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BOX-SPLINE HISTOGRAMS FOR
MULTIVARIATE DENSITY ESTIMATION

Abstract. The uniform approach to calculation of MISE for histogram
and density box-spline estimators gives us a possibility to obtain estimators
of derivatives of densities and the asymptotic constant.

1. Histograms. We have two methods of bandwidth selection for the
Rosenblatt–Parzen estimator: cross-validation (unbiased and biased) and
plug-in (see for instance [16]). In our paper we present higher order point
estimators to obtain plug-in estimates for the bandwidth in the case of his-
tograms. An excellent introduction to histograms is given in the book by
Scott [17].

In Section 1 we give a simple introduction to box-spline operators and
box-spline histograms based on these operators. From the point of view of
estimation of density, two properties of approximation are crucial: the rate
of convergence and the so called saturation property (Theorem 3.1). These
properties divide the box-spline estimators into three classes. These classes
are represented by a histogram, a linear histogram, and a Zwart–Powell his-
togram (ZP histogram for short). This is the reason why we fix our attention
on these three histograms. The basic results are recalled in Section 2. In Sec-
tion 3 we show how to use the saturation property to estimate derivatives.
The presented method is a version of the method from [13], and it is applica-
ble only to box-spline estimators of the type of the ZP histogram. In Section 4
we present a method of estimating the asymptotic constant (see (11)). This
method is more general and is applicable to all cases. We present it for the
histogram. It seems to be a version of the “no diagonals” estimator [18].
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We consider only dimension d = 2 just for simplicity. It is also not com-
plicated to introduce a nonhomogeneous scaling [9], so we omit it. Spline
estimators were introduced by Ciesielski [5]. There are a large number of
papers concerning methods of bandwidth selection. Let us mention some of
them: [1], [11], [14].

We consider a pair of functions (F,G) which are nonnegative, piecewise
polynomials with compact support

F,G : R2 → R.

The additional assumptions are given below. A box-spline operator under
consideration is defined by

(1) Qf(x) =
�

R2

K(x, y)f(y) dy,

with the kernel depending on F,G,

(2) K(x, y) =
∑
α∈Z2

F (y − α)G(x− α).

The operator Q defines a family of operators Qh for h > 0,

(3) Qh = σh ◦Q ◦ σ1/h,

where
σhf(x) = f(x1/h, x2/h), x = (x1, x2).

Remarks. Since F,G ≥ 0, it follows that the operators Qh are positive,
i.e. if f ≥ 0 then Qhf ≥ 0. Moreover, we assume that our functions satisfy∑

α∈Z2

F (· − α) =
1	

R2 G
a.e.

By this assumption the operators Qh map densities to densities, i.e. if f is a
density, then

	
R2 Qhf = 1. To ensure a good approximation we assume that

the Qh reproduce at least constant polynomials, Qh(1) = 1 (here 1 is the
function 1(x) = 1), or equivalently∑

α∈Z2

G(x− α) =
1	

R2 F
a.e.

Remark. In the definition of the kernel K, instead of Z2 we can take
another lattice, for instance AZ2, where

(4) A =

[
1 sinπ/6
0 cosπ/6

]
.

The definition so modified includes for instance the histograms and the linear
histogram based on the regular hexagon considered in [17].
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Let X1, . . . , Xn be a random sample from a distribution with density f .
We define a density estimator based on the kernel K by

(5) fh,n(x) =
1
nh2

n∑
k=1

K(x/h,Xk/h).

Note that

(6) Efh,n = Qhf.

Now we introduce three examples of box-spline estimators. Let H be the
characteristic function of the square [0, 1]2, i.e.

H(x) = I[0,1]2(x) =
{

1, x ∈ [0, 1]2,
0, x 6∈ [0, 1]2.

In this paper we will consider three examples of pairs (Fi, Gi), i = 1, 2, 3.

Example 1. The histogram corresponds to the choice

F1 = G1 = H.

Example 2. The linear histogram corresponds to the choice

F2(x1, x2) = H(x1 − 0.5, x2 − 0.5)

and G2 is the hat function given by

G2(x1, x2) =
1�

0

G1(x1 − t, x2 − t) dt.

