
APPLICATIONES MATHEMATICAE
37,3 (2010), pp. 325–339

Wojciech M. Zajączkowski (Warszawa)

SOLVABILITY OF THE POISSON EQUATION IN
WEIGHTED SOBOLEV SPACES

Abstract. The aim of this paper is to prove the existence of solutions to
the Poisson equation in weighted Sobolev spaces, where the weight is the
distance to some distinguished axis, raised to a negative power. Therefore
we are looking for solutions which vanish sufficiently fast near the axis. Such
a result is useful in the proof of the existence of global regular solutions to
the Navier–Stokes equations which are close to axially symmetric solutions.

1. Introduction. The aim of this paper is to prove the existence of
solutions to the Poisson equation in weighted Sobolev spaces H l

−µ(Ω), l ∈
N0 ≡ N∪{0}, µ ∈ R+, where Ω ⊂ R3 is a bounded domain which contains a
(segment of a) distinguished axis L. We assume that the weight is a negative
power of the distance to L.

We consider the Dirichlet problem

(1.1)
−∆u = f in Ω,

u = 0 on S = ∂Ω.

We assume that L meets S at two points: s1 and s2.

Definition 1.1. By H l
−µ(Ω), l ∈ N0, µ ∈ R+, we denote the closure of

the set of C∞(Ω)-functions vanishing in a neighbourhood of L in the norm

‖u‖Hl
−µ(Ω) =

( ∑
|α|≤l

�

Ω

|Dα
xu(x)|2%(x)2(−µ+|α|−l) dx

)1/2
,

where |α| = α1 + α2 + α3, Dα
x = ∂α1

x1
∂α2
x2
∂α3
x3
, αi ∈ N0, i = 1, 2, 3, %(x) =

dist(x, L).

The main result of this paper is the following
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Theorem 1.2. Assume that f ∈ H l
−µ(Ω), l ∈ N0, µ ∈ R+ \ Z. Assume

that S ∈ C l+2. Then there exists a solution to problem (1.1) such that u ∈
H l+2
−µ (Ω) and the estimate

(1.2) ‖u‖Hl+2
−µ (Ω) ≤ c‖f‖Hl

−µ(Ω).

holds, where c does not depend on u and f .

In this paper we prove the existence only because estimate (1.2) is already
known (see [2, 7]). The well known method to solve problem (1.1) is to
show the existence of weak solutions to problem (1.1) defined by the integral
identity

(1.3)
�

Ω

∇u · ∇ϕdx =
�

Ω

fϕ dx,

which holds for any smooth function vanishing on S.
Assuming that f ∈ L2(Ω) and applying the Galerkin method it is well

known that we have the existence of weak solutions to (1.1) belonging to
H1(Ω) and satisfying the estimate

(1.4) ‖u‖H1(Ω) ≤ c‖f‖L2(Ω),

where c does not depend on u and f .
Similarly, assuming f ∈ H l(Ω), S ∈ C l+2, l ∈ N0 and applying the

regularization technique (see [3, 4]) we can prove the existence of solutions
to (1.1) in H l+2(Ω) and the estimate

(1.5) ‖u‖Hl+2(Ω) ≤ c‖f‖Hl(Ω),

where c does not depend on u and f .
The above procedure is possible because H l+2(Ω) ⊂ H1(Ω), and the

technique of increasing regularity is well developed. In our case we also have
H l+2
−µ (Ω) ⊂ H1(Ω) but elements of H l+2

−µ (Ω) must satisfy some structural
restrictions which are expressed by an appropriate vanishing of solutions to
(1.1) near the axis L. Hence to prove the existence of solutions to (1.1) in
H l+2
−µ (Ω) we have to find a way of selecting elements from H1(Ω) satisfying

the structural conditions.
We may use two approaches to prove Theorem 1.2. The first is direct by

employing the methods and ideas from [1, 5, 12]. The second, which is used
in this paper, can be split into a few steps. First we show the existence of
solutions to (1.1) in H l+2 in a subdomain of Ω located at a positive distance
from L. Next we appropriately extend the solution to a neighbourhood of L
in such a way that the extended solution belongs to H l+2

−µ (Ω).
Then using estimate (1.2) and applying an appropriate density argument

we prove Theorem 1.2. This idea will be described more precisely in Section 2.
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We should also mention that the main tool in the proof of Theorem 1.2
is the technique of regularizers (see [4]). This is connected with the fact that
the crucial estimate (1.2) in weighted spaces is only obtained locally.

