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EXISTENCE OF SOLUTIONS TO THE POISSON EQUATION
IN L2-WEIGHTED SPACES

Abstract. We consider the Poisson equation with the Dirichlet and the
Neumann boundary conditions in weighted Sobolev spaces. The weight is
a positive power of the distance to a distinguished plane. We prove the
existence of solutions in a suitably defined weighted space.

1. Introduction. We study the following boundary value problem for
the Poisson equation in weighted spaces:

(1.1)

−∆u = f in Ω,
u,x3|S∗ = 0,
u|S1 = 0,
u|S0 = 0,

where Ω ⊂ R3, ∂Ω = S0 ∪ S1 ∪ S∗ = S (see Fig. 1).

Fig. 1. Domain Ω
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Here, S0 is parallel and S1 and S∗ are perpendicular to the x3 axis, and
S1 meets the x3 axis at the point x3 = a, a <∞, while S∗ meets the x3 axis
at the point x3 = 0.

The problem arises as an auxiliary system in the analysis of the inflow-
outflow motion described by the Navier–Stokes equations and the aim of this
paper is to prepare tools to examine the NS equations. We want to use the
estimates derived here to remove some restrictions on the boundary inflow
for the Navier–Stokes system.

Let us consider the Navier–Stokes equations with slip boundary condi-
tions on S = S0 ∪ S1 ∪ S∗ with inflow on S∗ and outflow on S1. On S0 the
normal component of the velocity vanishes. The inflow-outflow problem is a
difficult and unclear problem for NS (see [L, Ch. 5] and [G, Vol. 2, Ch. 8].
Usually, such a result requires strong restrictions, for example in the proof
of global existence in [Z2] the inflow flux either must vanish or must be suffi-
ciently small in time. Our goal is to prove long time existence of solutions to
the Navier–Stokes equations without restrictions on the magnitude of the in-
flow flux. The first and most crucial step is to obtain a global estimate (with
nonvanishing inflow flux) for weak solutions. To this end, we homogenize the
problem in question by solutions of some elliptic systems where the function
η (see [L, Ch. 5, Sect. 4]) is used. The derivative of this function implies the
weight introduced in this paper. Moreover, to estimate the nonlinear terms
which correspond to v · ∇v, where v is the velocity of the fluid, we need an
Lp version, with p = 3, of Theorem 1 (see [RZ]).

To formulate the main result of this paper we introduce

Hk
µ(Ω) =

{
u : ‖u‖Hk

µ(Ω) =
(∑
|α|≤k

�

Ω

dx′ dx3 |Dα
xu|2x

2(µ+|α|−k)
3

)1/2
<∞

}
,

where k ∈ N0 = N ∪ {0}, µ ∈ R, α = (α1, α2, α3) is a multiindex, |α| =
α1 + α2 + α3, αi ∈ N0, i = 1, 2, 3, Dα

x = ∂α1
x1
∂α2
x2
∂α3
x3
. Moreover, we denote

L2,µ(Ω) = H0
µ(Ω).

Note, that xpµ3 , p ∈ (1,∞), is not a Muckenhoupt weight so the results
of Coifman–Fefferman [CF] cannot be applied.

Theorem 1. Assume that f ∈ L2,µ(Ω) can be expressed in the form
f = α,x3 with α = ãη(x3), ã|x3=0 = θ,(1.2)

where
(i) η(x3) is a smooth non-increasing function with compact support such

that 0 ≤ η ≤ 1 and η = 1 in a neighbourhood of x3 = 0,
(ii) θ ∈ H1(S∗),
(iii) ã is an extension of θ to x3 ≥ 0 such that

‖ã‖L∞(R+;H1(S∗)) ≤ c‖θ‖H1(S∗).
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Then a solution u of the problem (1.1) exists and satisfies
‖u− u(0)‖H2

µ(Ω) ≤ c(‖f‖L2,µ(Ω) + ‖θ‖H1(S∗)), µ ∈ (0, 1),(1.3)

where u(0) denotes u|x3=0.

Remark 1.1. The quantity u(0) ∈ H2(S∗) must be calculated indepen-
dently. To this end let us consider problem (1.1) and let G(x, y) be the Green
function to (1.1) of the form

G(x, y) =
ϑ(x, y)
|x− y|

+ g(x, y)

where ϑ(x, y) is a smooth function such that

ϑ(x, y) =
{

1 for |x− y| ≤ 1,
0 for |x− y| ≥ 2.

