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IMPLICIT DIFFERENCE METHODS FOR NONLINEAR
FIRST ORDER PARTIAL FUNCTIONAL DIFFERENTIAL

SYSTEMS

Abstract. Initial problems for nonlinear hyperbolic functional differential
systems are considered. Classical solutions are approximated by solutions of
suitable quasilinear systems of difference functional equations. The numeri-
cal methods used are difference schemes which are implicit with respect to
the time variable. Theorems on convergence of difference schemes and error
estimates of approximate solutions are presented. The proof of the stability
is based on a comparison technique with nonlinear estimates of the Perron
type. Numerical examples are given.

1. Introduction. For any metric spaces X and Y we denote by C(X,Y )
the class of all continuous functions from X into Y . If A ⊂ X and α ∈
C(X,Y ) then α|A denotes the restriction of α to the set A. We will use
vectorial inequalities with the understanding that the same inequalities hold
between their corresponding components.

Suppose that M = (M1, . . . ,Mn) ∈ Rn
+, a > 0, R+ = [0,+∞), b =

(b1, . . . , bn), b ∈ Rn
+ and b > Ma. Let E be the Haar pyramid

E = {(t, x) ∈ R1+n : t ∈ [0, a], −b+Mt ≤ x ≤ b−Mt}
where x = (x1, . . . , xn). Write E0 = [−b0, 0]× [−b, b] where b0 ∈ R+ and

B = [−b0 − a, 0]× [−2b, 2b],
Et = (E0 ∪ E) ∩ ([−b0, t]× Rn), 0 ≤ t ≤ a.

For (t, x) ∈ E we define

D[t, x] = {(τ, y) ∈ R1+n : τ ≤ 0 and (t+ τ, x+ y) ∈ E0 ∪ E}.
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Given a function z : E0∪E → Rk and a point (t, x) ∈ E, we consider the
function z(t,x) : D[t, x]→ Rk defined by z(t,x)(τ, y) = z(t+ τ, x+ y), (τ, y) ∈
D[t, x]. Thus z(t,x) is the restriction of z to the set (E0∪E)∩ ([−b0, t]×Rn),
shifted to the set D[t, x].

Put Ω = E × C(B,Rk) × Rn and suppose that f : Ω → Rk, f =
(f1, . . . , fk), is a given function of the variables (t, x, w, q), w = (w1, . . . , wk),
q = (q1, . . . , qn). We will say that f satisfies the condition (V ) if for (t, x, q) ∈
E×Rn and w, w̄ ∈ C(B,Rk) such that w|D[t,x] = w̄|D[t,x] we have f(t, x, w, q)
= f(t, x, w̄, q). The condition (V ) means that the value of f at (t, x, w, q) ∈ Ω
depends on (t, x, q) and on the restriction of w to D[t, x] only.

Let us denote by z = (z1, . . . , zk) an unknown function of the variables
(t, x). Given ϕ : E0 → Rk, we consider the system of functional differential
equations

(1.1) ∂tzi(t, x) = fi(t, x, z(t,x), ∂xzi(t, x)), i = 1, . . . , k,

with the initial condition

(1.2) z(t, x) = ϕ(t, x) on E0

where ∂xzi = (∂x1zi, . . . , ∂xnzi). System (1.1) has the property that every
equation contains the vector of unknown functions and the derivatives of
only one scalar function. We consider classical solutions of (1.1), (1.2) and
we assume that f satisfies the condition (V ). The Haar pyramid is a natural
domain for the existence and uniqueness of classical or generalized solutions
for nonlinear hyperbolic systems with initial conditions ([3], [12], [21]).

The following methods of construction of approximate solutions for non-
linear hyperbolic functional differential equations are known: the numerical
method of bicharacteristics, the Euler difference method, the Lax scheme.
The aim of this paper is to add a new element to the above sequence of
numerical methods.

We are interested in establishing a method of numerical approximation of
solutions to (1.1), (1.2) by means of solutions of associated systems of implicit
difference functional equations and in estimating the difference between the
exact and approximate solutions.

We first give some motivations for our investigations. Let (h0, h
′) = h,

h′=(h1, . . . , hn), stand for steps of a mesh. Let (t(r), x(m)),m=(m1, . . . ,mn),
denote nodal points. Let E0.h and Eh be the sets of all nodal points which
are elements of E0 and E respectively. Solutions of difference equations are
defined on E0.h ∪ Eh. Classical difference methods for (1.1), (1.2) consist in
replacing the partial derivatives ∂t and (∂x1 , . . . , ∂xn) = ∂x with difference
operators δ0 and (δ1, . . . , δn) = δ. Moreover, system (1.1) contains the func-
tional variable z(t,x) which is an element of C(D[t, x],Rk). Then we need an
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interpolating operator

(1.3) Th : F(E0.h ∪ Eh,Rk)→ C(E0 ∪ E,Rk).

Additional assumptions on Th will be needed in Section 4. System (1.1) leads
to the difference functional system

(1.4) δ0z
(r,m)
i = fi(t(r), x(m), (Thz)(t(r),x(m)), δz

(r,m)
i ), i = 1, . . . , k,

where δzi = (δ1zi, . . . , δnzi). Initial conditions are associated with (1.4).
The following examples of systems (1.4) are considered in the literature:

the Euler difference method and the Lax scheme (see [12, Chapter 3]). Two
types of assumptions are needed in theorems on the stability of difference
schemes generated by (1.1), (1.2). Conditions the first type concern the reg-
ularity of f and they are the same for both methods. It is required that the
function f of variables (t, x, w, q) satisfies nonlinear estimates of the Perron
type with respect to w and it is of class C1 with respect to q and that the func-
tions ∂qfi = (∂q1fi, . . . , ∂qnfi), 1 ≤ i ≤ k, are bounded on Ω. Assumptions
the second type in convergence theorems are the Courant–Friedrichs–Levy
(CFL) conditions (see [8, Chapter III], [9], [12, Chapter III]). For the analysis
of the stability of the Euler difference method we need the following (CFL)
conditions:

(i) for each P = (t, x, w, q) ∈ Ω we have

(1.5) 1− h0

n∑
j=1

1
hj
|∂qjfi(P )| ≥ 0, 1 ≤ i ≤ k,

(ii) for each 1 ≤ i ≤ k, the function

(1.6) sign ∂qfi = (sign ∂q1fi, . . . , sign ∂qnfi)

is constant on Ω.

The (CFL) conditions for (1.1) and for the Lax difference scheme have
the form

(1.7)
1
n
− h0

hj
|∂qjfi(P )| ≥ 0, 1 ≤ j ≤ n, 1 ≤ i ≤ k,

where P ∈ Ω.
Note that the assumptions (1.5) and (1.7) require some relations between

h0 and h′. We conclude from condition (ii) that we need more restrictive
assumptions on f for the Euler method than for the Lax scheme.

Of course there are systems (1.1) for which both the difference methods
are convergent. It follows from the theory of bicharacteristics that in this
case the Euler method is more suitable than the Lax scheme. This theoretical
observation is confirmed by numerical experiments.



462 E. Puźniakowska-Gałuch

With the above motivation we are interested in proving convergence re-
sults for Euler methods and for a possibly large class of nonlinear problems.
More precisely, we will show that there are convergent difference methods
of the Euler type for which the assumption that the functions (1.6) are
constant can be omitted. In other words, we show that we do not need the
Lax difference schemes for systems (1.1) with natural regularity assumptions
on f . Since we consider implicit difference schemes, we show that the (CFL)
condition (1.5) can also be omitted in the convergence analysis.

In recent years, a number of papers concerning numerical methods for
first order partial functional differential equations have been published. Ex-
plicit difference schemes for initial or initial boundary value problems were
studied in the papers [11], [20] and in the monograph [12]. The proofs of
convergence were based on functional difference inequalities or on general
theorems on error estimates for approximate solutions to functional differ-
ence equations of the Volterra type with an unknown function of several
variables.