To prove Theorem 1.2 we need

Lemma 1.3. Assume that f ∈ H l(Ω), S ∈ C l+2, l ∈ N0. Then there
exists a solution to problem (1.1) such that u ∈ H l+2(Ω) and

(1.6) ‖u‖Hl+2(Ω) ≤ c‖f‖Hl(Ω),

where c does not depend on u and f .

The techniques and methods used in this paper are important for exam-
ining nonstationary equations in similar weighted Sobolev spaces (see [8]).

In a series of papers (see [6, 9, 10, 11]) we proved the existence of global
regular solutions to the Navier–Stokes equations which are close to axially
symmetric solutions. To show those results we need the weighted Sobolev
spaces introduced in this paper, because weights with negative powers appear
naturally in estimates necessary for the existence of solutions.

2. Existence in R3. First we shall restrict our considerations to the
case l = 0. Let A > 0 be given. Consider the cylinder

CA = {x ∈ R3 : |x′| < A, x3 ∈ R},
where x′ = (x1, x2), |x′| =

√
x2

1 + x2
2, and x = (x1, x2, x3) is the Cartesian

system in R3.
Let R > 0 be given. Then we consider the problem

(2.1)
−∆u = f in CR,

u = 0 on ∂CR,

u→ 0 as |x3| → ∞,
where ∂CR = {x ∈ R3 : |x′| = R, x3 ∈ R}.

To prove the existence of solutions to problem (2.1) in weighted Sobolev
spaces we define an approximate solution. Let 0 < δ < R be given. Let
CR,δ = CR \ C̄δ, where C̄δ is the closure of Cδ. Then we consider the problem

(2.2)
−∆uδ = fδ in CR,δ,

uδ = 0 on ∂CR,δ,

uδ → 0 as|x3| → ∞.
We have

Lemma 2.1. Assume that fδ ∈ L2(CR,δ). Then there exists a unique
solution to (2.2) such that uδ ∈ H2(CR,δ) and

(2.3) ‖uδ‖H2(CR,δ) ≤ c‖fδ‖L2(CR,δ),

where c does not depend on uδ and fδ.
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Let us introduce the cylindrical coordinates (r, ϕ, z) by the relations x1 =
r cosϕ, x2 = r sinϕ, x3 = z.

Since we are looking for solutions to the Poisson equation in R3 but we
are not interested in their behaviour as |x′| → ∞ we extend uδ by zero for
r > R. For this purpose we introduce a smooth function ζR(x′) such that
ζR(x′) = 1 for |x′| ≤ 3

4R and ζR(x′) = 0 for |x′| ≥ R. Let u′δ = uδζR,
f ′δ = fδζR. Then problem (2.2) takes the form

(2.4)

−∆u′δ = f ′δ − 2ζR,x′uδ,x′ − ζR,x′x′uδ ≡ f ′′δ in R3 \ C̄δ,
u′δ = 0 on ∂Cδ,

u′δ = 0 for r > R,

u′δ → 0 as |x3| → ∞.

In view of Lemma 2.1 we have f ′′δ ∈ L2(R3 \ C̄δ) and there exists a solution
to problem (2.4) such that u′δ ∈ H2(R3 \ C̄δ) and

(2.5) ‖u′δ‖H2(R3\C̄δ) ≤ c‖f
′
δ‖L2(R3\C̄δ).

To prove the existence of solutions to problem (1.1) in the weighted spaces
H l
−µ introduced in Definition 1.1 we extend f ′′δ and u′δ by zero for r < δ.

Let us denote the extended functions by f̄δ and ūδ. Additionally we assume
that f ′δ|r=δ = 0. Then (2.4)1 implies that ∆u′δ|r=δ = 0. To show that u′δ ∈
H2
−µ(R3) we assume that δ < 3

4R, and we define

vδ = u′δ|x=x(r,ϕ,z), hδ = f ′′δ |x=x(r,ϕ,z),

v̄δ = ūδ|x=x(r,ϕ,z), h̄δ = f̄δ|x=x(r,ϕ,z).

Then problem (2.4) takes the form

−
(

1
r

(rv̄δ,r),r +
1
r2
v̄δ,ϕϕ + v̄δ,zz

)
= h̄δ in R3,

v̄δ|r≤δ = 0,
h̄δ|r≤δ = 0,
v̄δ → 0 as |z| → ∞, r > R.

(2.6)

From (2.6)2 it follows that v̄δ,ϕϕ = 0 and v̄δ,zz = 0 for r ≤ δ. Moreover, in
view of Lemma 2.1 we have (1/r)(rv̄δ,r),r ∈ L2(R3), and (2.6)1 implies

1
r

(rv̄δ,r),r = 0 for r ≤ δ.