Example 3. The Zwart–Powell histogram (for short ZP histogram) cor-
responds to the choice

F3(x1, x2) = H(x1, x2 − 1)

and G3 is the Zwart–Powell function given by

G3(x1, x2) =
1�

0

G2(x1 + t, x2 − t) dt.

See [3] for the definition of box-splines and [7] for the definition of box-
spline estimators.

2. Asymptotic formulas for MISE. We say that the box-spline op-
erator Q reproduces the polynomials of degree less than % if Q(P ) = P for all
polynomials P with degP < %. We then say that Q has polynomial order %.
For a pair of functions (Fj , Gj) introduced in the previous section we will
add the superscript j to the operator, i.e. Qj , and to the kernel i.e. Kj ,
j = 1, 2, 3. Note that the operator Q1 reproduces only constant polynomials,
i.e. %1 = 1, and the operators Qj , j = 2, 3, reproduce the linear and constant
polynomials, i.e. %j = 2. The parameter % gives the rate of approximation.
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We may check [8] that if Q has polynomial order %, then there is C > 0 such
that for functions f from the Sobolev space W %

2 ,

(7) ‖Qhf − f‖2 ≤ Ch%|f |%,2,
where

|f |%,2 =
∑
|β|=%

‖Dβf‖2, ‖f‖2 =
( �

Rd

|f |2
)1/2

.

Dβf =
∂|β|f

∂xβ1
1 ∂x

β2
2

, β = (β1, β2), |β| = β1 + β2.

Recall that the Sobolev space is defined by

W %
2 =

{
f ∈ L2 :

∑
|β|=%

‖Dβf‖2 <∞
}
.

A monomial of degree |β| will be denoted by []β , i.e. for x = (x1, x2),

[]β(x) = xβ = xβ1
1 x

β2
2 .

We assume that f ∈ L2 to consider the mean integrated square error,
given by

(8) MISE(f, h) = E
[ �

R2

[fh,n − f ]2
]
.

Consequently,

(9) MISE(f, h) = E
[ �

R2

[fh,n −Qhf ]2
]

+
�

R2

[Qhf − f ]2.

The deterministic part is considered in [8].

Theorem 2.1. Assume that Q has polynomial order %. Let f ∈W %
2 (R2).

Then

(10) lim
h→0+

∥∥∥∥Qhf − fh%

∥∥∥∥
2

=
( �

R2

( �

[0,1]2

∣∣∣∣ ∑
|β|=%

1
β!
Dβf(t)(Q([]β)(x)− []β(x))

∣∣∣∣2 dx) dt)1/2

.

Let us define the asymptotic constant depending on f and the box-spline
histogram (j = 1, 2, 3) by

θj = (Asym(f, j))2(11)

=
�

R2

( �

[0,1]2

∣∣∣∣ ∑
|β|=%j

1
β!
Dβf(t)(Qj([]β)(x)− []β(x))

∣∣∣∣2 dx) dt.
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Asym(f, 1) is known (see for instance [17]):

(12) θ1 = (Asym(f, 1))2 =
1
12

�

R2

((
∂f

∂x1

)2

+
(
∂f

∂x2

)2)
.

An easy calculation shows that

θ2 = (Asym(f, 2))2(13)

=
�

R2

{(
∂2f

∂x2
1

)2

· 49
2880

+
(
∂2f

∂x2
2

)2

· 49
2880

+
(

∂2f

∂x1∂x2

)2

· 1
90

+
(
∂2f

∂x2
1

∂2f

∂x2
2

)
· 1
32

+
(
∂2f

∂x2
1

∂2f

∂x1∂x2

)
· 17
720

+
(
∂2f

∂x2
2

∂2f

∂x1∂x2

)
· 17
720

}
,

(14) θ3 = (Asym(f, 3))2 =
�

R2

{
1
6

(
∂2f

∂x2
1

+
∂2f

∂x2
1

)}2

.

Let us consider the first term of (9). We have the following result (com-
pare [8, Theorem 1.4]).

Theorem 2.2. Let the density f be in W %
2 (R2). If nh2 →∞ and h→ 0

then

(15) lim
nh2→∞

nh2E
[ �

R2

[fh,n −Qhf ]2
]

=
�

R2

[ �

[0,1]2

(K(x, y))2 dy
]
dx.