Sufficient conditions for the convergence of implicit difference schemes for
initial boundary value problems are given in [4], [13]. It is assumed in [4] that
the functions (1.6) are constant on Ω. It follows that the results of [4] are
not applicable to (1.1), (1.2). The papers [16], [17] initiated investigations of
implicit difference schemes for parabolic equations. Monotone iterative meth-
ods and implicit difference schemes for computing approximate solutions of
parabolic equations with time delay were analysed in [18], [19], [27]. Implicit
difference schemes for nonlinear parabolic functional differential equations
with initial boundary conditions of the Dirichlet type were studied in [14].
Convergence theorems were proved by using a comparison technique.

In this paper we propose a new class of difference schemes correspond-
ing to (1.1), (1.2). We approximate the unknown function z and its partial
derivatives ∂xzi, 1 ≤ i ≤ k, by solutions of quasilinear systems of differ-
ence functional equations which are implicit with respect to the variable t.
In this procedure we linearize (1.1) with respect to the last variable. This
method has been used in the existence and uniqueness theory for classical
or generalized solutions.

Sufficient conditions for the existence and uniqueness of classical or gen-
eralized solutions can be found in the papers [2], [3], [10], [21], [22] and the
monograph [12]. We use general ideas concerning the stability of numerical
methods for evolution differential or functional differential equations, intro-
duced in [15], [23], [24].

First order partial functional differential equations find applications in
different fields of knowledge. Differential-integral systems have been pro-
posed in [1] as simple mathematical models for the nonlinear phenomenon
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of harmonic generation of laser radiation through piezoelectric crystals for
nondispersive materials and of Maxwell–Hopkinson type. Systems of differ-
ential equations containing operators acting on the unknown density of pop-
ulations in dependence on their age, size, and DNA content, are considered
in [25]. An equation with a deviated argument ([6]) describes the density
of households at a time t, depending on their estate, in the theory of the
distribution of wealth. Another system of integral-differential equations is
used in mathematical biology to investigate an age-dependent epidemic of
a disease with vertical transmissions [7]. The paper [26] deals with integral
differential equations motivated by applications in the theory of screening of
granular bodies. For further information on applications of functional differ-
ential equations see the monographs [12], [28].

2. Discretization of nonlinear systems. We will denote by F(X,Y )
the class of all functions from X into Y where X and Y are arbitrary sets.
We will use the symbols N and Z to denote the sets of natural numbers
and integers respectively. Denote by Mk×n the class of all k × n matrices
with real entries. For x ∈ Rn, p ∈ Rk, U ∈ Mk×n where x = (x1, . . . , xn),
p = (p1, . . . , pk), U = [uij ]i=1,...,k,j=1,...,n we put ‖x‖ = |x1| + · · · + |xn|,
‖p‖∞ = max{|pi| : 1 ≤ i ≤ k} and

‖U‖ = max
{ n∑
j=1

|uij | : 1 ≤ i ≤ k
}
.

The product of two matrices is denoted by ?. If U ∈ Mk×n then UT de-
notes the transpose matrix. The scalar product in Rn is denoted by ◦. For
ω ∈ C(B,Rk) and (t, x) ∈ E0 ∪E we put ‖ω‖D[t,x] = max{|ω(τ, y)| : (τ, y) ∈
D[t, x]}. The maximum norm in the space C(B,Rk) will be denoted by
‖ · ‖B. Let CL(B,R) denote the set of all linear and continuous real func-
tions defined on C(B,R). The norm in CL(B,R) which is generated by the
maximum norm in C(B,R) will be denoted by ‖ · ‖?.

We define a mesh on the set E0 ∪ E in the following way. Let (h0, h
′),

h′ = (h1, . . . , hn), stand for steps of the mesh. For h = (h0, h
′) and (r,m) ∈

Z1+n where m = (m1, . . . ,mn), we define nodal points in the following way:
t(r) = rh0, x

(m) = (x(m1)
1 , . . . , x

(mn)
n ) = (m1h1, . . . ,mnhn). Let H̃ denote

the set of all h = (h0, h
′) such that there are (N1, . . . , Nn) = N ∈ Nn and

K0 ∈ Z with (N1h1, . . . , Nnhn) = b, K0h0 = b0 and h′ ≤Mh0. Define K ∈ N
by Kh0 ≤ a < (K + 1)h0. For h ∈ H̃ we put ‖h‖ = h0 + h1 + · · ·+ hn and

R1+n
h = {(t(r), x(m)) : (r,m) ∈ Z1+n}, Ih = {t(r) : 0 ≤ r ≤ K}.

Set E0.h = E0 ∩R1+n
h , Eh = E ∩R1+n

h . For functions η : Ih → Rn, z : E0.h ∪
Eh → Rk, u : E0.h∪Eh →Mk×n, we write η(r) =η(t(r)), z(r,m) = z(t(r), x(m)),
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u(r,m) = u(t(r), x(m)). Let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with 1 in the jth
place, 1 ≤ j ≤ n. We formulate implicit difference methods of the Euler type
for (1.1), (1.2). Write

E+
i.ε = {(t, x) ∈ E : bi −Mit− ε < xi ≤ bi −Mit},

E−i.ε = {(t, x) ∈ E : bi +Mit < xi ≤ bi +Mit+ ε},
where 0 < ε < bi −Mia and 1 ≤ i ≤ n.

Assumption H0[f ]. The function f : Ω → Rk is continuous, satisfies the
condition (V ) and

1) the partial derivatives

∂xf = [∂xjfi]i=1,...,k, j=1,...,n, ∂qf = [∂qjfi]i=1,...,k, j=1,...,n

exist on Ω and ∂xf, ∂qf ∈ C(Ω,Mk×n),
2) there exist the Fréchet derivatives ∂wf(P ) = [∂wjfi(P )]i,j=1,...,k, and

∂wjfi(P ) ∈ CL(B,R) for 1 ≤ i, j ≤ k, P ∈ Ω,
3) there is ε > 0 such that

∂qif(t, x, w, q) ≤ θ[k] on E+
i.ε × C(B,Rk)× Rn,

∂qif(t, x, w, q) ≥ θ[k] on E−i.ε × C(B,Rk)× Rn,

where 1 ≤ i ≤ k and ∂qif = (∂qif1, . . . , ∂qifk), θ[k] = (0, . . . , 0) ∈ Rk.

Remark 2.1. Suppose that the function ∂qf : Ω → Mk×n satisfies the
condition

(2.1) (x1∂q1fi(P ), . . . , xn∂qnfi(P )) ≤ θ[n], 1 ≤ i ≤ k, P ∈ Ω,
where θ[n] = (0, . . . , 0) ∈ Rn. Then condition 3) of Assumption H0 [f ] holds
true.

Note that if condition (2.1) is satisfied on [0, a]× [−b, b]×C(B,Rk)×Rk

then the natural domain for classical solutions of (1.1), (1.2) is the set E =
[0, a]× [−b, b]. Then we put M = θ[n] in the definition of the Haar pyramid.
This property of the initial value problem (1.1), (1.2) follows from the theory
of bicharacteristics.

Suppose that Assumption H0[f ] is satisfied. Set

H = {h = (h0, h
′) ∈ H̃ : hj ≤ ε/2 for 1 ≤ j ≤ n}.

