
APPLICATIONES MATHEMATICAE
38,1 (2011), pp. 1–16

Damian Bogdanowicz (Gdańsk)

ANALYZING SETS OF PHYLOGENETIC TREES
USING METRICS

Abstract. The reconstruction of evolutionary trees is one of the primary
objectives in phylogenetics. Such a tree represents historical evolutionary
relationships between different species or organisms. Tree comparisons are
used for multiple purposes, from unveiling the history of species to decipher-
ing evolutionary associations among organisms and geographical areas.

In this paper, we describe a general method for comparing phylogenetic
trees and give some basic properties of the Matching Split metric, which is
a special case of a general definition. We focus on four metrics for binary
unrooted trees. We present results of a computational experiment concerning
an application of those metrics to estimating the quality of a phylogenetic
signal.

1. Introduction. A phylogenetic tree (also called an evolutionary tree)
represents historical evolutionary relationships between different species or
organisms. Typically a set of extant (present day) species labels the leaves
of the tree and the remaining vertices represent ancestral species. If a root
vertex is present (the tree is rooted), then it corresponds to the oldest an-
cestor of the species under study. Often, there is insufficient information to
determine the root and the tree is left unrooted. Unrooted trees still pro-
vide a notion of evolutionary relationships between organisms even if the
direction of descendants remains unknown [9].

There are many methods for constructing phylogenetic trees, e.g. Dis-
tance, Parsimony, Maximum Likelihood, Bayesian approach. Applying those
techniques usually results in different trees for the same input data. An im-
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portant problem is to determine how distant two trees reconstructed in such
a way are from each other. In comparison to others, the Bayesian method-
ology, which we have used during the experiments presented in Section 6, is
relatively new and becomes more and more popular [17]. Bayesian analysis
of phylogenies is similar to Maximum Likelihood in that the user postu-
lates a probabilistic model of evolution and the program searches for the
best trees that are consistent with both the model and the data. Unlike
ML, which seeks the single most likely tree, Bayesian analysis searches for
the best set of trees. In order to obtain useful, reliable biological information
based on those sets of trees, methods of postprocessing and visualization are
required. Various methods of computing a consensus tree of a set of trees
have been developed. One of such methods that uses phylogenetic metrics, is
based on finding a median tree. A median tree can be regarded as a manner
of extracting common biological information from the analysis of a set of
slightly different trees. Penny et al. [16] propose defining a consensus of a
collection P of binary trees based on the same leaves as a median tree of P
in the space of binary trees with metric d. That is, given a set (also called
profile) P = {T1, . . . , Tk} of arbitrary phylogenetic trees with the same sets
of leaves, a median tree for P is a tree T which minimizes the expression
D(T, P ) =

∑k
i=1 d(T, Ti).

Another newer approach of postpocessing suggested by Stockham et al.
[22] uses clustering technique. A method of visualization has been investi-
gated by Hillis et al. [10], where multidimensional scaling of a phylogenetic
tree space is considered.

Phylogenetic trees have taken on a great importance in evolutionary bi-
ology and tree comparisons are used for multiple purposes, from unveiling
the history of species to deciphering evolutionary associations among organ-
isms and geographical areas [24]. Phylogenetic tree distances can be used as
a tool in studies of host-parasite associations [24]. Comparing phylogenetic
trees is also very useful in mining phylogenetic information databases [25].

In this paper, we focus on methods of analyzing sets of trees using various
phylogenetic metrics. We describe a general method for creating phyloge-
netic tree metrics (Section 2). In Section 4, we present a concrete definition
of a new distance for unrooted trees and investigate some basic properties
of that metric.

We also report some results of analyzing data from the EMBL-ALIGN
database using our software tool that implements some methods of com-
paring phylogenetic trees (Section 6). The results indicate that there is a
relation between concentration of trees (average values of distances between
trees in the phylogenetic metrics under study) that are produced during a
Bayesian Markov Chain Monte Carlo (MCMC) process and the phylogenetic
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signal quality in the input sequences. A phylogenetic signal is described as a
tendency for related species to resemble each other more than they resemble
species drawn at random from the phylogenetic tree [2], [13].