Let µ ∈ R+. Then f̄δ ∈ L2,−µ(R3). To apply [7] we should know that v̄δ ∈
H2
−µ(R3). From the properties of v̄δ we have v̄δ,ϕϕ ∈ L2,−µ(R3), v̄δ,zz ∈

L2,−µ(R3) and (1/r)(rv̄δ,r),r ∈ L2,−µ(R3). Moreover,

(2.7)
∥∥∥∥1
r

(rv̄δ,r),r

∥∥∥∥
L2,−µ(R3)

≤ c‖f̄δ‖L2,−µ(R3).
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By the Hardy inequality (see [1]) we have

(2.8)
�

R3

|v̄δ|2r−2µ−4r dr dz dϕ ≤ c
�

R3

|v̄δ,r|2r−2µ−2r dr dz dϕ

≤ c
�

R3

|rv̄δ,r|2r−2µ−3 dr dz dϕ ≤ c
�

R3

|(rv̄δ,r),r|2r−2µ−1 dr dz dϕ

=
�

R3

∣∣∣∣1r (rv̄δ,r),r

∣∣∣∣2r−2µr dr dz dϕ ≤ c
�

R3

|f̄δ|2r−2µr dr dz dϕ = c‖f̄δ‖2L2,−µ(R3).

To justify all inequalities in (2.8) we show the continuity of v̄δ at r = δ.
Integrating (2.6) with respect to r from r = δ/2 to r = %, % ∈ (δ, 2δ), and
with respect to ϕ and z, we obtain

(2.9)
�

R
dz

2π�

0

dϕ

%�

δ/2

∂r(rv̄δ,r) dr +
�

R
dz

2π�

0

dϕ

%�

δ/2

r dr

(
1
r2
v̄δ,ϕϕ + v̄δ,zz

)

=
�

R
dz

2π�

0

dϕ

%�

δ/2

h̄δrdr.

Since v̄δ is periodic with respect to ϕ and vanishes for |z| sufficiently large,
the second term on the l.h.s. of (2.9) vanishes. Hence (2.9) takes the form

(2.10)
�

R
dz

2π�

0

dϕ %v̄δ,r(%)−
�

R
dz

2π�

0

dϕ
δ

2
v̄δ,r

(
δ

2

)
=

�

R
dz

2π�

0

dϕ

%�

δ/2

h̄δr dr.

But v̄δ vanishes for r < δ so the second integral on the l.h.s. of (2.10)
disappears.

Assuming that h̃δ has a compact support with respect to z we obtain
from (2.10) the inequality

(2.11)
∣∣∣ �

R
dz

2π�

0

dϕ %v̄δ,r(%)
∣∣∣ ≤ c(%− δ)1/2

( �

R
dz

2π�

0

dϕ

%�

δ

|h̄δ|2r dr
)1/2

.

Let us now assume that h̄δ is smooth. Then solutions to problem (2.6) are
also smooth and estimate (2.3) holds. Let

Bσ(ϕ0, z0) = {(ϕ, z) ∈ [0, 2π]× R :
√

(ϕ− ϕ0)2 + (z − z0)2 < σ}.

Take ϕ0, z0 and σ such that v̄δ,r(r) > 0 for r ∈ (δ, %) and (ϕ, z) ∈ Bσ(ϕ0, z0).
Then (2.11) implies a contradiction.

Using that H2 smooth functions are dense in H2 we show that

lim
r→δ
r>δ

v̄δ,r(r) = 0.
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The last statement can also be proved in a different way. Assume that
fδ ∈ L2(R3) is a smooth function vanishing for r ≤ δ. Then h̄δ ∈ L2(R3) is
also a smooth function. Hence by Lemma 2.1 there exists a smooth solution
to problem (2.6) such that v̄δ ∈ H2(R3). Integrating (2.6)1 with respect to
r from r = δ/2 to r = δ we get

rv̄δ,r(%) = −
%�

δ

(
1
r2
v̄δ,ϕϕ + v̄δ,zz

)
r dr +

%�

δ

h̄δr dr

so

|rv̄δ,r(%)| ≤ (%− δ)1/2

[ %�
δ

2
(

1
r4
v̄2
δ,ϕϕ + v̄2

δ,zz

)
r2 dr

]1/2

+ (%− δ)1/2
[ %�
δ

h̄2
δr

2 dr
]1/2

.