Remark 1. By (9), (10) and (15) we get

MISE(f, h) ∼ AMISE(f, h)

where for the box-spline histograms

(16) AMISE(f, h) =
1
nh2

�

R2

[ �

[0,1]2

(Kj(x, y))2 dy
]
dx + h2%j (Asym(f, j))2.

So the best choice of the parameter h > 0 to minimize (16) is

(17) h =
(	

R2 [
	
[0,1]2(Kj(x, y))2 dy] dx

%jn(Asym(f, j))2

)−1/(2%j+2)

.

Now we have another estimation problem of θj = (Asym(f, j))2 with a
different bandwidth denoted by a. As for the density estimation, the choice
of a is crucial to the performance of the estimator θ̂j(a). We use here the
notation from [15]. In the next section we construct an estimator gan of the
derivatives DQ3f , where (compare (14))

DQ3f =
1
6

(
∂2f

∂x2
1

+
∂2f

∂x2
1

)
.
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Hence an estimator of θ3 is given by

θ̂3(a) =
�

R2

(gan)2.

In Section 4 we estimate θj directly.

3. Choice of bandwidth for estimation of derivatives of density:
ZP histogram. The problem of estimation of derivatives in the multivariate
case is rather ambiguous. We look for estimators of derivatives which appear
in the asymptotic formula. The following theorem ([10, Theorem 2.5]) is
important. Let us denote F̆ (x) = F (−x).

Theorem 3.1. Let f ∈W %j

2 . If a→ 0 then

(18)
Qjaf − f
a%j

→ DQjf

weakly in L2 for j = 1, 2, 3, where

DQjf =
1

(2πi)%j

∑
|β|=%j

Dβf

β!
Dβ(Ĝj

̂̆
Fj)(0).

It is crucial for our construction that for j = 3 in (18) we have L2

convergence, but not for j = 1, 2 in general. Hence

(Asym(f, 3))2 =
�

R2

(DQ3f)2.

It is not difficult to prove (Theorem 3.2 below) that if a→ 0, then also

(19)
Q3
a(Q

3
af)−Q3

af

a2
→ DQ3f =

1
6

(
∂2f

∂x2
1

+
∂2f

∂x2
1

)
,

in L2 norm. The property (19) helps us construct an estimator of DQ3f . It
leads us to the operator

T := Q3 ◦Q3 −Q3.

Note that the operator T has the same structure as Q, i.e.

Tf(x) =
�

R2

κ(x, y)f(y) dy,

where

(20) κ(x, y) =
∑
α∈Z2

F3(y − α)(Q3(G3)−G3)(x− α).

We define as above a family of operators Ta for a > 0. Now we are ready
to define an estimator of the derivatives DQ3f . Let X1, . . . , Xn be a random
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sample from a distribution with density f . Then we define an estimator of
DQ3f by

(21) gan(x) =
1
na4

n∑
k=1

κ(x/a,Xk/a).

Note that

Egan =
Ta(f)
a2

and

E
�

R2

|gan −DQ3f |2 = E
�

R2

∣∣∣∣gan − Ta(f)
a2

∣∣∣∣2 +
�

R2

∣∣∣∣Ta(f)
a2

−DQ3f

∣∣∣∣2.
Theorem 3.2. Let na6 →∞ and a→ 0 and f ∈W 4

2 . Then

(22)
( �

R2

∣∣∣∣Ta(f)
a2

−DQ3f

∣∣∣∣2)1/2

≤ C(a|f |3,2 + a2|f |4,2)

and

lim
na6→∞

na6E
�

R2

∣∣∣∣gan − Ta(f)
a2

∣∣∣∣2 =
�

R2

{ �

[0,1]2

κ2(x, y) dy
}
dx.

Proof. If we modify slightly the end of the proof of Theorem 2.23 with
% = 0 in [6] and use Lemma 1.1 of [8], we get

(23)
∥∥∥∥Q3

af − f
a2

−DQ3f

∥∥∥∥
2

≤ Ca|f |3,2.