Then g(x, y) is a solution to the problem

−∆g = 2∇ 1
|x− y|

∇ϑ+
1

|x− y|
∆ϑ,

∂g

∂n

∣∣∣∣
S∗

= −∂n
ϑ

|x− y|
,

g|S0∪S1 = − ϑ

|x− y|
,

where y ∈ Ω. Then any solution to (1.1) can be expressed as

u(x) =
�

Ω

G(x, y)f(y) dy.

Since f = α,x3 (see (1.2)) we obtain

u(x) =
�

S∗

G(x, y′)α(y′) dy′ −
�

Ω

∂y3G(x, y)α(y) dy.

Using the form of the Green function we have

‖u(0)‖H2(S∗) ≤ c‖θ‖H1(S∗).

2. Estimates. Although the solution u can be expressed by the Green
function, we have to use another approach to show the properties of the
solution described in the main theorem. Namely, to prove Theorem 1 we
shall use local considerations.

Lemma 2.2. Assume that f ∈ L2,µ(Ω), µ ∈ [0, 1]. Then there exists a
solution to problem (1.1) such that

u′ = u− u(0) ∈ H1(Ω) ∩ L2,−µ(Ω)
and

‖u′‖H1(Ω) + ‖u′‖L2,−µ(Ω) ≤ c‖f ′‖L2,µ(Ω),(2.1)

where u(0) = u|x3=0 and f ′ = f +∆u(0).
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Proof. First we obtain an energy type estimate. We reformulate (1.1) as
follows:

(2.2)

−∆u′ = f ′ in Ω,
u′,x3
|S∗ = 0,

u′|S1 = 0,
u′|S0 = 0.

Multiplying (2.2)1 by u′, integrating by parts and using the boundary con-
dition (2.2)2 we have�

Ω

|∇u′|2 dx ≤
�

Ω

f ′u′ dx(2.3)

≤
( �
Ω

|f ′|2x2µ
3 dx

)1/2( �
Ω

|u′|2x−2µ
3 dx

)1/2
.

We calculate

u(x′, x3)− u(x′, s) =
x3�

s

∂s′u(x′, s′) ds′,

where x′ = (x1, x2). By the Hölder inequality

|u(x3)− u(s)|
|x3 − s|

≤
x3�

s

|∂s′u(x′, s′)|2 ds′.

Setting s = 0 and integrating the inequality over Ω′ = {x ∈ Ω : x3 = const ∈
[0, a]} we have

�

Ω′

|u(x3)− u(0)|
|x3|

dx′ ≤
�

Ω′

dx′
x3�

0

|∂s′u(x′, s′)|2 ds′.(2.4)

Now, we consider the second expression on the r.h.s. of (2.3). We obtain
�

Ω

|u′|2x−2µ
3 dx ≤

�

Ω′

dx′ sup
x3

|u(x′, x3)− u(0)|2

x3

a�

0

dx3

x2µ−1
3

≤ c
�

Ω′

a�

0

|∂x3u(x′, x3)|2 dx3

where we used (2.4) and µ < 1.
Summarizing, we have

(2.5)
�

Ω

|u′|2x−2µ
3 dx+

�

Ω

|∇u′|2 dx ≤ c
�

Ω

|f ′|2x2µ
3 dx, µ ∈ [0, 1].

The existence of weak solutions to problem (1.1) satisfying (2.5) now follows
from the Lax–Milgram theorem.
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To increase regularity of the weak solutions we consider problem (1.1)
locally. Let ζ = ζ(x′) be a smooth function from a partition of unity. Intro-
ducing functions ū = uζ, f̄ = fζ problem (1.1) takes the form

(2.6)
∆ū = 2∇u∇ζ + u∆ζ + f̄ ≡ g,
ū|∂ supp ζ∩{x3=a} = 0,

ū,x3 |∂ supp ζ∩{x3=0} = 0.

Suppose supp ζ ∩ S0 6= ∅. Assume that problem (2.6) is written in local
coordinates x = (x1, x2, x3) with origin in supp ζ∩S0. Now by using the local
mapping y = Φ(x) such that y3 = x3, we flatten the boundary supp ζ ∩ S0.
Assume that in the new coordinates y the flat boundary supp ζ ∩ S0 takes
the form y1 = 0. Let v(y) = ū(Φ−1(y)), h(y) = g(Φ−1(y)). Then problem
(2.6) takes the from

(2.7)

∇2
yv = ∇2

yv −∇2
Φv + h ≡ k,

v|y1=0 = 0,
v|y3=a = 0,
v,x3 |x3=0 = 0,

where ∇Φ = ∂y
∂x |x=Φ−1(y)∇y and v vanishes outside of supp ζ|x=Φ−1(y).