We write ∂xfi = (∂x1fi, . . . , ∂xnfi), ∂wfi = (∂w1fi, . . . , ∂wk
fi), where 1 ≤

i ≤ k. Set E′h = {(t(r), x(m)) ∈ Eh : (t(r+1), x(m)) ∈ Eh} and Er.h =
(E0.h ∪ Eh) ∩ ([−b0, t(r)] × Rn), 0 ≤ r ≤ K. We construct a difference
problem corresponding to (1.1), (1.2). Unknown functions in a difference
system are denoted by (z, u) where z = (z1, . . . , zk), u = [uij ]i=1,...,k, j=1,...,n,
ui = (ui1, . . . , uin), 1 ≤ i ≤ k. We denote by δ0 and (δ1, . . . , δn) = δ the dif-
ference operators for the variable t and for the spatial variables (x1, . . . , xn) =
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x respectively. Write δ0ui = (δ0ui1, . . . , δ0uin), δzi = (δ1zi, . . . , δnzi) and
δui = [δjuis]s,j=1,...,n where 1 ≤ i ≤ k. Set

Thu(r,m) = [Th(uij)(r,m)]i=1,...,k, j=1,...,n, ∂wfi(P ) ? Thu(r,m)

=
( k∑
s=1

∂wsfi(P )Th(us1)(r,m), . . . ,

k∑
s=1

∂wsfi(P )Th(usn)(r,m)

)
, P ∈ Ω,

and P (r,m)[z, ui] = (t(r), x(m), Thz(r,m), u
(r,m)
i ), 1 ≤ i ≤ k. We consider the

system of difference equations

δ0z
(r,m)
i = fi(P (r,m)[z, ui])(2.2)

+ ∂qfi(P (r,m)[z, ui]) ◦ (δz(r+1,m)
i − u(r,m)

i ), 1 ≤ i ≤ k,
and

δ0u
(r,m)
i = ∂xfi(P (r,m)[z, ui]) + ∂wfi(P (r,m)[z, ui]) ? Thu(r,m)(2.3)

+ ∂qfi(P (r,m)[z, ui]) ? [δu(r+1,m)
i ]T , 1 ≤ i ≤ k,

with the initial conditions

(2.4) z(r,m) = ϕ
(r,m)
h , u(r,m) = ψ

(r,m)
h on E0.h

where ϕh : E0.h → Rk and ψh : E0.h → Mk×n, are given functions. The
difference expressions δ0zi and δ0ui are defined by

(2.5)
δ0z

(r,m)
i =

1
h0

[z(r+1,m)
i − z(r,m)

i ],

δ0u
(r,m)
i =

1
h0

[u(r+1,m)
i − u(r,m)

i ], 1 ≤ i ≤ k.

The difference operator δ for the spatial variables is defined in the following
way. Suppose that the functions (z, u) are known on the set Er.h where
0 ≤ r < K. We put

(2.6) if ∂qjfi(P
(r,m)[z, ui]) ≥ 0 then δjz

(r+1,m)
i =

1
hj

[z(r+1,m+ej)
i − z(r+1,m)

i ]

and

(2.7) δju
(r+1,m)
is =

1
hj

[u(r+1,m+ej)
is − u(r+1,m)

is ], 1 ≤ s ≤ n.

Moreover we set

(2.8) if ∂qjfi(P
(r,m)[z, ui]) < 0 then δjz

(r+1,m)
i =

1
hj

[z(r+1,m)
i − z(r+1,m−ej)

i ]

and

(2.9) δju
(r+1,m)
is =

1
hj

[u(r+1,m)
is − u(r+1,m−ej)

is ], 1 ≤ s ≤ n.
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We have i = 1, . . . , k, j = 1, . . . , n in (2.6)–(2.9). Note that the difference
operators δzi and δui, 1 ≤ i ≤ k, are calculated at the point (t(r+1), x(m))
in (2.2), (2.3). Then the numbers z(r+1,m+ej)

i , z(r+1,m−ej)
i and the vectors

u
(r+1,m+ej)
i , u(r+1,m−ej)

i , 1 ≤ j ≤ n, appear on the right hand sides of (2.2),
(2.3). It follows that we have obtained implicit difference schemes.

If we apply classical difference methods to problem (1.1), (1.2) then we
approximate derivatives with respect to spatial variables by difference ex-
pressions which are calculated by using previous values of approximate solu-
tions. In our method we approximate the spatial derivatives of the unknown
function in (1.1) by solving suitable difference equations which are generated
by the original problem.

Remark 2.2. The above construction of an implicit Euler method has
the following property: the definition of the difference expressions δzi and
δui, 1 ≤ i ≤ k, at the point (t(r+1), x(m)) depends on the local properties
of the functions ∂qfi, 1 ≤ i ≤ k. Note that we construct the Euler type
methods and we do not assume that the functions (sign ∂q1fi, . . . , sign ∂qnfi),
1 ≤ i ≤ k, are constant.

Remark 2.3. Suppose that Assumption H0[f ] is satisfied and z ∈
C(E0 ∪ E,Rk), u ∈ C(E0 ∪ E,Mk×n) and u = [uij ]i=1,...,k,j=1,...,n, ui =
(ui1, . . . , uin), 1 ≤ i ≤ k. Let us consider the Cauchy problem

η′(t) = −∂qfi(τ, η(τ), z(τ,η(τ)), ui(τ, η(τ))), η(t) = x,

where 1 ≤ i ≤ k is fixed and (t, x) ∈ E. The solution
gi[z, u](·, t, x) = (gi1[z, u](·, t, x), . . . , gin[z, u](·, t, x))

of the above problem is the ith bicharacteristic of system (1.1) corresponding
to (z, u). The following property of bicharacteristics is important in our
construction of implicit difference schemes for (1.1), (1.2). The difference
operators (δ1, . . . , δn) = δ used in this paper satisfy the following conditions:

(i) if the function gij [z, u]( ·, t, x) is increasing on [t− ε0, t], ε0 > 0, then

δjzi(t, x) =
1
τ

[zi(t, x)− zi(t, x− τej)],

δjuis(t, x) =
1
τ

[uis(t, x)− uis(t, x− τej)], 1 ≤ s ≤ n,

for some τ > 0,
(ii) if gij [z, u]( ·, t, x) is decreasing on [t− ε0, t], ε0 > 0, then

δjzi(t, x) =
1
τ

[zi(t, x− τej)− zi(t, x)],

δjuis(t, x) =
1
τ

[uis(t, x− τej)− uis(t, x)], 1 ≤ s ≤ n,

for some τ > 0.
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Remark 2.4. In our theorem on the convergence of the above difference
method we will assume that the initial function ϕ is of class C1 on E0 and
that the functions ϕh and ψh are approximations of ϕ and ∂xϕ respectively.

The difference problem consisting of system (2.2), (2.3) and initial con-
dition (2.4) with the difference operators defined by (2.5)–(2.9) is called a
generalized implicit Euler method for (1.1), (1.2).

The dfference system (2.2), (2.3) is obtained in the following way. Sup-
pose that Assumption H0[f ] is satisfied and that the derivatives ∂xϕ =
[∂xjϕi]i=1,...,k, j=1,...,n exist on E0. We apply the method of quasilineariza-
tion to problem (1.1), (1.2). It consists in replacing the nonlinear prob-
lem (1.1), (1.2) with the following one. Let (z, u) be unknown functions of
(t, x) ∈ E where z = (z1, . . . , zk), u = [uij ]i=1,...,k, j=1,...,n, ui = (ui1, . . . , uin)
for 1 ≤ i ≤ k. Write U [z, ui; t, x] = (t, x, z(t,x), ui(t, x)), 1 ≤ i ≤ k. We
introduce first an additional unknown function u = ∂xz in (1.1). Then we
consider the following linearization of (1.1) with respect to the last variable:

∂tzi(t, x) = fi(U [z, ui; t, x])(2.10)
+ ∂qfi(U [z, ui; t, x]) ◦ (∂xzi(t, x)− ui(t, x)), 1 ≤ i ≤ k.