Hence for smooth solutions in H2(R3) we have

(2.12) lim
%→δ
%>δ

v̄δ,r(%) = 0.

By the density argument we infer that (2.12) holds for solutions in H2(R3).
Hence v̄δ ∈ H2

−µ(R3). Applying [2, 7] we obtain the estimate

(2.13) ‖v̄δ‖H2
−µ(R3) ≤ c‖f̄δ‖L2,−µ(R3),

where c does not depend on δ.
Passing to the Cartesian coordinates and taking the limit δ → 0 we

obtain

Lemma 2.2. Assume that f ∈ L2,−µ(R3), µ ∈ R+ \ Z. Then there exists
a solution to the problem

(2.14)
−∆u = f in R3,

u→ 0 as r →∞, |z| → ∞,

such that u ∈ H2
−µ(R3) and the estimate

(2.15) ‖u‖H2
−µ(R3) ≤ c‖f‖L2,−µ(R3)

holds.

Let us consider the case l > 0. We have

Lemma 2.3. Assume that fδ ∈ H l(CR,δ). Then there exists a unique
solution to problem (2.2) such that uδ ∈ H l+2(CR,δ) and

(2.16) ‖uδ‖Hl+2(CR,δ)
≤ c‖fδ‖Hl(CR,δ)

.
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Finally, we prove a lemma similar to Lemma 2.2 for f ∈ H l
−µ(R3). Let

us consider problem (2.4). In view of Lemma 2.3, f ′′δ ∈ H l(R3 \ C̄δ), so there
exists a solution to problem (2.4) such that u′δ ∈ H l+2(R3 \ C̄δ) and

(2.17) ‖u′δ‖Hl+2(R3\C̄δ) ≤ c‖f
′′
δ ‖Hl(R3\C̄δ).

Let us recall the extensions denoted by v̄δ and h̄δ. Assuming that h̄δ ∈
H l
−µ(R3) and applying a recurrence argument based on the proof of Lemma

2.2 we have

(2.18)
∥∥∥∥1
r

(rv̄δ,r),r

∥∥∥∥
Hl
−µ(R3)

+
∥∥∥∥ 1
r2
v̄δ,ϕϕ

∥∥∥∥
Hl
−µ(R3)

+ ‖v̄δ,zz‖Hl
−µ(R3)

≤ c‖f̄δ‖Hl
−µ(R3).

Hence by the Hardy inequality and considerations from the proof of Lemma
2.2 it follows that v̄δ ∈ H l+2

−µ (R3). Then [7] yields the estimate

(2.19) ‖v̄δ‖Hl+2
−µ (R3) ≤ c‖f̄δ‖Hl

−µ(R3),

where c does not depend on δ. Passing to the limit δ → 0 we obtain

Lemma 2.4. Assume that f ∈ H l
−µ(R3), µ ∈ R+ \Z, l ∈ N0. Then there

exists a solution to problem (2.14) such that u ∈ H l+2
−µ (R3) and the estimate

(2.20) ‖u‖Hl+2
−µ (R3) ≤ c‖f‖Hl

−µ(R3)

holds.

3. Existence in a bounded domain. The aim of this section is to
prove Theorem 1.2. For this purpose we use the regularizer technique so we
need a partition of unity. Let us define two collections of open subsets {ω(k)}
and {Ω(k)}, k ∈

⋃4
i=1Mi, such that ω̄(k) ⊂ Ω(k),

⋃
k ω

(k) =
⋃
k Ω

(k) = Ω,
Ω(k) ∩ S = ∅ for k ∈ M1 ∪ M3 and Ω(k) ∩ S 6= ∅ for k ∈ M2 ∪ M4.
Here Ω(k), k ∈ M1, is a neighbourhood of an interior point of L ∩Ω; Ω(k),
k ∈ M2, is a neighbourhood of a point where L meets S; Ω(k), k ∈ M3,
is a neighbourhood of an interior point of Ω, located at a positive distance
from L; Ω(k), k ∈M4, is a neighbourhood of a point of S, located at a pos-
itive distance from L. We assume that at most N0 of Ω(k)’s have nonempty
intersection, and supk diamΩ(k) ≤ 2λ for some λ > 0.