Let us consider the reflection with respect to y1 such that the reflected
function u satisfies

u(y1, y2, y3) = v(y1, y2, y3), y1 > 0,
u(y1, y2, y3) = v(−y1, y2, y3), y1 < 0.

After the above reflection problem (2.7) takes the form

∇2
yu = h̃ in R2 × (0, a),

u|y3=a = 0 on R2,

u,y3 |y3=0 = 0 on R2,

(2.8)

where u has a compact support with respect to y′.
If supp ζ ∩ S0 = ∅ we can extend problem (2.6) by zero with respect to

x′ = (x1, x2). Then problem (2.6) can also be expressed as (2.8).
Let us consider the Fourier transform

û(ξ, x3) =
�

R2

e−ix
′·ξu(x′, x3) dx′,

where ξ = (ξ1, ξ2), x′ · ξ = x1ξ1 + x2ξ2. Applying this transformation to
problem (2.8), where h̃ is replaced by f and y by x, we obtain, in the domain
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Ω̂ = {(x′, x3) : x′ ∈ R2, 0 ≤ x3 ≤ a}, the problem

−d
2û

dx2
3

+ ξ2û = f̂ ,

û|x3=a = 0,
û,x3 |x3=0 = 0.

(2.9)

We can solve this problem explicitly:

Lemma 2.3. Problem (2.9) has the solution

û = β0 cosh(|ξ|x3)−
x3�

0

cosh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ sinh(|ξ|x3)(2.10)

+
x3�

0

sinh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ cosh(|ξ|x3)

where

β0 =
a�

0

cosh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ
sinh(|ξ|a)
cosh(|ξ|a)

−
a�

0

sinh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ.(2.11)

Proof. General solutions of homogeneous equations (2.9)1 have the form

û = α sinh(|ξ|x3) + β cosh(|ξ|x3).(2.12)

We can find solutions to (2.9) by variation of constants. We have the following
equations for α(x3), β(x3):

dα

dx3
sinh(|ξ|x3) +

dβ

dx3
cosh(|ξ|x3) = 0,

dα

dx3
cosh(|ξ|x3) +

dβ

dx3
sinh(|ξ|x3) = − f̂

|ξ|
.

Solving this yields
dα

dx3
= −cosh(|ξ|x3)

|ξ|
f̂ ,

dβ

dx3
=

sinh(|ξ|x3)
|ξ|

f̂ .

Hence, we get

α = −
x3�

0

cosh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ, β =
x3�

0

sinh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ.

Using the formulas for α, β in (2.12) we postulate the general solution of (2.9)

û = α0 sinh(|ξ|x3)+β0 cosh(|ξ|x3)−
x3�

0

cosh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ sinh(|ξ|x3)(2.13)

+
x3�

0

sinh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ cosh(|ξ|x3).
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The boundary conditions (2.9)2-3 imply the following equations for α0 and β0:

α0 sinh(|ξ|a) + β0 cosh(|ξ|a)−
a�

0

cosh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ sinh(|ξ|a)

(2.14) +
a�

0

sinh(|ξ|τ)f̂(ξ, τ)
|ξ|

dτ cosh(|ξ|a) = 0,

−α0|ξ| = 0.

Solving (2.14) with respect to α0, β0 implies formula (2.11) with α0 = 0, and
inserting the result in the general solution formula (2.13) we obtain (2.10).
This concludes the proof.

Corollary 2.1. The function û given by formula (2.10) is the unique
solution to problem (2.9).

Now we obtain an estimate for the solution to problem (2.9), given by
(2.10). We set û|x3=0 = û(0) and û− û(0) ≡ ŭ.

Lemma 2.4. Assume that
�

R2

dξ
�

(0,a)

|f̂ |2x2µ
3 dx3 <∞,

�

R2

ξ4 dξ ‖û(0)‖2L2,µ(0,a) <∞,

�

R2

ξ2 dξ
�

(0,a)

|ŭ|2x2µ−2
3 dx3 <∞.