Now the triangle inequality implies that

(24)
∥∥∥∥Ta(f)

a2
−DQ3f

∥∥∥∥
2

=
∥∥∥∥Q3

aQ
3
af −Q3

af

a2
−DQ3f

∥∥∥∥
2

≤
∥∥∥∥Q3

aQ
3
af −Q3

af

a2
−Q3

aDQ3f

∥∥∥∥
2

+ ‖Q3
aDQ3f −DQ3f‖2.

Since the operators Q3
a are uniformly bounded, applying (23) we get∥∥∥∥Q3

aQ
3
af −Q3

af

a2
−Q3

aDQ3f

∥∥∥∥
2

≤ C
∥∥∥∥Q3

af − f
a2

−DQ3f

∥∥∥∥
2

≤ Ca|f |3,2.

We now turn to the second term of (24). Applying (7) we get

‖Q3
aDQ3f −DQ3f‖2 ≤ Ca2|DQ3f |2,2.

This finishes the proof of the first inequality.
The proof of the second formula is rather similar to that of [8, Theorem

1.4].
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Now the choice of the estimator of θ3 is obvious:

θ̂3(a) =
�

R2

(gan)2.

We can turn to the second strategy of estimating θ3. Note that

(25) (gan)2(x)

=
(

1
na4

)2( n∑
k 6=l

κ(x/a,Xk/a)κ(x/a,Xl/a) +
n∑
k=1

(κ(x/a,Xk/a))2
)

and

E(gan(x))2 =
n2 − n
n2

(
Ta(f)(x)

a2

)2

+
1
a8

1
n

�

R2

(κ(x/a, y/a))2f(y) dy.

Now another estimator (“no diagonals”) of θ3 can be given by the formula

θ̂3(a) =
(

1
na4

)2 �

R2

n∑
k 6=l

κ(x/a,Xk/a)κ(x/a,Xl/a) dx.

To avoid tedious calculations we propose the following simpler estimator for
an even size of a sample:

(26) θ̂3(a) =
1

(n/2)a8

�

R2

n/2∑
k=1

κ(x/a,Xk/a)κ(x/a,Xn−k/a) dx.

This approach with minor changes is applicable to the histogram and the
linear histogram. We will see it in the next section for the histogram, i.e. we
will construct θ̂1.

4. Choice of bandwidth for estimation of the asymptotic con-
stant: histogram. We will explain the estimation of the asymptotic con-
stant in the case of the histogram.

First we construct an operator Q5 reproducing the polynomials of degree
less than or equal to two by the formula

Q5(f) =
∑
|γ|≤1

aγQ
3(f(· − γ)).

Applying (10) and (14) we obtain, for |β| = 2,

Q3([]β)(x)− xβ = Aβ,

where A(1,1) = 0, A(2,0) = 1/3, A(0,2) = 1/3. Consequently, to find the
coefficients aγ we need to solve the system of equations, for all |β| ≤ 2,

Q5([]β) =
∑
|γ|≤1

aγQ
3((· − γ)β) = []β.



Box-spline histograms 421

One of the solutions is a(0,0) = 4/3 and a(γ1,γ2) = −1/12 for all |γ1| = |γ2| = 1
and the other aγ are zero. Since Q3 reproduces polynomials of degree less
than or equal to two by (7), there is C > 0 such that for all f ∈W 3

2 ,

‖Q5
hf − f‖2 ≤ Ch3|f |3,2.

By definition,
Q5(f)(x) =

�

R2

K5(x, y)f(y) dy,

where

K5(x, y) =
∑
α∈Z2

F3(y − α)G5(x− α), G5(x) =
∑
|γ|≤1

aγG3(x− γ).

Now we consider the operator defined as follows:

T 1 := Q1 ◦Q5 −Q5.

Using this operator we construct an estimator of θ1. We can write

T 1(f)(x) =
�

R2

κ1(x, y)f(y) dy

with

κ1(x, y) =
∑
α∈Z2

F3(y − α)K(x− α), K(x) = Q1(G5)(x)−G5(x).

