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SOME PROPERTIES OF THE
PROPORTIONAL ODDS MODEL

Abstract. Marshall and Olkin (1997) introduced a new family of distribu-
tions by adding a tilt parameter. The same family was obtained by Kirmani
and Gupta (2001) as the proportional odds model, which had been proposed
by Clayton (1974). In this paper, stochastic ordering of distributions from
this class and preservation of classes of life distributions by adding a pa-
rameter are obtained. The proportional odds family is also considered as a
family of weighted distributions.

1. Introduction and summary. Marshall and Olkin (1997) discussed
a method of introducing a parameter into a family of distributions to enhance
flexibility. Let F be a survival function. They defined the family of survival
functions

(1) G =
{
Gα : Gα(t) =

αF (t)
1− αF (t)

=
αF (t)

F (t) + αF (t)
;

t ∈ R, α > 0, α = 1− α
}
.

We will call (1) the Marshall–Olkin family. When the tilt parameter α is 1,
we have Gα = F . If F has a density f and a hazard rate rF , then

gα(t) =
αf(t)

[1− αF (t)]2

is the density function of the distribution Gα and

rα(t) =
1

1− αF (t)
rF (t), −∞ < t <∞,

is the hazard rate of Gα.
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Two particular cases were discussed by Marshall and Olkin (1997). The
case that F is an exponential distribution with parameter λ yields a new
two-parameter family of distributions which can sometimes be a competitor
to the Weibull and gamma families. In particular, they showed that the
failure rate function rα(t) = λ/(1−α exp{−λt}) is increasing for 1 < α <∞
and decreasing for 0 < α < 1. They also calculated the expectation, modal
value and Laplace transform. When F is the Weibull distribution, then Gα
is a new three-parameter distribution function and may be considered as a
competitor to the three-parameter Weibull distribution. Marshall and Olkin
(1997) also discussed a stability property of Gα.

It turns out that the family of distributions defined by Marshall and
Olkin (1997) is the same as in the proportional odds (PO) model, intro-
duced by Clayton (1974) and considered by Bennett (1983) and Kirmani
and Gupta (2001). The odds on surviving beyond time t are given by the
odds function:

θF (t) =
F (t)
F (t)

.

To introduce the proportional odds model we take two distribution functions
F and G. We will say that the survival time random variables which have
distributions F and G respectively satisfy the PO model with proportionality
constant α if

θG(t) = αθF (t).

This is equivalent to (1).
In this paper the results of Marshall and Olkin (1997) and Kirmani and

Gupta (2001) are generalized and extended. In Section 2 we set up notations
and terminology, and review Parzen’s (1979) approach to classification of
probability distributions. In Section 3 we obtain stochastic ordering of dis-
tributions from the family G. Proofs for the dispersive and convex ordering
are based on the concept of density-quantile function. That section contains
a discussion of preservation of classes of life distributions. In order to get our
results, we will also use properties of weighted distributions.

2. Preliminaries. Let X and Y be random variables with distribution
functions F and G respectively and let f , g be their respective density func-
tions, if they exist. Denote by F = 1−F the tail (survival function) of F , by
F−1(u) = inf{x : F (x) ≥ u}, u ∈ (0, 1), the quantile function and by F−1(0)
and F−1(1) the lower and upper bounds of the support SF of F , which is an
interval, and analogously for G. The function rF (x) = f(x)/F (x) is called
the hazard rate function of F and r̆F (x) = f(x)/F (x) is called the reversed
hazard rate function of F if f exists.
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We denote by G−1F the composition of G−1 and F (similarly for other
functions). Increasing is used in place of nondecreasing, and decreasing in
place of nonincreasing.

The distribution Fw(x) =
	x
−∞w(u) dF (u)/E[w(X)] is called the weighted

distribution associated with F , where w : R → R+ is a weight function for
which 0 < E[w(X)] <∞.