(2.15)

Then the solution û to the problem (2.9) satisfies

(2.16)
�

R2

ξ2 dξ
�

(0,a)

(|ŭ,x3 |2 + ξ2|ŭ|2)x2µ
3 dx3 +

�

R2

dξ (‖∂2
x3
ŭ‖2L2,µ(0,a)

+ ‖∂x3 ŭ‖2L2,µ−1(0,a) + ‖ŭ‖2L2,µ−2(R2))

≤ c1
�

R2

ξ2 dξ
�

(0,a)

|ŭ|2x2µ−2
3 dx3 + c

�

R2

dξ
�

(0,a)

|f̂ |2x2µ
3 dx3

+ c
�

R2

ξ4 dξ‖û(0)‖2L2,µ(0,a).

Proof. Multiplying (2.9)1 by ¯̆ux2µ
3 and integrating on (0, a) we get

�

(0,a)

(−û,x3x3
¯̆u+ ξ2|ŭ|2)x2µ

3 dx3 =
�

(0,a)

f̂ ¯̆ux2µ
3 dx3 − ξ2

�

(0,a)

û(0)¯̆ux2µ
3 dx3.
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Integrating by parts we obtain

(2.17)
�

(0,a)

(|ŭ,x3 |2x
2µ
3 + ξ2|ŭ|2x2µ

3 ) dx3

= − 2µ
�

(0,a)

û,x3
¯̆ux2µ−1

3 dx3

+
�

(0,a)

f̂ ¯̆ux2µ
3 dx3 − ξ2

�

(0,a)

û(0)¯̆ux2µ
3 dx3.

By the Hölder and Young inequalities we estimate the first term on the r.h.s.
of (2.17) by

ε1
2

�

(0,a)

|ŭ,x3 |2x
2µ
3 dx3 +

4µ2

2ε1

�

(0,a)

|ŭ|2x2µ−2
3 dx3,

the second by
ε2
2
ξ2

�

(0,a)

|ŭ|2x2µ
3 dx3 +

1
2ε2

1
ξ2

�

(0,a)

|f̂ |2x2µ
3 dx3

and the third by
ε3
2
ξ2

�

(0,a)

|ŭ|2x2µ
3 dx3 +

1
2ε3

ξ2
�

(0,a)

|û(0)|2x2µ
3 dx3.

Setting ε1 = 1, ε2 = ε3 = 1/2, we obtain from (2.17) the inequality
1
2

�

(0,a)

(|ŭ,x3 |2 + ξ2|ŭ|2)x2µ
3 dx3 ≤ 2µ2

�

(0,a)

|ŭ|2x2µ−2
3 dx3 +

1
ξ2

�

(0,a)

|f̂ |2x2µ
3 dx3

+ ξ2
�

(0,a)

|û(0)|2x2µ
3 dx3.

We multiply this by 2ξ2 and integrate with respect to ξ to get

(2.18)
�

R2

ξ2 dξ
�

(0,a)

(|ŭ,x3 |2 + ξ2|ŭ|2)x2µ
3 dx3≤4µ2

�

R2

ξ2 dξ
�

(0,a)

|ŭ|2x2µ−2
3 dx3

+ 2
�

R2

dξ
�

(0,a)

|f̂ |2x2µ
3 dx3 + 2

�

R2

ξ4 dξ
�

(0,a)

|û(0)|2x2µ
3 dx3.

This yields an estimate for the first integral in (2.16). To deal with the other
terms, we slightly reformulate problem (2.9) to the form

d2û

dx2
3

= ξ2û− f̂ ,

û|x3=a = 0,
û,x3 |x3=0 = 0.

(2.19)
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We derive the bound

‖∂2
x3

(ŭ)‖2L2,µ(0,a) ≤ ξ
4‖ŭ‖2L2,µ(0,a) + ξ4‖û(0)‖2L2,µ(0,a) + ‖f̂‖L2,µ(0,a).

Consequently, integrating with respect to ξ implies

(2.20)
�

R2

dξ ‖∂2
x3

(ŭ)‖2L2,µ(0,a) ≤
�

R2

ξ4 dξ ‖ŭ‖2L2,µ(0,a)

+
�

R2

ξ4 dξ ‖û(0)‖2L2,µ(0,a) +
�

R2

dξ ‖f̂‖L2,µ(0,a).