Let ζ(k)(x) be a smooth function such that 0 ≤ ζ(k)(x) ≤ 1, ζ(k)(x)
= 1 for x ∈ ω(k), supp ζ(k) ⊂ Ω(k) and |Dν

xζ
(k)(x)| ≤ c/|λ|ν . Then 1 ≤∑

k(ζ
(k)(x))2 ≤ N0. Introducing the function η(k)(x) = ζ(k)(x)/

∑
l(ζ

(l)(x))2

we have supp η(k) ⊂ Ω(k),
∑

k η
(k)(x)ζ(k)(x) = 1, |Dν

xη
(k)| ≤ c/|λ|ν . By ξ(k)

we denote a fixed interior point of ω(k) and Ω(k) for k ∈ M1 ∪M3, and a
point of ω(k) ∩ S and Ω(k) ∩ S for k ∈M2 ∪M4.



332 W. M. Zajączkowski

Since we consider a problem invariant with respect to translations and
rotations we can introduce a local coordinate system y = (y1, y2, y3) centred
at ξ(k) such that for k ∈M2 ∪M4 the part S̃(k) = S ∩Ω(k) of the boundary
is described by y3 = F (y1, y2). We assume that a point with coordinates
(y1, y2, y3), y3 > F (y1, y2), belongs to Ω. Then we introduce new coordinates
by

(3.1) zi = yi, i = 1, 2, z3 = y3 − F (y1, y2).

We denote by Ψk the transformation Ω(k) 3 y 7→ Ψk(y) = z ∈ Ω̂(k), described
by (3.1), such that ω(k) 3 y 7→ Ψk(y) = z ∈ ω̂(k). We assume that the sets
ω̂(k), Ω̂(k) are described in local coordinates at ξ(k) by the inequalities

(3.2)
|yi| < λ, i = 1, 2, 0 < y3 − F (y1, y2) < λ,

|yi| < 2λ, i = 1, 2, 0 < y3 − F (y1, y2) < 2λ,

respectively.
Let y = Yk(x) be a transformation from the x coordinates to local co-

ordinates with origin at ξ(k) which is a composition of a translation and a
rotation.

We denote Φk = Ψk ◦ Yk. Then we set

(3.3) û(k)(z) = u(Φ−1
k (z)), ũ(k)(z) = û(k)(z)ζ̂(k)(z).

First, we prove

Lemma 3.1. Assume that f ∈ L2,−µ(Ω), µ ∈ (0, 1). Then there exists a
solution to problem (1.1) such that u ∈ H2

−µ(Ω) and

(3.4) ‖u‖H2
−µ(Ω) ≤ c‖f‖L2,−µ(Ω).

Proof. Since f ∈ L2,−µ(Ω), µ > 0, we have f ∈ L2(Ω) and

(3.5) ‖f‖L2(Ω) ≤ c‖f‖L2,−µ(Ω),

because Ω is bounded. Then we have the existence of solutions to problem
(1.1) such that u ∈ H2(Ω) and

(3.6) ‖u‖H2(Ω) ≤ c‖f‖L2(Ω).

To prove the lemma, first we have to consider the problem (1.1) locally.
Take ξ(k) ∈ L ∩ Ω, k ∈ M1. Let us introduce a local Cartesian system
y = (y1, y2, y3) with the origin at ξ(k) such that L is the y3 axis.

Let R and a be given positive numbers. Let Q be a cylinder of the form

Q = {y ∈ R3 : |y′| < R, |y3| < a},
where y′ = (y1, y2).

Assume that Ω(k) ⊂ Q, k ∈ M1. Let ζ = ζ(k)(y), k ∈ M1, be a smooth
function from the partition of unity such that supp ζ ⊂ Q. Let ũ = uζ,
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f̃ = fζ. Then problem (1.1) takes the form

−∆ũ = f̃ − 2∇ζ∇u−∆ζu ≡ f̃0,

ũ|∂Q = 0,
(3.7)

where we consider the case Q ∩ S = ∅.
To apply Lemma 2.2 we have to know that f̃0 ∈ L2,−µ(R3). Since µ ∈

(0, 1) and in view of (3.6) we know that ũ ∈ H2(R3), the Hardy inequality
implies

∇u ∈ L2,−µ(R3 ∩Q), u ∈ L2,−µ(R3 ∩Q).

Then Lemma 2.2 implies the existence of solutions to problem (3.7) such
that ũ ∈ H2

−µ(R3) and

(3.8) ‖ũ‖H2
−µ(R3) ≤ c‖f‖L2,−µ(Ω),

because
‖∇u‖L2,−µ(R3∩Q) + ‖u‖L2,−µ(R3∩Q) ≤ c‖f‖L2(Ω).