2.1. Density-quantile function. The function d
duF

−1(u)=1/fF−1(u)
is called the quantile-density of the distribution F , and fF−1(u) is the
density-quantile function. The distribution F is uniquely determined by the
function fF−1(u) up to a location parameter. Parzen (1979) and Schuster
(1984) used a density-quantile approach to the tail classification of prob-
ability laws into one of three types of tail behavior: short, medium, or
long. Parzen classifies the right-tail behavior of a probability function with
density f according to the value of the right-tail exponent p, defined by
fF−1(u) ∼ (1−u)p, i.e. fF−1(u)/(1−u)p tends to a finite constant as u tends
to 1. If f is differentiable, then p = limu→1−(1−u)(−f ′F−1(u)/[fF−1(u)]2).
This implies that

(2) fF−1(u) = L(u)(1− u)p,

where L(u) is a slowly varying function (svf) from the left at u = 1.
The parameter ranges p < 1, p = 1, and p > 1 correspond to short

tails (or limited type), medium tails (or exponential type), and long tails (or
Cauchy type) respectively.

2.2. Stochastic orders. We say that F is smaller than G in the likeli-
hood ratio order (F ≤lr G) if g(x)/f(x) is increasing. We say that F is smaller
than G in the hazard rate order (F ≤hr G) if G(x)/F (x) is increasing, or
equivalently rF (x) ≥ rG(x) for every x whenever F and G are absolutely
continuous. We say that F is smaller than G in the reversed hazard rate
order (F ≤rh G) if G(x)/F (x) is increasing, or equivalently r̆F (x) ≤ r̆G(x)
for every x whenever F and G are absolutely continuous. We say that F
is stochastically smaller than G (F ≤st G) if F (x) ≥ G(x) for every x, or
equivalently F (x) ≤ G(x) for every x. We say that F is smaller than G in
the dispersive order (F ≤disp G) if G−1F (x)− x is increasing.

Let now X and Y be positive random variables. We say that F is smaller
than G in the convex order (F ≤c G) if G−1F is convex on SF . We say that F
is smaller than G in the star order (F ≤∗ G) if G−1F is star-shaped on SF ,
i.e. G−1F (x)/x is increasing for x > 0. We say that F is smaller than G in
the superadditive order (F ≤su G) if G−1F is superadditive.

For more details (equivalent definitions) and properties of stochastic or-
ders see Shaked and Shanthikumar (2007) or Müller and Stoyan (2000).
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It is well known (see Shaked and Shanthikumar, 2007) that

(3)

F ≤lr G

��

+3 F ≤hr G

��
F ≤rh G +3 F ≤st G

F ≤c G⇒ F ≤∗ G⇒ F ≤su G.

The following lemma, which will be needed later, is a direct consequence
of the above definitions.

Lemma 1. Let F and G be absolutely continuous distributions with den-
sities f and g respectively and F (0) = G(0) = 0. Then:

(i) F ≤c G ⇔ fF−1(u)/gG−1(u) is increasing for u ∈ (0, 1).
(ii) F ≤disp G ⇔ fF−1(u)/gG−1(u) ≥ 1, u ∈ (0, 1).

2.3. Classes of life distributions. A distribution F is said to be IFR
[DFR] if logF is concave [convex] on SF . A distribution F with F (0) = 0
and SF is said to be IFRA [DFRA] if − logF (x)/x is increasing [decreasing]
on SF , or equivalently, F

α(x) ≤ [≥] F (αx) for every α ∈ (0, 1) and x ∈ SF .
A distribution F with SF = [a, b], −∞ ≤ a < b < ∞, is said to be IRFR
[DRFR] if logF is convex [concave] on SF . A distribution F with SF = [0,∞)
is said to be NBU [NWU] if F (x+y) ≤ [≥] F (x)F (y) for all x, y, x+y ∈ SF .
For more details and properties see Barlow and Proschan (1975) or Lai and
Xie (2006).

3. Results

3.1. The density-quantile function of the Marshall–Olkin family.
It is easy to compute the quantile function and density-quantile function of
the distribution Gα:

G−1
α (t) = F−1

(
tα

1− t+ tα

)
, t ∈ (0, 1),

gαG
−1
α (t) =

1
α

(1− t+ tα)2fF−1

(
tα

1− t+ tα

)
, t ∈ (0, 1).(4)

It is interesting to see a connection between the distributions F and Gα in
Parzen’s (1979) tail classification.

