

X∑
j=1

j
]

= E2N [N̂∗2X − kX(X + 1)/2],

NE3N [X] = E3N

S∑
j=1

(j + k − 1)X(j)(2.20)

= E3N

[
X

S∑
j=1

(j + k − 1)−
S∑

j=1

(j + k − 1)(X(S)−X(j))
]

= E3N

[
N̂∗3X −

S∑
j=1

(j + k − 1)(X(S)−X(j))
]

≤ E3N

[
N̂∗3X − k

S∑
j=1

(X(S)−X(j))
]

= E3N

[
N̂∗3X − k

X∑
j=1

j
]

= E3N [N̂∗3X − kX(X + 1)/2].

Hence, (2.17)–(2.20) imply that

EiN [N̂i −N ]2 − EiN [N̂∗i −N ]2 ≤ EiN [X2 − kX(X + 1)] ≤ 0, i = 1, 2, 3,

with strict inequality for all N ≥ N0, and this completes the proof of the
theorem.

3. Comparison between MLE and UMVUE. For m = 1, the like-
lihood functions of N given S = s under procedure i is Li(N) = PiN (s), i =
1, 2, 3, given by (2.1)–(2.3), where N ≥ k for procedure 1 and N ≥ s+ k− 1
for procedures 2 and 3. We note that for s = 1, Li(N) is decreasing in N
for each i = 1, 2, 3 so that the maximum likelihood estimate is k for s = 1.

For s > 1, it may be seen by direct differentiation that logL1(N) is
maximum for N = kS. Thus for procedure 1, the MLE is the same as the
UMVUE and hence inadmissible under square error loss.

It may also be verified that for k = 1, L2(N) is decreasing in N for every
s ≥ 1, and for k > 1, L2(N) is >, = or < L2(N − 1) according as N is
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<, = or > kS. Thus for procedure 2, an MLE of N is N̂MLE2 = kS, which
is unique for k = 1. Since N̂MLE2 is of the form (2.13) with X = S − 1, it
readily follows from Theorem 2.3 that for N > k, N̂MLE2 has a smaller mean
square error (mse) than the respective UMVUE N̂∗2 , while for N = k, the
two mse’s are equal. Following the proof of Theorem 2.3 it can be shown
that for k > 1, the mse of an alternative MLE N̂ ′MLE2 is also smaller than
that of N̂∗2 for N > k + 1 and is equal for N = k, k + 1, where N̂ ′MLE2 = k,
for S = 1 and N̂ ′MLE2 = kS − 1 for S > 1 though in this case (2.15) is not
satisfied for s = 1.

For procedure 3, MLE of N cannot be obtained in an explicit form.
Consider, for s > 1, the equation

(3.1)
d logL3(N)

dN
= 0 or

s+k−2∑
j=k

j

N − j
= 1

and note that the LHS of (3.1) is decreasing in N and tends to 0 as N tends
to∞. Also for N = s+k−1, the LHS of (3.1) is ≥ s+k−2 ≥ 1. Hence, (3.1)
has a unique solution, say N0 = N0(s), and logL3(N) is increasing in N for
N < N0 and is decreasing in N for N > N0. Thus for procedure 3, MLE of
N is N̂MLE3, where N̂MLE3 = k for s = 1, while for s > 1, N̂MLE3 = N0 if
N0 is an integer, and N̂MLE3 = [N0] or [N0] + 1 according as L3([N0]) is ≥
or ≤ L3([N0] + 1) if N0 is not an integer. Here [c] denotes the largest integer
not exceeding c. Clearly, for s = 2, N̂MLE3 = N0 = 2k.

In what follows we prove that, for k = 1, the estimator N̂3 defined as

(3.2) N̂3 =
{
k for s = 1,
[N0] for s > 1,

is of the form (2.13). The following lemma is useful for this purpose.

Lemma 3.1. For k = 1 and for every s > 1,

(3.3) k + s− 1 ≤ N0(s+ 1)−N0(s) ≤ k + s.

The proof of the lemma is given in the Appendix.
Let now [N0] = N0 − ν(s) and note that 0 ≤ ν(s) < 1 for every s > 1.