It follows from (1.1) that ui, 1 ≤ i ≤ k, satisfy the functional differential
system

∂tui(t, x) = ∂xfi(U [z, ui; t, x]) + ∂wfi(U [z, ui; t, x]) ? u(t,x)(2.11)

+ ∂qfi(U [z, ui; t, x]) ? [∂xui(t, x)]T , 1 ≤ i ≤ k.

It is natural to consider the following initial condition for the quasilinear
system (2.10), (2.11):

(2.12) z(t, x) = ϕ(t, x), u(t, x) = ∂xϕ(t, x) on E0.

We obtain a generalized implicit Euler method for (1.1), (1.2) by a discretiza-
tion of (2.10)–(2.12).

Write St = {x ∈ Rn : (t, x) ∈ E0 ∪ E}, t ∈ [−b0, a], and Ux = {t ∈ R :
(t, x) ∈ E0 ∪ E}, x ∈ [−b, b]. Suppose that v : E0 ∪ E → R is a classical
solution of (1.1), (1.2). We say that v is of class C∗ if v(t, · ) : St → Rk is of
class C2 for every t ∈ [−b0, a] and v( ·, x) : Ux → Rk is of class C1 for every
x ∈ [−b, b].

The initial value problems (1.1), (1.2) and (2.10)–(2.12) have the follow-
ing properties ([12, Chapter IV], [22]).

(i) if v : E0 ∪ E → Rk is a classical solution of (1.1), (1.2) and v is of
class C∗ then the functions (v, ∂xv) satisfy (2.10)–(2.12),

(ii) if (z̃, ũ) : E0 ∪E → Rk×Mk×n is a classical solution of (2.10)–(2.12)
then ∂xz̃ = ũ and z̃ satisfies (1.1), (1.2) and z̃ is of class C∗.
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There are different ways of constructing implicit difference schemes for
first order partial functional differential equations or systems. We present two
such constructions. For simplicity we assume that k = 1 and that (1.1) does
not contain the functional variable. Let us consider the differential equation

(2.13) ∂tz(t, x) = G(t, x, z(t, x), ∂xz(t, x))

with the initial condition (1.2) for k = 1 and b0 = 0. The difference problem

δ0z
(r,m) = G(t(r), x(m), z(r+1,m), δz(r+1,m)),(2.14)

z(0,m) = ϕ
(0,m)
h for x(m) ∈ [−b, b],(2.15)

can be considered as an implicit method for (2.13), (1.2) with k = 1, b0 = 0.
Note that the difference operators (δ1, . . . , δn) and the unknown function z
are calculated at the point (t(r+1), x(m)).

Let us consider the difference equation

(2.16) δ0z
(r,m) = G(t(r), x(m), z(r,m), δz(r+1,m))

with the initial condition (2.15). In this case the unknown function z is calcu-
lated at (t(r), x(m)) and the difference operators (δ1z, . . . , δnz) at (t(r+1), x(m)).
Thus we have obtained an implicit difference scheme. The paper [4] gives suf-
ficient conditions for the convergence of implicit difference methods of the
type (2.16), (2.15) for functional differential equations.

The numerical methods (2.14), (2.15) and implicit difference schemes
(2.2)–(2.4) exhibit the following differences. It is clear that a nonlinear dif-
ferential equation leads to a nonlinear algebraic system (2.14). This system
requires iterative schemes for the computation of numerical solutions. In
the case when (2.13) is a quasilinear differential equation, the corresponding
system of the form (2.14) is also nonlinear.

On the other hand, if we consider the difference scheme (2.2)–(2.4) then
we obtain a linear system for the unknowns (z(r+1,m), u(r+1,m)). Note that
our original problem (1.1), (1.2) is nonlinear.

3. Solutions of implicit Euler schemes. Let us denote by (zh, uh) : Eh
→ Rk × Mk×n the solution of (2.2)–(2.4) and suppose that the functions
(zh, uh) are calculated on the set Er.h, 0 ≤ r < K. Our implicit difference
methods have the following property: we start with the nonlinear system
(1.1), and the existence of a solution (zh, uh) on Er+1.h is equivalent to
the existence of a solution of the system (2.2), (2.3), which is linear. The
difference equations

z
(r+1,m)
i = h0∂qfi(P (r,m)[z, ui]) ◦ δz(r+1,m)

i , 1 ≤ i ≤ k,(3.1)
and

u
(r+1,m)
i = h0∂qfi(P (r,m)[z, ui]) ? [δu(r+1,m)

i ]T , 1 ≤ i ≤ k,(3.2)
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are the principal parts of (2.2) and (2.3) respectively. We prove a lemma on
difference inequalities generated by (3.1), (3.2).

Lemma 3.1. Suppose that

• Assumption H0[f ] is satisfied and condition (1.3) holds,
• h ∈ H and zh ∈ F(E0.h∪Eh,Rk), uh ∈ F(E0.h∪Eh,Mk×n) where zh =

(zh.1, . . . , zh.k), uh = [uh.ij ]i=1,...,k,j=1,...,n and uh.i = (uh.i1, . . . , uhin),
1 ≤ i ≤ k.

(I) If the functions zh and uh satisfy the implicit difference inequalities

(3.3) z
(r+1,m)
h.i ≤ h0∂qfi(P (r,m)[zh, uh.i]) ◦ δz

(r+1,m)
h.i , 1 ≤ i ≤ k,

and

u
(r+1,m)
h.i ≤ h0∂qfi(P (r,m)[zh, uh.i]) ? [δu(r+1,m)

h.i ]T , 1 ≤ i ≤ k,
then

z
(r,m)
h.i ≤ 0 on Eh for 1 ≤ i ≤ k,(3.4)

u
(r,m)
h.i ≤ θ[n] on Eh for 1 ≤ i ≤ k.(3.5)

(II) If the implicit difference inequalities

z
(r+1,m)
h.i ≥ h0∂qfi(P (r,m)[zh, uh.i]) ◦ δz

(r+1,m)
h.i , 1 ≤ i ≤ k,

and

u
(r+1,m)
h.i ≥ h0∂qfi(P (r,m)[zh, uh.i]) ? [δu(r+1,m)

h.i ]T , 1 ≤ i ≤ k,

are satisfied then z(r,m)
h.i ≥ 0 and u(r,m)

h.i ≥ θ[n] on Eh for 1 ≤ i ≤ k.
Proof. Consider case (I). Fix 0 ≤ r ≤ K − 1. Write

J
(r,m)
i.+ = {j ∈ {1, . . . , n} : ∂qjfi(P

(r,m)[zh, uh.i]) ≥ 0},

J
(r,m)
i.− = {1, . . . , n}\J (r,m)

i.+

where 1 ≤ i ≤ k. It follows from (3.3) that

(3.6) z
(r+1,m)
h.i

[
1 + h0

n∑
j=1

1
hj
|∂qjfi(P (r,m)[zh, uh.i])|

]
≤ h0

∑
j∈J(r,m)

i.+

1
hj
∂qjfi(P

(r,m)[zh, uh.i])z
(r+1,m+ej)
h.i

− h0

∑
j∈J(r,m)

i.−

1
hj
∂qjfi(P

(r,m)[zh, uh.i])z
(r+1,m−ej)
h.i .

Suppose that 1 ≤ i ≤ k is fixed and (t(r+1), z(m̃)) ∈ Eh is such that

z
(r+1,m̃)
h.i ≥ z(r+1,m)

h.i for x(m) ∈ [−b+Mt(r+1), b−Mt(r+1)].
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If the assertion (3.4) is false then

(3.7) z
(r+1,m̃)
h.i > 0.