Let X1, . . . , Xn be a random sample from a distribution with density f .
For simplicity let n be even. To avoid tedious calculations let

(27) θ̂1(a) =
1

(n/2)a6

�

R2

n/2∑
k=1

κ1(x/a,Xk/a)κ1(x/a,Xn−k/a) dx,

for short θ̂1 = θ̂1(a). By definition,

Eθ̂1(a) =
�

R2

(
T 1
a f

a

)2

.

We have
E[θ̂1 − θ1]2 = E[θ̂1 − Eθ̂1]2 + [Eθ̂1 − θ1]2.

The asymptotic behavior of the deterministic part follows from Theorem 4.1
and the equality

[Eθ̂1 − θ1]2 =
∣∣∣∣ ∥∥∥∥T 1

a f

a

∥∥∥∥
2

−Asym(f, 1)
∣∣∣∣2∣∣∣∣ ∥∥∥∥T 1

a f

a

∥∥∥∥
2

+ Asym(f, 1)
∣∣∣∣2.

Theorem 4.1. Let f ∈W 3
2 . Then∣∣∣∣ ∥∥∥∥T 1

a f

a

∥∥∥∥
2

−Asym(f, 1)
∣∣∣∣ ≤ C(a|f |2,2 + a2|f |3,2).
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Proof. From Theorem 8 and Lemma 11 of [9] we infer that there is C > 0
such that for g ∈W 2

2 ,∣∣∣∣∥∥∥∥Q1
ag − g
a

∥∥∥∥
2

−Asym(g, 1)
∣∣∣∣ ≤ Ca|g|2,2.

Put g = Q5
af . Consequently,∣∣∣∣∥∥∥∥Q1

aQ
5
af −Q5

af

a

∥∥∥∥
2

−Asym(Q5
af, 1)

∣∣∣∣ ≤ Ch|Q5
af |2,2.

From Corollary 2.1 of [10] we obtain, for |β| = 2,

‖DβQ5
af −Dβf‖2 ≤ Ca|f |3,2.

Then
|Q5

af |2,2 ≤ C(|f |2,2 + a|f |3,2).

Consequently,

(28)
∣∣∣∣∥∥∥∥Q1

aQ
5
af −Q5

af

a

∥∥∥∥
2

−Asym(Q5
af, 1)

∣∣∣∣ ≤ C(a|f |2,2 + a2|f |3,2).

From the triangle inequality

|Asym(Q5
af, 1)−Asym(f, 1)|

≤
( �

R2

( �

[0,1]2

∣∣∣∣ ∑
|β|=1

1
β!
|Dβf(t)−DβQ5

af(t)|(Q1([]β)(x)−[]β(x))
∣∣∣∣2 dx) dt)1/2

.

By the above mentioned Corollary 2.1 of [10] with |β| = 1 we have

(29) |Asym(Q5
af, 1)−Asym(f, 1)| ≤ Ca2|f |2,2.

Combining (28) and (29) we finish the proof.

We need the following lemma.

Lemma 4.1. Let I := [0, 1]× [1, 2]. Let f be a bounded density such that
f ∈ L1(R2) ∩ L2(R2). Then for fixed α ∈ Z2,

lim
h→0

1
h2

∑
α1∈Z2

�

Ih+α1h

f(u) du
�

Ih+(α1+α)h

f(u) du =
�

R2

f2.

The proof is left to the reader. We can reformulate the lemma to obtain
the following statement. Let f be a density such that f ∈ L2(R2). Let α ∈ Z2

be fixed. Then for a.e. x1, x2 ∈ [0, 1]2,

lim
h→0

∑
α1∈Z2

f(hx1 + α1h)f(hx2 + α1h+ αh)h2 =
�

R2

f2.

We mention this because the convergence of the Riemann sums was observed
for Lebesgue-integrable functions in the papers [4] and [12].

Let us note that the support of the function F3 is equal to I.
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Theorem 4.2. Let f be a density such that f ∈ W 2
2 . If na

6 → ∞ and
a→ 0 then

(30) limna6E(θ̂1 − Eθ̂1)2 = 2
�

R2

f2
∑
α∈Z2

b2α,

where
bα =

�

R2

K(x)K(x− α) dx.