Also, by (2.12), N̂∗3 (s+ 1)− N̂∗3 (s) = s+ k. Hence writing X(s) = N̂∗3 (s)−
N̂3(s), by Lemma 3.1, it follows that for k = 1, X(1) = 0, X(2) = 1, and
for s > 1,

−1 ≤ (s+ k − 1)− (N0(s+ 1)−N0(s)) < X(s+ 1)−X(s)
= s+ k − (N0(s+ 1)−N0(s)) + (ν(s+ 1)− ν(s))
< s+ k + 1− (N0(s+ 1)−N0(s)) ≤ 2,

which means that X(s+1)−X(s) is 0 or 1 since it is an integer. This shows
that for k = 1, N̂3 is of the form (2.13) and it follows by Theorem 2.3 that
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for N > k, N̂3, which differs from MLE by at most one, has a smaller mse
than the respective UMVUE N̂∗3 , while for N = k, the two mse’s are equal.
We remark that an alternative estimator

N̂ ′3 =
{
k for s = 1,
[N0] + 1 for s > 1,

again differs from MLE by at most one and is of the form (2.13) for k = 1,
since, for s > 1, N̂ ′3(s + 1) − N̂ ′3(s) = N̂3(s + 1) − N̂3(s) and for s = 1, 2,
X = N̂∗3 − N̂ ′3 = 0. Numerical calculations reveal that for k = 1, an exact
MLE N̂MLE3 is also of the form (2.13). We further believe that Lemma 3.1
and hence the consequent results are true for general k ≥ 1. However, we
have not been able to prove this so far.

Appendix: Proof of Lemma 3.1. Not to obscure the essential steps of
the reasoning we first prove some necessary results in the following lemmas.

Lemma A.1. For k = 1 and s ( 6= 4) ≥ 2, N0(s) ≥ s2/2.

Proof. By the arguments used to obtain N̂MLE3, it is enough to show
that

(A.1)
s−1∑
j=1

j

s2/2− j
≥ 1

Now for s ≥ 6,
s−1∑
j=1

j

s2/2− j
=

2
s2

s−1∑
j=1

j

(
1− 2j

s2

)−1

≥ 2
s2

s−1∑
j=1

j

(
1 +

2j
s2

)

=
3s3 + s(s− 6) + 2

3s3
≥ 1.

Also (A.1) may be verified by direct calculations for s = 2, 3, 5, which com-
pletes the proof of the lemma.

Lemma A.2. For k = 1 and for every s > 1, N0(s) ≥ N1(s) where

N1 = N1(s) =
s+ k − 1
s+ k

s+k−2∑
j=k

j + (s+ k − 2).

Proof. For k = 1,

N1(s) =
s(s− 1)

2
+

(s− 1)(s+ 2)
2(s+ 1)

≤ s2

2
.

Hence, for s 6= 4, the lemma follows from Lemma A.1. For s = 4, direct
computation shows

∑s−1
j=1 j/(N1 − j) ≥ 1 and hence, as in the proof of

Lemma A.1, N0(s) ≥ N1(s). Thus the lemma follows.
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We now proceed to prove Lemma 3.1. As in the proof of Lemma A.1, it
is enough to show that

s+k−1∑
j=k

j

N0 + k + s− 1− j
≥ 1,(A.2)

s+k−1∑
j=k

j

N0 + k + s− j
≤ 1,(A.3)

where N0 is the solution of (3.1). Now

s+k−1∑
j=1

j

N0 + k + s− 1− j
=

s+k−2∑
j=k

j

N0 + k + s− 1− j
+
s+ k − 1

N0

= 1 +
s+k−2∑

j=k

j

{
1

N0 + k + s− 1− j
− 1
N0 − j

}
+
s+ k − 1

N0

= 1− (k + s− 1)
s+k−2∑

j=k

j

(N0 + k + s− 1− j)(N0 − j)
+
s+ k − 1

N0

≥ 1− s+ k − 1
N0 + 1

s+k−2∑
j=k

j

N0 − j
+
s+ k − 1

N0
= 1− s+ k − 1

N0 + 1
+
s+ k − 1

N0

≥ 1,

and this proves (A.2). Similarly we have, using the A.M.-H.M. inequality,

s+k−1∑
j=1

j

N0 + k + s− j

= 1 +
s+ k − 1
N0 + 1

− (k + s)
s+k−2∑

j=k

j

(N0 + k + s− j)(N0 − j)

≤ 1 +
s+ k − 1
N0 + 1

− (k + s)
[s+k−2∑

j=k

j(N0 + k + s− j)
N0 − j

]−1

= 1 +
s+ k − 1
N0 + 1

−
[s+k−2∑

j=k

j

k + s
+ 1
]−1

≤ 1

since, by Lemma A.2,

N0 + 1
s+ k − 1

≥
s+k−2∑

j=k

j

k + s
+ 1,

and this proves (A.3).
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