From (3.6) we deduce that

z
(r+1,m̃)
h.i

[
1 + h0

n∑
j=1

1
hj
|∂qjfi(P (r,m̃)[zh, uh.i])|

]

≤ h0z
(r+1,m̃)
h.i

m∑
j=1

1
hj
|∂qjfi(P (r,m̃)[zh, uh.i])|.

Hence z(r+1,m̃)
h.i ≤ 0, which contradicts (3.7), and the proof of (3.4) is com-

pleted by induction. In a similar way we prove (3.5). Case (II) can be treated
in the same way. This completes the proof.

Lemma 3.2. If Assumption H0[f ] and condition (1.3) are satisfied then
there exists exactly one solution (zh, uh) : E0.h ∪ Eh → Rk ×Mk×n of (2.2)–
(2.4).

Proof. Fix 0 ≤ r ≤ K−1 and suppose that the solution (zh, uh) is known
on Er.h. Consider the linear system

z
(r+1,m)
i = z

(r,m)
h.i + h0fi(P (r,m)[zh, uh.i])(3.8)

+ h0∂qfi(P (r,m)[zh, uh.i]) ◦ (δz(r+1,m)
i − u(r+1,m)

h.i ),

u
(r+1,m)
i = u

(r,m)
h.i + h0∂xfi(P (r,m)[zh, uh.i])(3.9)

+ h0∂wfi(P (r,m)[zh, uh.i]) ? (Thuh.i)(r,m)

+ h0∂qfi(P (r,m)[zh, uh.i]) ? [δu(r+1,m)
i ]T

with unknowns (z(r+1,m)
i , u

(r+1,m)
i ) where x(m) ∈ [−b+Mt(r+1), b−Mt(r+1)].

Suppose that (t(r), xm) ∈ E′h. It follows from condition 3) of Assumption
H0[f ] that the expressions δz(r+1,m)

i , δu
(r+1,m)
i , 1 ≤ i ≤ k, are well defined.

We conclude from Lemma 3.1 that the homogeneous system corresponding to
(3.8), (3.9) has exactly one zero solution. Then system (3.8), (3.9) has exactly
one solution (z(r+1,m)

h.i , u
(r+1,m)
h.i ) where x(m) ∈ [−b + Mt(r+1), b −Mt(r+1)],

and consequently, the functions (zh.i, uh.i), 1 ≤ i ≤ k, are defined and they
are unique on Er+1.h. Since (zh, uh) are given on E0.h, the proof is completed
by induction.

Now we give estimates of solutions to (1.1), (1.2) and (2.2)–(2.4). Write

‖∂wf(P )‖∗ = max
{ k∑
j=1

‖∂wjfi(P )‖∗ : 1 ≤ i ≤ k
}
, P ∈ Ω.
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Assumption H∗[f, ϕ]. The function f : Ω → Rk satisfies Assumption
H0[f ] and

1) there is Ã > 0 such that ‖∂xf(P )‖ ≤ Ã and ‖∂wf(P )‖∗ ≤ Ã for
P = (t, x, w, q) ∈ Ω,

2) for P ∈ Ω we have (|∂q1fi(P )|, . . . , |∂qnfi(P )|) ≤M , 1 ≤ i ≤ k,
3) ϕ : E0 → Rk is of class C1 and

c0 ≥ max{‖ϕ(t, x)‖∞ : (t, x) ∈ E0},
c1 ≥ max{‖∂xϕ(t, x)‖ : (t, x) ∈ E0}

and

c0 ≥ ‖ϕ(r,m)
h ‖∞, c1 ≥ ‖ψ(r,m)

h ‖ for (t(r), x(m)) ∈ E0.h, h ∈ H.
Lemma 3.3. Suppose that Assumption H∗[f, ϕ] is satisfied and v =

(v1, . . . , vk) : E0 ∪ E → Rk is a solution to (1.1), (1.2) and v is of class
C∗ on E0 ∪ E. Then
(3.10) ‖v(t, x)‖∞ ≤ ᾱ0(t), ‖∂xv(t, x)‖ ≤ ᾱ1(t) for (t, x) ∈ E,
where

ᾱ0(t) = c0e
Ãt +

c̃

Ã
(eÃt − 1) + 2‖M‖c1teÃt(3.11)

+
2‖M‖
Ã

[1 + ÃteÃt − eÃt],

ᾱ1(t) = (c1 + 1)eÃt − 1(3.12)

and
c̃ = max{‖f(t, x,O, θ[n])‖∞ : (t, x) ∈ E}

where O ∈ C(B,Rk) is given by O(τ, y) = 0 for (τ, y) ∈ B.

Proof. Let us denote by gi[z, u]( ·, t, x) the ith bicharacteristic of (1.1)
corresponding to (z, u). It follows that the functions (v, ∂xvi), 1 ≤ i ≤ k,
satisfy the integral functional system

zi(t, x) = ϕ(0, gi[z, u](0, t, x)) +
t�

0

fi(Pi[z, u](τ, t, x)) dτ

−
t�

0

∂qfi(Pi[z, u](τ, t, x)) ◦ ui(τ, gi[z, u](τ, t, x)) dτ,

ui(t, x) = ∂xϕi(0, gi[z, u](0, t, x)) +
t�

0

∂xfi(Pi[z, u](τ, t, x)) dτ

+
t�

0

∂wfi(Pi[z, u](τ, t, x)) ? u(τ,gi[z,u](τ,t,x)) dτ, 1 ≤ i ≤ k,
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and the initial conditions z(t, x) = ϕ(t, x), u(t, x) = ∂xϕ(t, x) on E0 where
Pi[z, u](τ, t, x) = (τ, gi[z, u](τ, t, x), z(τ,gi[z,u](τ,t,x)), ui(τ, gi[z, u](τ, t, x))), and
1 ≤ i ≤ k. Write

α̃0(t) = max{‖v(τ, y)‖∞ : (τ, y) ∈ E0 ∪ E, τ ≤ t},
α̃1(t) = max{‖∂xv(τ, y)‖ : (τ, y) ∈ E0 ∪ E, τ ≤ t},

where t ∈ [0, a). It follows that the functions (α̃0, α̃1) satisfy the integral
inequalities

α̃0(t) ≤ c0 + c̃t+
t�

0

[Ãα̃0(τ) + 2‖M‖α̃1(τ)] dτ,

α̃1(t) ≤ c1 + Ãt+ Ã

t�

0

α̃1(τ) dτ.

Hence the functions (α̃0, α̃1) satisfy the equations corresponding to the above
integral inequalities. Thus the assertion (3.10) follows.

AssumptionH[Th]. The function Th : F(E0.h∪Eh,Rk)→ C(E0∪E,Rk)
is such that

1) for w, w̃ : E0.h ∪ Eh → Rk we have ‖Thw − Thw̃‖t(r) ≤ ‖w − w̃‖r.h,
0 ≤ r ≤ K,

2) for each w : E0 ∪ E → Rk of class C1 there is γ∗ : H → R+ such that

‖w − Thwh‖t ≤ γ∗(h), 0 ≤ t ≤ a, lim
h→0

γ∗(h) = 0

where wh = w|Eh.0∪Eh
,

3) if Oh ∈ F(E0.h∪Eh,R) is given by Oh(t, x) = 0 for (t, x) ∈ E0.h∪Eh
then (ThOh)(t, x) = 0 for (t, x) ∈ E0 ∪ E.

Remark 3.1. The above condition 1) states that Th satisfies the Lip-
schitz condition with constant L = 1. The meaning of condition 2) is that
Thwh is an approximation of w and the approximation error is estimated by
γ∗(h). An example of Th which satisfies the above conditions can be found
in [12, Chapter 3].