On the other hand, by the Hardy inequality we have
�

R2

dξ ‖∂2
x3

(ŭ)‖2L2,µ(0,a) ≥ c
�

R2

dξ ‖∂x3(ŭ)‖2L2,µ−1(0,a)(2.21)

≥ c
�

R2

dξ ‖ŭ‖2L2,µ−2(0,a),

and this with (2.20) gives an estimate for the second integral on the l.h.s.
of (2.16). Therefore, combining (2.18), (2.20) and (2.21) we derive (2.16),
which concludes the proof.

Next, we need to improve the lemma dealing with the term on the r.h.s.
of (2.16) involving ŭ. To this end, we introduce the sets:

Q1 = {(ξ, x3) ∈ R2 × R+ : |ξ|−1x−1
3 ≤ a1},

Q2 = {(ξ, x3) ∈ R2 × R+ : |ξ|−1x−1
3 ≥ a2},

Q3 = {(ξ, x3) ∈ R2 × R+ : a1 ≤ |ξ|−1x−1
3 ≤ a2},

and prove the following result:

Lemma 2.5. Let assumptions (2.15)1-2 of Lemma 2.3 be satisfied. Then
for a solution û to problem (2.9) and ŭ = û− û(0),

(2.22)
�

R2

ξ2 dξ
�

(0,a)

|ŭ|2x2µ−2
3 dx3 ≤ a2

1

�

Q1

ξ4|ŭ|2x2µ
3 dξ dx3

+
1
a2

2

�

Q2

|ŭ|2x2µ−4
3 dξ dx3+c

�

R2×(0,a)

ξ4|û(0)|2x2µ
3 dξ dx3+c

�

R2×(0,a)

|f̂ |2x2µ
3 dξ dx3.

Proof. Let us consider the expression

�

R2

ξ2 dξ
�

(0,a)

|ŭ|2x2µ−2
3 dx3 =

3∑
i=1

�

Qi

ξ2|ŭ|2x2µ−2
3 dξ dx3 =

3∑
i=1

Ii,

where
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I1 ≤ a2
1

�

Q1

ξ4|ŭ|2x2µ
3 dξ dx3,

I2 ≤
1
a2

2

�

Q2

|ŭ|2x2µ−4
3 dξ dx3,

I3 ≤ a2−2µ
2

�

Q3

|ξ|4−2µ|ŭ|2 dξ dx3.

Let us express problem (2.19) in the form

∂2
x3
ŭ = ξ2ŭ− f̂ + ξ2û(0).

Then from [ZS] and [Z1, (4.12)] we extract the inequality

I3 ≤ c
�

Q3

|ξ|4−2µ|ŭ|2 dξ dx3

≤ c
�

R2×(0,a)

ξ4|û(0)|2x2µ
3 dξ dx3 + c

�

R2×(0,a)

|f̂ |2x2µ
3 dξ dx3.

Collecting the estimates for Ii we obtain (2.22), and this concludes the
proof.

Corollary 2.2. Consider the solution û of (2.9). For sufficiently small
a1 and sufficiently large a2, assuming (2.15)1-2, estimates (2.16) and (2.22)
imply

(2.23)
�

R2

dξ ‖ŭ‖2H2
µ(0,a) +

�

R2

ξ2 dξ ‖ŭ‖2H1
µ(0,a) +

�

R2

ξ4 dξ ‖ŭ‖2L2,µ(0,a)

≤ c
�

R2

dξ ‖f̂‖2L2,µ(0,a) + c
�

R2

ξ4 dξ ‖û(0)‖2L2,µ(0,a).

Next, we want to estimate the last term in (2.23). It takes the form

(2.24)
�

R2×(0,a)

|∂2
x′u(0)|2|x3|2µ dx′ dx3 ≤ c

�

R2

|∂2
x′u(0)|2 dx′,

where we used the fact that the support of u with respect to x3 is compact.
Now we postulate that the function f in (1.1) can be written as

f = α,x3 where α = ãη(x3), ã|x3=0 = θ(2.25)

and η(x3) is a smooth non-increasing function with compact support, 0 ≤
η ≤ 1 and η(x3) = 1 in a neighbourhood of {x3 = 0}.We extend the function
θ onto R2 in H1(R2) norm using the Hestenes–Whitney theorem in such a
way that

θ̃|S∗ = θ, ‖θ̃‖Hk(R2) ≤ c‖θ‖Hk(S∗).
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Then we solve the problem
∆u = α,x3 , x3 > 0,
u,x3 |x3=0 = 0.