Let ξ(k), k ∈ M2, be a point where L meets S. Let us introduce a local
system of coordinates y = (y1, y2, y3) with the origin at ξ(k). Then in the
subdomain Ω(k), k ∈ M2, the part of the boundary S̃(k) = S ∩ Ω(k) is
described by

y3 = F (y1, y2),

where F (0, 0) = 0. Let ∇̂i = ∂zk
∂xi

∂
∂zk

, where the summation convention over
the repeated indices is assumed, and z = Φk(x), where k ∈ M2. Then
problem (1.1) in the local system of coordinates takes the form

−∇̂2
i û

(k) = f̂ (k), z3 > 0,

û(k)|z3=0 = 0,
(3.9)

for k ∈M2. Let us extend problem (3.9) to z3 < 0 by reflection. We denote
the extended functions by û(k)′, ζ ′. Let ζ̂ = ζ̂(k), k ∈M2, be a function from
the partition of unity, ζ̂ ′ be the extension of ζ̂ and let supp ζ̂ ′ ⊂ Q′, where

Q′ = {z ∈ R3 : |z′| < R, |z3| < a}

Set ũ = û(k)′ζ̂ ′, f̃ = f̂ (k)′ ζ̂ ′. Then (3.9) assumes the form

(3.10)
− ∇̂2

i ũ = f̃ − 2∇̂û′ · ∇ζ̂ ′ − ∆̂ζ̂ ′û′ ≡ f̃ ′0,
ũ|∂Q′ = 0,

where û′ = û(k)′, ∆̂ = ∇̂2
i . In view of (3.6) we have f̃ ′0 ∈ L2,−µ(Q′), µ ∈ (0, 1).

Then Lemma 2.2 implies that ũ ∈ H2
−µ(R3).

Moreover, from (3.6) it follows that ũ ∈ H2
−µ(R3) in neighbourhoods

located at a positive distance from L.
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To introduce the regularizer (see [4]) we define all local problems in a
uniform way. Let k ∈M1. Then problem (3.7) is expressed as

(3.11) −∇2
xũ

(k) = f̃
(k)
∗ in R3.

For k ∈M2, (3.10) takes the form

(3.12) −∇2
zũ

(k) = f̃
(k)
∗ in R3.

For k ∈M3, we consider the problem

(3.13) −∇2
xu

(k) = f̃
(k)
∗ in R3.

Finally, for k ∈M4 we have

(3.14)
−∇2

zu
(k) = f̃

(k)
∗ in R3

+,

u(k)|z3=0 = 0 on R2.

By Lemma 2.2 we have the existence of solutions to problems (3.11) and
(3.12). Since neighbourhoods Ω(k), k ∈ M3 ∪M4, are located at a positive
distance from L we have the existence in H l+2 so also in H l+2

−µ of solutions
to problems (3.13) and (3.14).

Let R(k) be the operator which solves the kth problem. Then we define
the operator

Rf =
∑
k∈M

η(k)(x)u(k)(x),

where

u(k)(x) =

{
R(k)ζ(k)f for k ∈M1 ∪M3,

Φ−1
k R(k)(Φkζ(k)f) for k ∈M2 ∪M4.

Let us introduce the spaces H = H(Ω) = L2,−µ, V = V (Ω) = H2
−µ, µ ∈

(0, 1), endowed with the norms

‖f‖H =
∑
k∈M

‖f (k)‖L2,−µ(R(k)), ‖u‖V =
∑
k∈M

‖u(k)‖H2
−µ(R(k)),

where

R(k) =
{

R3 for k ∈M1 ∪M2 ∪M3,

R+ for k ∈M4.

Since solvability of problems (3.11)–(3.14) is known we deduce R : H→V
is a bounded operator. Let Z be the operator of problem (1.1). It will be
shown that for f ∈ H we have

(3.15) ZRf = (I + T1 + T2)f, T = T1 + T2,

where I is the identity operator, T1 : H → H with the norm ‖T1‖ < 1, and
T2 is a completely continuous operator. Moreover, for v ∈ V we also have

(3.16) RZv = (I +W1 +W2)v, W = W1 +W2,
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where W1 : V → V with ‖W1‖ < 1 and W2 is a completely continuous
operator.

Since the operators (I + T1)−1 and (I + W1)−1 are bounded, we can
express (3.15) and (3.16) in the form

(3.17) ZR′f ′ = (I + T ′2)f ′

and

(3.18) R′′Zv = (I +W ′2)v,

where

R′ = R(I + T1)−1, f ′ = (I + T1)f, T ′2 = T2(I + T1)−1,

R′′ = (I +W1)−1R, W ′2 = (I +W1)−1W2.