Lemma 3.4. Suppose that Assumption H∗[f, ϕ] and condition (1.3) are
satisfied and (zh, uh) : E0.h ∪ Eh → Rk ×Mk×n is a solution to (2.2)-(2.4)
with δ0 and δ defined by (2.5)–(2.9). Then

(3.13) ‖z(r,m)
h ‖∞ ≤ ᾱ(r)

0 , ‖u(r,m)
h ‖ ≤ ᾱ(r)

1 on Eh

where ᾱ0, ᾱ1 are given by (3.11), (3.12).
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Proof. Write

α
(r)
h.0 = max{‖z(s,m)

h ‖∞ : (t(s), x(m)) ∈ Er.h},

α
(r)
h.1 = max{‖u(s,m)

h ‖ : (t(s), x(m)) ∈ Er.h}
where 0 ≤ r ≤ K. Easy computations show that the functions (αh.0, αh.1)
satisfy the difference inequalities

1
h0

[α(r+1)
h.0 − α(r)

h.0] ≤ c̃+ Ãα
(r)
h.0 + 2‖M‖α(r)

h.1,

1
h0

[α(r+1)
h.1 − α(r)

h.1] ≤ Ã[1 + α
(r)
h.1], 0 ≤ r ≤ K − 1.

The functions (ᾱ0, ᾱ1) satisfy the differential equations

y′0(t) = c̃+ Ãy0(t) + 2‖M‖y1(t), y′1(t) = Ã+ Ãy1(t).

and ᾱ(0)
0 = ᾱ

(0)
h.0, ᾱ

(0)
1 = ᾱ

(0)
h.1. Thus the assertion (3.13) follows.

4. Convergence of the generalized implicit Euler method. Sup-
pose that Assumption H∗[f, ϕ] is satisfied. Write d = ᾱ0(a), d̃ = ᾱ1(a) where
(ᾱ0, ᾱ1) are given by (3.11), (3.12) and Ω[d, d̃] = E ×KC(B,Rk)[d]×KRn [d̃]
where

KC(B,Rk)[d] = {w ∈ C(B,Rk) : ‖w‖B ≤ d}, KRn [d̃] = {q ∈ Rn : ‖q‖ ≤ d̃}.
We will need the following assumptions on f .

AssumptionH[f, ϕ]. The functions f : Ω → Rk and ϕ : E0 → Rk satisfy
Assumption H∗[f, ϕ] and

1) there is σ ∈ C([0, a]× R+,R+) such that

• σ is continuous and nondecreasing with respect to both variables,
• σ(t, 0) = 0 for t ∈ [0, a] and for each c ≥ 1 the maximal solution of

the Cauchy problem

η′(t) = c[η(t) + σ(t, η(t))], η(0) = 0,

is η̄(t) = 0 for t ∈ [0, a],

2) the terms

‖∂xfi(t, x, w, q)− ∂xfi(t, x, w̄, q̄)‖, ‖∂qfi(t, x, w, q)− ∂qfi(t, x, w̄, q̄)‖,
‖∂wfi(t, x, w, q)− ∂wfi(t, x, w̄, q̄)‖

are estimated by σ(t, ‖w − w̄‖B + ‖q − q̄‖) for 1 ≤ i ≤ k on Ω[d, d̃].

Remark 4.1. Theorems on difference methods presented in [4], [13] have
the following property: it is assumed that the functions ∂xf , ∂qf , ∂wf satisfy
nonlinear conditions of the Perron type with respect to (w, q) and the esti-
mates are global with respect to (w, q). Note that we have assumed estimates
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of the Perron type with respect to (w, q), local with respect to (w, q). It is
clear that there are differential systems with deviated variables and integral
differential systems such that condition 2) holds and global estimates of the
Perron type with respect to (w, q) are not satisfied.

Now we formulate the main result of the paper.

Theorem 4.1. Suppose that Assumptions H[f, ϕ] and H[Th] are satisfied
and

1) ϕ ∈ C(E0,Rk) and ϕ(t, · ) : [−b, b] → Rk is of class C2 for every t ∈
[−b0, 0] and ϕ( ·, x) : [−b0, 0]→ Rk is of class C1 for every x ∈ [−b, b],

2) v : E0 ∪E → Rk is the solution to (1.1), (1.2) and v is of class C∗ on
E0 ∪ E,

3) (zh, uh) : E0.h ∪ Eh → Rk ×Mk×n is the solution to (2.2)–(2.4) with
δ0, δ defined by (2.5)–(2.9) and there is α0 : H → R+ such that

(4.1) ‖ϕ(r,m) − ϕ(r,m)
h ‖+ ‖∂xϕ(r,m) − ψ(r,m)

h ‖ ≤ α0(h) on E0.h

and limh→0 α0(h) = 0.

Then there exists α : H → R+ such that

(4.2) ‖vh − zh‖r.h + ‖∂xvh − uh‖r.h ≤ α0(h) for 0 ≤ r ≤ K,
and limh→0 α(h) = 0 where vh and ∂xvh are the restrictions of v and ∂xv,
respectively, to the set E0.h ∪ Eh.

Proof. Write χ = ∂xv, χ = [χij ]i=1,...,k,j=1,...,n, χi = (χi1, . . . , χin), 1 ≤
i ≤ k, and

χh = χ|E0.h∪Eh
,

χh = [χh.ij ]i=1,...,k,j=1,...,n, χh.i = (χh.i1, . . . , χh.in), 1 ≤ i ≤ k.
Then (v, χ) satisfy the quasilinear system (2.10), (2.11) and the initial con-
dition (2.12). Consider the functions ξh : E0.h ∪ Eh → Rk and λh : E0.h ∪
Eh → Mk×n defined by ξh = vh − zh, ξh = (ξh.1, . . . , ξh.k), λh = χh − uh,
λh = [λh.ij ]i=1,...,k, j=1,...,n and λh.i = (λh.i1, . . . , λh.in), 1 ≤ i ≤ k. Let
ωh.0, ωh.1 : Ih → R+ be given by

ω
(r)
h.0 = max{‖ξ(i,m)

h ‖∞ : (t(i), x(m)) ∈ Er.h},

ω
(r)
h.1 = max{‖λ(i,m)

h ‖∞ : (t(i), x(m)) ∈ Er.h}
and ωh = ωh.0 + ωh.1. We will write a difference inequality for ωh. We first
examine ωh.0. Set Q(r,m)[v, χi] = (t(r), x(m), v(tr),x(m) , χ

(r,m)
i ), 1 ≤ i ≤ k. Let

the functions Γh, Λh : E′h → Rk, Γh = (Γh.1, . . . , Γh.k), Λh = (Λh.1, . . . , Λh.k),
be defined by

(4.3) Γ
(r,m)
h.i = δ0v

(r,m)
h.i −∂tv

(r,m)
i +∂qfi(Q(r,m)[v, χi])◦ [∂xv

(r,m)
i −δv(r+1,m)

h.i ]
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and

Λ
(r,m)
h.i = fi(Q(r,m)[v, χi])− fi(P (r,m)[zh, uh.i)(4.4)

− ∂qfi(Q(r,m)[v, χi]) ◦ χ(r,m)
i + ∂qfi(P (r,m)[zh, uh.i]) ◦ u

(r,m)
h.i

+ [∂qfi(Q(r,m)[v, χi])− ∂qfi(P (r,m)[zh, uh])] ◦ δv(r+1,m)
h.i

where 1 ≤ i ≤ k. It follows from (2.2), (2.10) that ξh satisfies the difference
equations

(4.5) δ0ξ
(r,m)
h.i = ∂qfi(P (r,m)[zh, uh.i])◦δξ

(r+1,m)
h.i +Λ(r,m)

h.i +Γ (r,m)
h.i , 1 ≤ i ≤ k.