Lemma 2. The distributions Gα, α > 0, and F are of the same type in
Parzen’s classification.

Proof. From (2) and (4) we get

gαG
−1
α (t) =

1
α

(1− t+ tα)2−pL
(

tα

1− t+ tα

)
(1− t)p, t ∈ (0, 1).
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It is easy to check that the functions (1− t+ tα)2−p and L(tα/(1− t+ tα))
are s.v.f. at t = 1. Since the product of slowly varying functions is slowly
varying (see Seneta (1976)), we get gαG−1

α (t) = LG(t)(1 − t)p, where LG is
a s.v.f. The value of the right-tail exponent is the same for F and Gα, and
the lemma follows.

We will use quantile-density functions to study the dispersive and convex
ordering in the Marshall–Olkin family of distributions.

Consider now the generalized Pareto distribution F with the density-
quantile function of the form fF−1(t) = c(1 − t)p. For example, when p =
1 − 1/c, then F is the beta distribution with the density function f(x) =
c(1−x)c−1; when p = 1, then F is the exponential distribution with mean c;
when p = 1+1/c , then F is the classical Pareto distribution with parameter
1/c.

Theorem 1. Let fF−1(t) = c(1− t)p.

(i) If 0 < α < β < ∞ and p > 2, or 0 < β < α < ∞ and p < 2, then
Gα ≤c Gβ.

(ii) If 0 < α < β <∞ and p ≥ 1, then Gα ≤disp Gβ.

Proof. According to (4), compute

(5) ϕ(t) =
gαG

−1
α (t)

gβG
−1
β (t)

=
β[1 + t(β − 1)]p−2

α[1 + t(α− 1)]p−2
, t ∈ (0, 1).

Now, consider

d

dt
ϕ(t) =

β

α

(p− 2)(β − α)
[1 + (α− 1)t]2

[
1 + (β − 1)t
1 + (α− 1)t

]p−3

, t ∈ (0, 1).

The sign of this expression depends only on the sign of (p − 2)(β − α).
We find that d

dtϕ(t) is positive if either 0 < α < β < ∞ and p > 2, or
0 < β < α < ∞ and p < 2, and then ϕ(t) is increasing. Otherwise the
function ϕ(t) is decreasing. Combined with Lemma 1(i), this gives (i).

Next, it is easy to check that

lim
t→0

ϕ(t) =
β

α
and lim

t→1
ϕ(t) =

(
β

α

)p−1

.

Thus, ϕ(t) ≥ 1 if 0 < α < β < ∞ and p ≥ 1. Applying Lemma 1(ii)
completes the proof of (ii).

Remark 1. Let 0 < α < β <∞. The above theorem says that Gα ≤disp

Gβ for medium and long tailed distributions in Parzen’s classification. When
F is a short tailed distribution, then Gα and Gβ are not ordered with respect
to the dispersive order, but Gβ ≤c Gα.
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Remark 2. Putting β = 1 in Theorem 1, we obtain the dispersive and
convex order relations between the distributions F and Gα.

For another type of density-quantile function of the form fF−1(t) =
c
[

ln
(

1
1−t

)]b(1− t)p we have the following theorem:

Theorem 2. Let fF−1(t) = c
[

ln
(

1
1−t

)]b(1− t)p.
(i) If 0 < α < β <∞, p ≥ 2, and b > 0, then Gα ≤c Gβ.
(ii) If 0 < α < β <∞, p ≥ 2, and b ∈ (0, 1), then Gα ≤disp Gβ.

Proof. According to (4), compute

ϕ1(t) =
gαG

−1
α (t)

gβG
−1
β (t)

= ϕ(t) ·
[ ln

(
1 + α t

1−t
)

ln
(
1 + β t

1−t
)]b

, t ∈ (0, 1),

where ϕ is of the form (5). Now it is sufficient to show that

ψ(x) =
ln(1 + αx)
ln(1 + βx)

, x ∈ (0,∞),

is increasing. The function d
dxψ(x) is positive when

(6) (1 + βx)(1+βx)/β ≥ (1 + αx)(1+αx)/α.