Moreover, the operators T ′2 and W ′2 are also completely continuous.
From (3.16) we obtain

(3.19) ‖v‖H2
−µ(Ω) ≤ c(‖RZv‖H2

−µ(Ω) + ‖W1v‖H2
−µ(Ω) + ‖W2v‖H2

−µ(Ω)).

From the properties of R and the fact that the norm of W1 is less than one
we obtain from (3.19) the inequality

‖v‖H2
−µ(Ω) ≤ c(‖Zv‖L2,−µ(Ω) + ‖W2v‖H2

−µ(Ω)).

Since W2 is completely continuous with

‖W2v‖H2
−µ(Ω) ≤ ε‖v‖H2

−µ(Ω) + c(1/ε)‖v‖L2(Ω),

where ε ∈ (0, 1) and c(1/ε) ∼ ε−a, a > 0, we have

(3.20) ‖v‖H2
−µ(Ω) ≤ c(‖Zv‖L2,−µ(Ω) + ‖v‖L2(Ω)).

Having the existence of weak solutions to problem (1.1) in H1(Ω) we obtain
from (3.20) the estimate

(3.21) ‖v‖H2
−µ(Ω) ≤ c‖Zv‖L2,−µ(Ω).

Hence there exists an inverse operator Z−1 for problem (1.1) so we have the
existence of solution to problem (1.1) in H2

−µ(Ω), µ ∈ (0, 1). We can prove
the existence in a more explicit form. Let us express (3.16) in the form

(3.22) v −W1v = RZv +W2v.

Having the existence in H1(Ω) the r.h.s. of (3.22) belongs to H2
−µ(Ω). Since

W1 has norm less than one we prove the existence of solutions to (3.22) in
H2
−µ(Ω) by a fixed point argument.
We have to mention that the argument of the operator W2 vanishes in a

neighbourhood of L. Thus Lemma 3.1 will be proved.
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Now we derive the forms of the operators T1, T2,W1,W2 and show the
above statements. Following [4] we have

ZRf =
∑
k∈M

(Zη(k)u(k) − η(k)Zu(k)) +
∑
k∈M

η(k)Zu(k).

For k ∈M1 ∪M3 we have

Zu(k) = ZR(k)f (k) = f (k) = ζ(k)f.

For k ∈M2 ∪M4,

Z(∂x)u(k) = Z(∂x)Φ−1
k R(k)(Φkζ(k)f)(3.23)

= Φ−1
k Z(∂z −∇F · ∂z3)R(k)(Φkζ(k)f)

= Φ−1
k [Z(∂z −∇F∂z3)−Z(∂z)]R(k)(Φkζ(k)f)

+ Φ−1
k Z(∂z)R(k)(Φkζ(k)f),

where for k ∈M4 we should write (ζ(k)f, 0) instead of ζ(k)f . In view of the
definition of R(k) the last expression in (3.23) equals ζ(k)f . Therefore, the
operator T takes the form

Tf =
∑
k∈M

(Zη(k)u(k) − η(k)Zu(k))

+
∑

k∈M2∪M4

η(k)Φ−1
k [Z(∂z −∇F∂z3)−Z(∂z)]R(k)(Φkζ(k)f)

≡ T2f + T1f.

Now we construct the operator W . We examine the expression RZu.
For k ∈M1 ∪M3,

R(k)ζ(k)Zu = R(k)(ζ(k)Zu−Zζ(k)u) +R(k)Zζ(k)u,

where
R(k)Zζ(k)u = ζ(k)u.

For k ∈M2 ∪M4 we have

R(k)Φkζ
(k)Zu = R(k)Φk(ζ(k)Zu−Zζ(k)u) +R(k)ΦkZζ(k)u,

where the last expression equals

R(k)[Z(∂z −∇F∂z3)−Z(∂z)]Φkζ(k)u+R(k)Z(∂z)Φkζ(k)u

and by the definition of R(k) the last term equals Φkζ(k)u. Finally, the oper-
ator W assumes the form
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Wu =
{ ∑
k∈M1∪M3

η(k)R(k)(ζ(k)Z − Zζ(k))u

+
∑

k∈M2∪M4

η(k)Φ−1
k R(k)[Φk(ζ(k)Z − Zζ(k))u]

}
+

∑
k∈M2∪M4

η(k)Φ−1
k R(k)[Z(∂z −∇F∂z3)−Z(∂z)]Φkζ(k)u

≡W2u+W1u.