We conclude from (2.5)–(2.6) that the above relations are equivalent to

(4.6) ξ
(r+1,m)
h.i

[
1 + h0

n∑
j=1

1
hj
|∂qjfi(P (r,m)[zh, uh.i])|

]
= ξ

(r,m)
h.i + h0

∑
j∈J(r,m)

i.+

1
hj
∂qjfi(P

(r,m)[zh, uh.i]) ξ
(r+1,m+ej)
h.i

− h0

∑
j∈J(r,m)

i.−

1
hj
∂qjfi(P

(r,m)[zh, uh.i]) ξ
(r+1,m−ej)
h.i

+ h0[Γ (r,m)
h.i + Λ

(r,m)
h.i ], 1 ≤ i ≤ k.

It follows easily that there is γ0 : H → R+ such that

(4.7) ‖Γ (r,m)
h ‖ ≤ γ0(h) on E′h, lim

h→0
γ0(h) = 0.

We conclude from Lemma 3.3, Lemma 3.4 and Assumption H[Th] that

‖v(t(r),x(m))‖D[t(r),x(m)] ≤ d, ‖Th(zh)(r,m)‖D[t(r),x(m)] ≤ d,

‖χ(r,m)
i ‖ ≤ d̃, ‖u(r,m)

h.i ‖ ≤ d̃

where (t(r), x(m)) ∈ E′h. Let ã = max{d, d̃}. Write A = max{Ã, ‖M‖}. Ac-
cording to Assumption H[f, ϕ] we have

(4.8) ‖fi(Q(r,m)[v, χi])− fi(P (r,m)[zh, uh.i])‖ ≤ Aω
(r)
h on E′h for 1 ≤ i ≤ k,

and

(4.9) ‖∂qfi(Q(r,m)[v, χi])− ∂qfi(P (r,m)[zh, uh.i])‖ ≤ σ(t(r), ω(r)
h )

on E′h for 1 ≤ i ≤ k. Then we have

(4.10) |Λ(r,m)
h.i | ≤ 2Aω(r)

h + 2ãσ(t(r), ω(r)
h ).
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We see at once that

(4.11)
∑

j∈J+
i [r,m]

1
hj
∂qjfi(P

(r,m)[zh, uh.i]) |ξ
(r+1,m+ej)
h.i |

−
∑

j∈J−i [r,m]

1
hj
∂qjfi(P

(r,m)[zh, uh.i]) |ξ
(r+1,m−ej)
h.i |

≤ ω(r+1)
h.0

n∑
j=1

1
hj
|∂qjfi(P (r,m)[zh, uh.i])|.

From (4.6), (4.8), (4.10), (4.11) we get

(4.12) ω
(r+1)
h.0 ≤ ω(r)

h.0 + 2h0Aω
(r)
h + 2h0ãσ(t(r), ω(r)

h ) + h0γ0(h)

for 0 ≤ r ≤ K − 1. Now we write a difference inequality for ωh.1. Let the
functions Uh.i, Zh.i : E′h → Rn, 1 ≤ i ≤ k, be defined by

U
(r,m)
h.i = δ0χ

(r,m)
h.i − ∂tχ(r,m)

i(4.13)

+ ∂qfi(Q(r,m)[v, χi]) ? [∂xχ
(r,m)
i − δχ(r+1,m)

h.i ]T

and

(4.14) Z
(r,m)
h.i = ∂xfi(Q(r,m)[v, χi])− ∂xfi(P (r,m)[zh, uh.i])

+ ∂wfi(Q(r,m)[v, χi]) ? (χi)(r,m) − ∂wfi(P (r,m)[zh, uh.i]) ? (Thuh.i)(r,m)

+ [∂qfi(Q(r,m)[v, χi])− ∂qfi(P (r,m)[zh, uh.i])] ? [δχ(r+1,m)
h.i ]T .

Then the functions λh.i, 1 ≤ i ≤ k, satisfy the difference equations

δ0λ
(r,m)
h.i = ∂qfi(P (r,m)[zh, uh.i]) ? [δλ(r+1,m)

h.i ]T + U
(r,m)
h.i + Z

(r,m)
h.i .

It follows easily that the above relations are equivalent to

(4.15) λ
(r+1,m)
h.i

[
1 + h0

n∑
j=1

1
hj
|∂qjfi(P (r,m)[zh, uh.i])|

]
= λ

(r,m)
h.i + h0

∑
j∈J(r,m)

i.+

1
hj
∂qjfi(P

(r,m)[zh, uh.i])λ
(r+1,m+ej)
h.i

− h0

∑
j∈J(r,m)

i.−

1
hj
∂qjfi(P

(r,m)[zh, uh.i])λ
(r+1,m−ej)
h.i + h0[U (r,m)

h.i + Z
(r,m)
h.i ].

It is clear that there is γ : H → R+ such that

(4.16) ‖U (r,m)
h.i ‖ ≤ γ(h) on E′h for 1 ≤ i ≤ k and lim

h→0
γ(h) = 0.

The estimates analogous to (4.9) can be obtained for ∂xfi and ∂wfi. It follows
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from (4.14) and Assumptions H[f, ϕ], H[Th] that

(4.17) ‖Z(r,m)
h ‖ ≤ (1 + 2ã)σ(t(r), ω(r)

h ) +Aω
(r)
h .

It is easy to see that

(4.18)
∑

j∈J+
i [r,m]

1
hj
∂qjfi(P

(r,m)[zh, uh.i])‖λ
(r+1,m+ej)
h.i ‖

−
∑

j∈J−i [r,m]

1
hj
∂qjfi(P

(r,m)[zh, uh.i])‖λ
(r+1,m−ej)
h.i ‖

≤ ω(r+1)
1.h

n∑
j=1

1
hj
|∂qjfi(P (r,m)[zh, uh.i])|.

We deduce from (4.15), (4.17), (4.18) that

(4.19) ω
(r+1)
h.1 ≤ ω(r)

h.1 + h0Aω
(r)
h + h0(1 + 2ã)σ(t(r), ω(r)

h ) + h0γ(h)

for 0 ≤ r ≤ K − 1. Adding inequalities (4.12), (4.19) we get

(4.20) ω
(r+1)
h ≤ ω(r)

h +h0(1+4ã)σ(t(r), ω(r)
h )+3h0Aω

(r)
h +h0(γ0(h)+γ(h))

for 0 ≤ r ≤ K − 1. Consider the Cauchy problem

(4.21) ω′(t) = 3Aω(t)+(1+4ã)σ(t, ω(t))+(γ0(h)+γ(h)), ω(0) = α0(h).

From AssumptionH[f, ϕ] we know that there is ε0 > 0 such that for ‖h‖ < ε0
there exists a maximal solution ηh : [0, a]→ R+ of (4.21) and limh→0 ηh(t)=0
uniformly on [0, a]. The following recurrent inequality is satisfied:

(4.22) η
(r+1)
h ≥ η(r)

h + 3h0Aη
(r)
h + h0(1 + 4ã)σ(t(r), η(r)

h ) + h0(γ0(h) + γ(h)),

where 0 ≤ r ≤ K−1. Since ω(r)
h ≤ η

(r)
h , from the above inequality and (4.20)

we see that ω(r)
h ≤ η

(r)
h for 0 ≤ r ≤ K. We obtain the estimate (4.2) for

α(h) = ηh(a). This completes the proof.

Remark 4.2. Note that the (CFL) conditions are not assumed in The-
orem 4.1.

5. Comments and examples. Suppose that all the assumptions of
Theorem 4.1 are satisfied with σ(t, p) = Lp on [0, a] × R+ where L > 0.
Then

(5.1) ‖vh − zh‖r.h + ‖∂xvh − uh‖r.h ≤ α̃(h), 0 ≤ r ≤ K,

where

α̃(h) = α0(h)eL̃t +
1
L̃

(γ0(h) + γ(h))(eL̃t − 1)
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and L̃ = 3A+L(1 + 4ã). Inequality (5.1) is obtained by solving the Cauchy
problem (4.21) with σ(t, p) = Lp.