(2.26)

Lemma 2.6. Assume that u is a solution to (2.26), where α is described
by (1.2). Assume that θ ∈ H1(S∗). Then

‖∂2
x′u(0)‖L2(R2) ≤ c‖θ‖H1(S∗).(2.27)

Proof. Using the Neumann function, any solution to (2.26) can be ex-
pressed by

u(x) =
�

R3
+

(
1

|x− y|
+

1
|x− ȳ|

)
α,y3 dy

where ȳ = (y1, y2,−y3),R3
+ = {x ∈ R3 : x3 > 0}.

Integrating by parts we obtain

u(x) =
�

R3
+

∂y3

[(
1

|x− y|
+

1
|x− ȳ|

)
α

]
dy −

�

R3
+

∂y3

(
1

|x− y|
+

1
|x− ȳ|

)
αdy

=
�

R2

(
1

|x− y|
+

1
|x− ȳ|

)
|y3=0θ̃ dy

′ −
�

R3
+

(
x3 − y3

|x− y|3
− x3 + y3

|x− ȳ|3

)
ãη dy

=
�

R2

2√
|x′ − y′|2 + x2

3

θ̃ dy′ −
�

R3
+

(
x3 − y3

|x− y|3
− x3 + y3

|x− ȳ|3

)
ãη dy.

In view of this formula, the r.h.s. of (2.24) assumes the form
�

R2

|∂2
x′u(0)|2 dx′

≤ 4
�

R2

dx′|∂2
x′

�

R2

1
|x′ − y′|

θ̃ dy′|2 + 4
�

R2

dx′
∣∣∣∣∂2
x′

�

R3
+

y3√
|x′ − y′|2 + y2

3

θ̃ dy3

∣∣∣∣2
= 4

�

R2

dx′
∣∣∣∣ �
R2

∂2
x′

1
|x′ − y′|

θ̃ dy′
∣∣∣∣2 + 4

�

R2

dx′
∣∣∣∣ �
R2

∂2
x′

y3√
|x′ − y′|2 + y2

3

θ̃ dy3

∣∣∣∣2
≤ c‖θ̃‖H1(R2) ≤ c‖θ‖H1(S∗).

This concludes the proof.

Using (2.23), (2.27) and applying a partition of unity for Ω we deduce
the following result:

Lemma 2.7. For problem (1.1), where f ∈ L2,µ(R2×(0, a)), f is expressed
by (1.2) and θ ∈ H1(R2), the solution u satisfies

‖u− u(0)‖H2
µ(R2×(0,a)) ≤ c(‖f‖L2,µ(R2×(0,a)) + ‖θ‖H1(R2)),(2.28)

where u(0) denotes u|x3=0.
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Proof of Theorem 1. We apply the regularizer technique for elliptic equa-
tions (see [S], [LSU]). Let us define two collections of open subsets {ω(k)} and
{Ω(k)}, k ∈M∪N , such that ω(k) ⊂ Ω(k),

⋃
k ω

(k) =
⋃
k Ω

(k) = Ω∩P , where
P is any plane perpendicular to the x3 axis. We assume that ω(k)∩S = ∅ for
k ∈M and ω(k)∩S 6= ∅ for k∈N . Then

⋃
k ω

(k)×(0, a)=
⋃
k Ω

(k)×(0, a)=Ω.

Let ζ(k)(x′) be a smooth function such that 0 ≤ ζ(k)(x′) ≤ 1, ζ(k)(x′) = 1
for x′ ∈ ω(k), supp ζ(k) ⊂ Ω(k) and |Dν

x′ζ
(k)(x′)| ≤ (c/|λ|) ν, where λ is the di-

ameter ofΩ. Then 1 ≤
∑

k ζ
(k)(x′) ≤ N0. Introducing the function η(k)(x′) =

ζ(k)(x′)/
∑

l(ζ
(l)(x′))2 we have supp η(k)(x′) ⊂ Ω(k),

∑
k η

(k)(x′)ζ(k)(x′) = 1,
|Dν

x′η
(k)(x′)| ≤ c/|λ|ν .