Proof. Write

E(θ̂1 − Eθ̂1)2

= E

(
1

(n/2)a6

�

R2

n/2∑
k=1

κ1(x/a,Xk/a)κ1(x/a,Xn−k/a) dx−
�

R2

(
T 1
a f

a

)2)2

=
4

n2a4
E

(n/2∑
k=1

�

R2

(
1
a4
κ1(x/a,Xk/a)κ1(x/a,Xn−k/a)− (T 1

a f(x))2
)
dx

)2

=
2
na4

E

( �

R2

(
1
a4
κ1(x/a,X1/a)κ1(x/a,X2/a)− (T 1

a f(x))2
)
dx

)2

=
2
na4

E

( �

R2

1
a4
κ1(x/a,X1/a)κ1(x/a,X2/a) dx

)2

− 2
na4

( �

R2

(T 1
a f)2

)2
.

Only the first term of the last formula is important (let us denote it by P ).
Using the assumption f ∈ W 2

2 we find that the second term is negligible.
Using the kernel representation we get

P =
2
na4

E

( �

R2

1
a4
κ1(x/a,X1/a)κ1(x/a,X2/a) dx

)2

=
2
na4

E

( �

R2

1
a4

∑
α1∈Z2

∑
α2∈Z2

F3(X1/a− α1)F3(X2/a− α2)

×K(x/a− α1)K(x/a− α2) dx
)2

=
2
na4

E

(
1
a2

∑
α1∈Z2

∑
α2∈Z2

F3(X1/a− α1)F3(X2/a− α2)bα1−α2

)2

=
2
na8

∑
α1∈Z2

∑
α2∈Z2

∑
α3∈Z2

∑
α4∈Z2

E(F3(X1/a− α1)F3(X1/a− α3))

× E(F3(X2/a− α2)F3(X2/a− α4))bα1−α2bα3−α4 .
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Observe that since F3 is the characteristic function of I, if α1 6= α3 we have

E(F3(X1/a− α1)F3(X1/a− α3)) = 0,

while if α1 = α3,

E(F3(X1/a− α1))2 =
�

R2

(F3(u/a− α1))f(u) du

=
�

Ia+α1a

f(u) du,

where (recall) I = [0, 1]× [1, 2]. Consequently,

P =
2
na8

∑
α1∈Z2

∑
α2∈Z2

(bα1−α2)2
�

Ia+α1a

f(u) du
�

Ia+α2a

f(u) du.

Using Lemma 4.1 finishes the proof since bα = 0 for |α| > 4.

Note that applying the two last theorems we deduce that to estimate the
asymptotic constant the bandwidth is aMISE ∼ (1/n)1/8.

5. Simulation results. We show an accuracy of the estimation of the
asymptotic constant for the histogram. We take the dimension d = 1 and
1000 samples from the distribution of random variables

X = σZ + 3σY,

where Z is standard normal N(0, 1). The random variable Y is independent
of Z and has binomial distribution with p = 0.5. We estimate

θ1 =
1
12

�

R
(f ′)2.

In the case of d = 1 the formula (27) can be written as

θ̂1(a) =
2
na3

n/2∑
k=1

∑
j∈Z

∑
|l|≤4

AlI[1,2](Xn/a− j)I[1,2](Xn−k/a− j − l),

where I[1,2] is the characteristic function of [1, 2],

Al =
�

R
K(x+ l)K(x) dx,

K(x) = −1
6

(Q1(G3)−G3)(x− 1)

+
4
3

(Q1(G3)−G3)(x)− 1
6

(Q1(G3)−G3)(x+ 1)
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and G3 is the B-spline, i.e.

G3(x) =
1
2

3∑
j=0

(−1)r−j
(
r

j

)
(j − x)2+.

In this case, Q1 is the orthogonal projection

Q1f(x) =
∑
k∈Z

k+1�

k

f(u) du I[k,k+1](x).

We have
σ 0.1 0.2 0.3 0.4
θ1 3.709 0.464 0.137 0.058

We show the four functions θ̂1(a) (SAS 9) with respect to different σ
from 0.1 to 0.4. The simulations show that a for which θ̂1(a) gives a good
estimation of θ1 lies in the region where the oscillations diminish. It would
be interesting to prove it.
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