To prove (6), it suffices to show that

h(y) = (1 + y)(1+y)/y, y ∈ (0,∞),

is increasing. But d
dyh(y) is positive when ln(1 + y) ≤ y, which completes

the proof of (i).
The proof of Theorem 2(ii) is similar to that of Theorem 1(ii).

The following example shows that for p < 2 and b > 0 we do not get a
convex ordering of the Marshall–Olkin family.

Example 1. Consider the Raileigh distribution with density function
f(t) = 2t exp{−t2}. Then fF−1(t) = 2[ln

(
1

1−t
)
]1/2(1− t) and hence

gαG
−1
α (t) =

2(1− t+ αt)
α

[
ln

(
1− t+ αt

1− t

)]1/2

(1− t).

Let now α = 2 and β = 3. Then

ϕ(t) =
g2G

−1
2 (t)

g3G
−1
3 (t)

=
3(1 + t)
2(1 + 2t)

[
ln

(
1 + t

1− t

)
ln

(
1− t
1 + 2t

)]1/2

.

We can compute that ϕ(0.1) = 1.148, ϕ(0.9) = 0.956, and ϕ(0.98) = 0.962,
so ϕ(t) is neither increasing nor decreasing.

Remark 3. Theorems 1 and 2 remain true if we replace the convex order
by the star or superadditive order.
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Consider now two distribution functions F1 and F2. Let

Gi,α(t) = αF i(t)/[1− αFi(t)], i = 1, 2.

Kirmani and Gupta (2001) showed that G−1
1,αG2,α(t) = F−1

1 F2(t), so it does
not depend on the parameter α. Therefore the dispersive, convex, star, super-
additive, and stochastic orders, which are defined by the function F−1

1 F2(t),
are not affected by adding the parameter. This can also be proved using the
quantile-density function. To do this, it is sufficient to compute

g1,αG
−1
1,α(t)

g2,αG
−1
2,α(t)

=
f1F

−1
1

(
tα

1−t+tα
)

f2F
−1
2

(
tα

1−t+tα
)

and next use Lemma 1.

3.2. Other stochastic orderings. The following theorem concerns the
likelihood ratio order in the Marshall–Olkin family.

Theorem 3. If F is an absolutely continuous distribution and 0 < α <
β <∞, then Gα ≤lr Gβ.

Proof. It is easy to compute
gβ(t)
gα(t)

=
β

α

[1− αF (t)]2

[1− βF (t)]2
.

Then
d

dt

[
gβ(t)
gα(t)

]
=

2β(β − α)f(t)[1− αF (t)]
α[1− βF (t)]3

.

The sign of this derivative only depends on the sign of β − α. Thus, since
0 < α < β <∞, the function gβ/gα is increasing, which completes the proof
by the definition of the likelihood ratio order.

It is obvious that G1 = F . The following results, which were partially
proved by Kirmani and Gupta (2001), are immediate consequences of (3)
and Theorem 3.

Corollary 1.

(i) If 0 < α < 1, then Gα ≤lr F .
(ii) If α ≥ 1, then F ≤lr Gα.

Corollary 2.

(i) If 0 < α < β <∞, then Gα ≤hr Gβ and Gα ≤rh Gβ.
(ii) If 0 < α < 1, then Gα ≤hr F and Gα ≤rh F .
(iii) If α ≥ 1, then F ≤hr Gα and F ≤rh Gα.

The distribution Gα may be considered as a weighted distribution with
weight function w(u) = 1/[1 − αF (u)]2, which is monotone. Many authors,
e.g. Rao (1985), Patil and Rao (1985), Jain and Nanda (1999), Bartoszewicz
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and Skolimowska (2006), studied weighted distributions. Thus all theorems
which were formulated for weighted distributions can be expressed in terms
of distributions of type Gα. For example, we have

Lemma 3 (Bartoszewicz and Skolimowska (2006)). F ≤lrG⇔Fw≤lrGw.

This immediately implies

Corollary 3. If Fi, i = 1, 2, are absolutely continuous distributions
and Gi,α(t) = αF i(t)/[1− αFi(t)], i = 1, 2, then F1 ≤lr F2 ⇔ G1,α ≤lr G2,α.