By ξ(k) we denote a fixed internal point of ω(k) and Ω(k) for k ∈M and a
point of ω(k)∩S and Ω(k)∩S for k ∈ N . Let us introduce a local coordinate
system y = (y1, y2) with centre at ξ(k), k ∈ N . We assume that y2 = F (y1)
describes the part S(k) = S ∩ Ω(k) of the boundary. Let us introduce new
coordinates by

z1 = y1, z2 = y2 − F (y1).(2.29)

Let Ψk denote the transformation

Ω(k) 3 y′ 7→ Ψk(y′) = z′ ∈ Ω̂(k), ω(k) 3 y′ 7→ Φk(y′) = z′ ∈ ω̂(k),

where ω̂(k) and Ω̂(k) are described by the relations

|y1| < λ, 0 < y2 − F (y1) < λ,

|y1| < 2λ, 0 < y2 − F (y1) < 2λ,

respectively. Let y = Yk(x) be a transformation from global coordinates x to
local coordinates with origin at ξ(k) which is a composition of a translation
and a rotation. We denote Φk = Ψk · Yk. We set

û(k)(z) = u(Φ−1
k (z)), ũ(k)(z) = û(k)(z)ζ̂(k)(z).(2.30)

For k ∈M problem (1.1) translates into the equation

−∇2
xũ

(k) = f̃∗
(k)

in R2 × (0, a)(2.31)

and for k ∈ N into the equation

−∇2
zũ

(k) = f̃∗
(k)

in R2 × (0, a),(2.32)

which is appropriately extended onto z2 < 0. Let R(k) be the operator which
solves problems (2.31) and (2.32), respectively. Then we define the operator

Rf =
∑

k∈M∪N
η(k)u(k)
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where

u(k)(x) =

{
R(k)ζ(k), k ∈M,
Φ−1
k (Φ−1

k R(k)(Φkζ(k)f)), k ∈ N .

The solvability of problems (2.31) and (2.32) is settled by Lemma 2.4.
Let us introduce spaces H = L2,µ, V = H2

µ. Let L = −∆. Then we
examine operators T,W , where

LRf = (I + T )f, RLv = (I +W )v.(2.33)

We calculate

Tf =
∑

k∈M∪N
(Lη(k)u(k) − η(k)Lu(k))

+
∑
k∈N

η(k)Φ−1
k [L(∂z −∇F∂z2)− L(∂z)]R(k)(Φkζ(k)f)

= T1 + T2

and

T1f =
∑
k∈M

η(k)Φ−1
k [−∂z1F∂z1F∂2

z2 − ∂z1F∂z1∂z2

− ∂z1F∂z2∂z1 − ∂z1F∂z1z2F∂z2 ]R(k)(Φkζ(k)f),

T2f =
∑

k∈M∪N
(Lη(k)u(k) − η(k)Lu(k))

+
∑
k∈N

η(k)Φ−1
k (−∂2

z1F∂z2)R(k)(Φkζ(k)f).

Since |∂z1F | ≤ cλ, we have

‖T1f‖H ≤ cλ‖f‖H
so ‖T1‖H ≤ 1 for sufficiently small λ. On the other hand T2 is completely
continuous. Similarly, W = W1 +W2, where

W1u

=
∑
k∈N

η(k)Φ−1
k R(k)[−∂z1F∂z1F∂2

z2−2∂z1F∂z1z2−∂z1F∂z2(∂z1F )∂z2 ]Φkζ(k)u

and

W2u =
∑
k∈M

η(k)R(k)(ζ(k)L − Lζ(k))u+
∑
k∈N

η(k)Φ−1
k R(k)[Φk(ζ(k)L − Lζ(k))u]

−
∑
k∈N

η(k)Φ−1
k R(k)(Fz1z1∂z2)Φkζ(k)u.

By the same arguments as above we have ‖W1‖V < 1 and W2 is compact
and continuous.
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We write (2.33)2 in the form

(I +W1)v = Rf +W2v.(2.34)

Here R is a bounded operator fromH2
µ in L2,µ, W2 is a completely continuous

operator with

‖W2‖H2
µ(Ω) ≤ ε‖v‖H2

µ(Ω) + c(1/ε)‖v‖L2(Ω)

andW1 is the operator with norm less than one. Then from (2.34) we obtain

‖v‖H2
µ(Ω) ≤ c‖Lv‖H2

µ(Ω) + c‖v‖L2(Ω),(2.35)

where by using the Green function and the Hardy inequality we find that

‖v‖L2(Ω) ≤ c‖α‖L2(Ω) ≤ c‖f‖L2,µ(Ω).

We have

‖v‖H2
µ(Ω) ≤ c‖Lv‖L2,µ(Ω).

Hence there exists an inverse operator to L so we have existence in H2
µ(Ω).
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