Lemma 5.1. Suppose that

1) Assumption H[f, ϕ] is satisfied with σ(t, p) = Lp on [0, a]×R+ where
L > 0,

2) the operator Th : F(E0.h ∪ Eh,Rk)→ C(E0 ∪ E,R) is such that

• for w, w̃ ∈ F(E0.h∪Eh,Rk) we have ‖Thw−Thw̃‖t(r) ≤ ‖w− w̃‖r.h,
0 ≤ r ≤ K,
• for each w : E0 ∪ E → Rk of class C2 there is C∗ ∈ R+ such that
‖w − Thwh‖t ≤ C∗‖h‖, 0 ≤ t ≤ a, where wh = w|E0.h∪Eh

,

3) ϕ : E0 → Rk is of class C3 and v : E0 ∪ E → Rk is the solution of
(1.1), (1.2) and v is of class C3 on E0 ∪ E,

4) condition 2) of Theorem 4.1 is satisfied.

Then there is C̃ ∈ R+ such that

(5.2) ‖vh − zh‖r.h + ‖∂xvh − uh‖r.h ≤ C0α0(h) + C̃‖h‖, 0 ≤ r ≤ K,
where C0 = exp[(3A+ L(1 + 4ã))a].

Proof. There are c0, c ∈ R+ such that conditions (4.7) and (4.16) are
satisfied with γ0(h) = c0‖h‖ and γ(h) = c‖h‖ respectively. Then we obtain
(5.2) from (5.1).

Remark 5.1. The interpolating operator Th considered in [12, Chapter 3]
satisfies condition 2) of Lemma 5.1.

Two models of functional dependence in partial differential equations are
used in the literature. There are papers concerning the nonlinear equation

(5.3) ∂tz(t, x) = G(t, x, (V z)(t, x), ∂xz(t, x))

with the initial conditions

(5.4) z(t, x) = ϕ(t, x) on E0

where V is a Volterra type operator and ϕ : E0 → R, G : E × R× Rn → R.
The main assumptions in existence theorems for (5.3), (5.4) concern the
operator V . They are formulated in terms of inequalities for norms in some
function spaces. A new model of functional dependence for initial value prob-
lems with solutions defined on the Haar pyramid is proposed in [21], [22].
Our results on implicit difference methods are based on that idea.

The paper [13] concerns implicit difference methods for (5.3), (5.4). The
following property of the operator V z is important in [13]: the interpolat-
ing operator Vhz corresponding to V satisfies the Lipschitz condition with
respect to z. Let us consider problem (5.3), (5.4) with

(5.5) (V z)(t, x) = z(t− τ, y) · z(t− τ̃ , y)
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where τ, τ̃ ∈ [0, b0]. The results of [13] are not applicable to (5.3), (5.4) with
V defined by (5.5). The interpolating operators Vhz corresponding to (5.5)
do not satisfy the Lipschitz condition. Note that Theorem 4.1 can be applied
to the above Cauchy problem.

Let us consider problem (5.3), (5.4) with

(5.6) (V z)(t, x) =
�

D[t,x]

z2(τ, y) dy dτ.

The interpolating operators Vhz corresponding to (5.6) do not satisfy the
Lipschitz condition. Thus the results of [13] are not applicable to (5.3), (5.4)
with V given by (5.6). Note that Theorem 4.1 can be applied to the above
Cauchy problem.

Now we present numerical examples. We apply the results of Section 4 to
a differential equation with deviated variables and to a differential integral
problem. For n = 2 we put E0 = {0} × [−b, b]× [−b, b], M > 0 and

(5.7) E = {(t, x, y) ∈ R3 : 0 ≤ t < a, x, y ∈ [−b+Mt, b−Mt]}.
Initial value problems considered here have solutions on E. Let us write h =
(h0, h1, h2) and assume h1 = h2. Let Nr ∈ N be defined by x(m1), y(m2) ∈ I[r]
form1,m2 = −Nr,−Nr+1, . . . , Nr−1, Nr, where I[r] = [−1+2t(r), 1−2t(r)]
and x(Nr+1), y(Nr+1) /∈ I[r].

Example 5.1. Consider the differential equation with deviated variables

(5.8) ∂tz(t, x, y)

= cos(x∂xz(t, x, y)− y∂yz(t, x, y))− x∂xz(t, x, y)− y∂yz(t, x, y)

+ z(t, 0.5(x+ y), 0.5(x− y)) + xy(1 + 2t)z(t, x, y)− exp (0.25t(x2 − y2))

with the initial condition

(5.9) z(0, x, y) = 1 on E0.

We put a = 0.4, b = 1, M = 2 in (5.7). The solution of (5.8), (5.9) is
known, it is v(t, x, y) = etxy. Let us denote by zh : Eh → R the solution of
the implicit difference problem corresponding to (5.8), (5.9). Write

(5.10) ε
(r)
h =

1
(2Nr + 1)2

Nr∑
m1=−Nr

Nr∑
m2=−Nr

|v(r,m)
h − z(r,m)

h |.

The number ε(r)h is the arithmetical mean of the error with fixed t(r). We give
experimental values of the above defined errors for h0 = 0.01, h1 = h2 =
0.001.

t(r) 0.15 0.20 0.25 0.30 0.35 0.40
ε
(r)
h 0.000785 0.000941 0.000975 0.000929 0.000918 0.001150
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The results in the table are consistent with our theoretical analysis. We
have solved problem (5.8), (5.9) by using an explicit Lax scheme with the
same steps of the mesh. In the case in question the (CFL) condition is not
satisfied and the errors are greater than 100 for r ≥ 10.

Example 5.2. Consider the differential integral equation

(5.11) ∂tz(t, x, y)

= − 0.25x∂xz(t, x, y) + 0.25x cos
(
∂xz(t, x, y) +

x�

0

z(t, s, y) ds
)

− 0.25y∂yz(t, x, y)− 0.25y sin
(
∂yz(t, x, y) +

y�

0

z(t, x, s) ds
)

+ g(t, x, y)

where g(t, x, y) = cos t cosx cos y−x sin t sinx cos y−y sin t cosx sin y−0.25x,
with the initial condition

(5.12) z(0, x, y) = 0 on E0.

We put a = 1.5, b = 1, M = 0.5 in (5.7). The solution to this problem
is v(t, x, y) = sin t cosx cos y. Let us denote by zh : Eh → R the solution
of the implicit difference problem corresponding to (5.11), (5.12). Let ε(r)h
be defined by (5.10). In the table we give experimental values of the above
defined errors for h0 = 0.02, h1 = h2 = 0.002.

t(r) 0.54 0.60 0.64 0.70 0.74 0.80
ε
(r)
h 0.006636 0.007498 0.008044 0.008811 0.009283 0.009927

The results in the table are consistent with our theoretical analysis. We
have solved problem (5.8), (5.9) by using an explicit Lax scheme with the
same steps of the mesh. In this case the (CFL) condition is not satisfied and
the errors are greater than 100 for r ≥ 40.

Note that we have a little better results for the differential equation with
deviated variables than for the differential integral problem. This is due to
the fact that we use interpolating values Vhzh at the points 0.5(x(m1)+y(m2)),
0.5(x(m1) − y(m2)) in the first example and we use interpolating values Vhzh
on the intervals [0, x(m1)], [0, y(m2)] in the second example.

The above examples show that there are implicit difference methods for
functional differential equations which are convergent and the corresponding
explicit difference schemes are not convergent. Difference schemes obtained
by the discretization (1.1), (1.2) have the following property: a large number
of previous values z(r,m)

h , u(r,m)
h must be preserved because they are needed

to compute an approximate solution (zh, uh) for t = t(r+1).
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