From the form of T we have
T1f =

∑
k∈M2∪M4

η(k)Φ−1
k [−∇iF∇iF∂2

z3 +∇iF∂zi∂z3

−∇Fi∂z3∂zi −∇Fi∂z3(∇Fi)∂z3 ]R(k)(Φkζ(k)f)
and

T2f =
∑
k∈M

(Zη(k)u(k) − η(k)Zu(k))

−
∑

k∈M2∪M4

η(k)Φ−1
k [∂zi∇Fi∂z3 ]R(k)(Φkζ(k)f).

Since |∂F/∂z| ≤ cλ we have ‖T1f‖L2,−µ ≤ cλ‖f‖L2,−µ , so for λ sufficiently
small we have ‖T1‖H→H < 1.

Since the operator T2 involves at most the first derivatives of u(k), the
compact imbedding H2

−µ ⊂ H1
−µ implies that T2 is completely continuous.

Examining W we have

W1u =
∑

k∈M2∪M4

η(k)Φ−1
k R(k)[−∇iF∇iF∂2

z3 − 2∇iF∂ziz3

−∇Fi∂z3(∇Fi)∂z3 ]Φkζ(k)u

and
W2u =

∑
k∈M1∪M3

η(k)R(k)(ζ(k)Z − Zζ(k))u

+
∑

k∈M2∪M4

η(k)Φ−1
k R(k)[Φk(ζ(k)Z − Zζ(k))u]

−
∑

k∈M2∪M4

η(k)Φ−1
k R(k)(∂zi∇Fi∂z3)Φkζ(k)u.

By the same arguments as above we have ‖W1u‖V→V < 1 and W2 is com-
pletely continuous.

Using estimates for solutions to problems (3.11)–(3.14) and the global
estimate (3.6) we show estimates (3.21) and (3.22).

Hence for f ∈ H(Ω) and v ∈ V (Ω) there exists a solution to problem
(1.1) in V (Ω).
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We have to stress that all considerations leading to (3.15) and (3.16) are
done for f ∈ H(Ω) and v ∈ V (Ω). Therefore, choosing the spaces H(Ω) and
V (Ω) we were able to prove the existence in V (Ω). Hence, if either ‖T1‖ > 1
or ‖W1‖ > 1 we could not have proved the existence in V (Ω). This concludes
the proof.

Lemma 3.2. Assume that f ∈ L2,−µ(Ω), µ ∈ (1, 2), S ∈ C2. Then there
exists a solution to problem (1.1) such that u ∈ H2

−µ(Ω) and
(3.24) ‖u‖H2

−µ(Ω) ≤ c‖f‖L2,−µ(Ω), µ ∈ (1, 2).

Proof. Since f ∈ L2,−µ(Ω), µ ∈ (1, 2) and Ω is bounded we have f ∈
L2,−µ(Ω), µ ∈ (0, 1). Hence the assumption of Lemma 3.1 holds. Then by the
Hardy inequality we get f̃ (k)

∗ ∈ L2,−µ(R3) for µ ∈ (1, 2), k ∈M1∪M2. Then
repeating the considerations from the proof of Lemma 3.1 and assuming that
H(Ω) = L2,−µ, V (Ω) = H2

−µ, µ ∈ (1, 2), we conclude the proof.
Continuing the considerations we obtain

Lemma 3.3. Assume that f ∈ L2,−µ(Ω), µ ∈ (k, k+ 1), k ∈ N0, S ∈ C2.
Then there exists a solution to problem (1.1) such that u ∈ H2

−µ(Ω) and
(3.25) ‖u‖H2

−µ(Ω) ≤ c‖f‖L2,−µ(Ω), µ ∈ (k, k + 1).

Finally, we prove

Lemma 3.4. Assume that f ∈ H l
−µ(Ω), µ ∈ R+ \ Z, l ∈ N0, S ∈ C l+2.

Then there exists a solution to problem (1.1) such that u ∈ H l+2
−µ (Ω) and

(3.26) ‖u‖Hl+2
−µ (Ω) ≤ c‖f‖Hl

−µ(Ω).

Proof. We prove the lemma recurrently. Take l = 1. From Lemma 3.3
we find that the r.h.s. of (3.11) and (3.12) belong to H1

−µ. Then we apply
the regularizer technique for H = H1

−µ and V = H3
−µ. Thus we prove the

existence of u in H3
−µ and (3.26) for l = 1. Having (3.26) for l = 1 we infer

that the r.h.s. of (3.11) and (3.12) belong to H2
−µ, so applying the regularizer

technique for H = H2
−µ and V = H4

−µ we prove the assertion and (3.26) for
l = 2.

Continuing the considerations we conclude the proof.
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