Consider the cumulative hazard function ΛF = − logF , and analogously
for Gα. Deshpande and Sengupta (1994) studied a partial ordering character-
ized as follows: Gα is said to be ageing faster than F (Gα ≺c F ) if and only
if ΛGαΛ

−1
F is convex on [0,∞). It is obvious that Λ−1

F (t) = F−1(1−exp{−t}).
We can compute

(7) ΛGαΛ
−1
F (t) = − log

αe−t

1− αe−t
.

The above function is independent of F . It is trivial that (7) is equal to
− log(GEα ), where GEα denotes the survival function of the Marshall–Olkin
distribution in the case when F is an exponential distribution. A simple
computation gives that (7) is convex when α > 1. Thus, we immediately get

Lemma 4. If α > [<] 1, then Gα ≺c [�c] F .

3.3. Preservation of classes of life distributions. Marshall and
Olkin (1997) proved that if F is an exponential distribution, then the distri-
bution Gα is NBU. This can be extended to general classes of distributions
which are IFR, IFRA, IRFR or NBU. Kirmani and Gupta (2001) proved
that if 1 < α <∞ and F is IFR, IFRA, or NBU then Gα is IFR, IFRA, or
NBU respectively, and analogously for 0 < α < 1 and the dual classes, DFR,
DFRA and NWU. First, this result can be extended to the case of IRFR (or
DRFR) distributions.

Theorem 4. Let F be absolutely continuous with F (0) = 0. If F is IRFR
[DRFR] and 1 < α <∞ [0 < α < 1], then Gα is IRFR [DRFR].

Proof. Let F be IRFR [DRFR]. Then r̆F is an increasing [decreasing]
function. The inverse hazard function of Gα is r̆α(t) = r̆F (t)α/[1 − αF (t)].
It is easy to see that the function α/[1 − αF (t)] is increasing when α > 1
and decreasing when α ∈ (0, 1), and thus the theorem follows.

The above theorem and the results of Kirmani and Gupta (2001) do not
cover all cases. The following examples show that using those results, in case
0 < α < 1 and F is IFR we can say nothing about Gα.

Example 2. Consider the Weibull distribution with survival function
F (t) = exp{−(λt)β}, t ≥ 0, β > 1, which is IFR. Theorem 6 of Kirmani and



Proportional odds model 255

Gupta (2001) shows that if 1 < α <∞, then Gα is IFR. Now, let 0 < α < 1.
Then the hazard rate of Gα, rα(t) = λββtβ−1/(1−α exp{−λt}β), is initially
increasing and eventually increasing, but there may be one interval where it
is decreasing (see Marshall and Olkin (1997)), thus Gα is neither IFR nor
DFR.

Example 3. Consider a distribution with survival function F (t) =
exp{−et}, which is IFR. Let 0 < α < 1. Then we have Gα(t) =
α exp{−et}/(1−α exp{−et}). After some calculation we find that the hazard
rate function of Gα is increasing for all t, and hence Gα is IFR.

In Example 2 one can also apply theorems on weighted distributions.
The following theorem on classes of life distributions is a reformulation of
Theorem 2 of Bartoszewicz and Skolimowska (2006):

Theorem 5.

(i) If 1 < α <∞ [0 < α < 1] and gα/F is decreasing [increasing ], then
Gα is DFR [IFR].

(ii) If 1 < α <∞ [0 < α < 1] and gα/F is decreasing [increasing ], then
Gα is DRFR [IRFR].

(iii) If gα/F , α > 0 is decreasing, then Gα is DRFR.
(iv) If gα/F , α > 0 is increasing, then Gα is IFR.

In order to get an interesting corollary, we need the following lemma:

Lemma 5 (Bartoszewicz (1985, 1997), Bagai, Kochar (1986)).

(i) If F ≤hr G and F or G is DFR, then F ≤disp G.
(ii) If F ≤hr G and F or G is IRFR, then G ≤disp F .

Lemma 5, Corollary 2, Theorem 4, and Theorem 6 of Kirmani and Gupta
(2001) imply

Corollary 4.

(i) If 0 < α < β < 1 and F is DFR, then Gα ≤disp Gβ.
(ii) If 1 < α < β <∞ and F is IRFR, then Gβ ≤disp Gα.
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