2. A general method for creating metrics. In this section, we sug-
gest a general metric (a function that satisfies non-negativity, identity of in-
discernibles, symmetry and triangle inequality) between phylogenetic trees.
This is a generalization and extension of the approach suggested by Nye et al.
[15]. Nye et al. describe a distance between phylogenetic trees that is based
on finding a bijection between branches in both trees being compared that
maximizes a sum of scores for related branches. Although the authors of [15]
claim that the procedure can be applied to any kind of phylogenetic trees, i.e.
rooted, unrooted and not necessarily bifurcating, they do not explicitly show
how to compare trees with different numbers of edges. Here, we overcome
that problem by introducing an artificial element O. We use a slightly differ-
ent approach and concentrate on minimizing (not maximizing as in [15]) a
sum of scores. Secondly, we do not limit the methodology to scoring a match-
ing between branches in phylogenetic trees, but introduce a general concept
of description elements, members of a set which we denote by D\{O}. A de-
scription element is an abstraction of a piece of information about the topol-
ogy of a tree, for example it can be a branch, split or cluster in some phy-
logenetic tree description. A set of description elements which we consider
should explicitly identify a tree. An example of description elements that
are related to internal nodes in phylogenetic trees is described in Section 5.

Given a graph G = (V,E), a matching M in G is a set of pairwise
non-adjacent edges; that is, no two edges in M share a common vertex. A
perfect matching is a matching which covers all vertices of the graph. If we
assign weights to edges in G, then a minimum weight perfect matching is
defined to be a perfect matching for which the sum of the weights of the
edges has a minimal value. A bipartite graph is a graph whose vertices can
be decomposed into two disjoint sets such that no two vertices within the
same set are adjacent.

The main idea behind our definition of a general metric consists of three
steps. In the first step we use a function f in order to transform both trees
into sets of description elements.

In the second step we construct a bipartite graph G whose vertices cor-
respond to those sets of description elements such that all vertices of each
part correspond to description elements of one of the trees. Weights of edges
in G depend on the value of a metric function h on the set of description
elements. In the last step we compute the value of a minimum weight perfect
matching in the graph G. The value is a topological distance between the
trees under consideration.
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Fig. 1. Illustration for Definition 2.1

Let D be a fixed set with a distinguished element O. Then the set D\{O}
will be called the set of description elements.

Definition 2.1. Let T1 and T2 be phylogenetic trees such that T1, T2 ∈
TL, where TL is a family of phylogenetic trees on a set L of species (leaves).
Let f : TL → 2D\{O} be an injective function that assigns a finite set of
description elements (elements ofD\{O}) to a tree. Let h : D×D → R+∪{0}
be a metric on D. Finally, let G = (V1, V2, E) be a complete bipartite graph
constructed as follows:

(1) vertices in V1, V2 correspond to elements of f(T1), f(T2);
(2) if f(T1), f(T2) do not have the same number of elements, we extend

the smaller part of G by the missing number of dummy vertices,
which all correspond to the element O ∈ D;

(3) we connect every u ∈ V1 to every w ∈ V2 by an edge {u,w} with
weight w({u,w}) = h(fu(T1), fw(T2)), where fv(Ti) denotes the ele-
ment of f(Ti) ∪ {O} which corresponds to the vertex v.

We define

(2.1) df,h(T1, T2) = min
M

( ∑
e∈M⊆E(G)

w(e)
)
,

where the minimum is taken over all perfect matchings M in G.

2.1. Correctness of the definition

Theorem 2.2. The function df,h is a metric on TL.

Proof. It is easy to observe that if T1, T2 ∈ TL, then df,h(T1, T2) ≥ 0,
and df,h(T1, T2) = 0⇔ T1 = T2. For every T1, T2 ∈ TL we have df,h(T1, T2) =
df,h(T2, T1). We have to prove the triangle inequality: if T1, T2, T3 ∈ TL, then
df,h(T1, T2) + df,h(T2, T3) ≥ df,h(T1, T3).

Let Gij = (Vi, Vj , Eij) be the bipartite graph corresponding to the pair
of trees Ti, Tj and Mij be a minimum weight perfect matching in this graph.
Note that adding dummy vertices to both parts in a graph G does not change
the weight of a minimum weight perfect matching in this graph because h is
a metric, and therefore h(O,O) = 0 (compare Lemma 2.3). Hence, without
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loss of generality, we can assume that both parts in the graphs G12, G23,
G13 have the same number of vertices equal to N .

Let V1 = {a1, . . . , aN}, V2 be the set {b1, . . . , bN} such that {al, bl} ∈
M12, and V3 be the set {c1, . . . , cN} such that {bl, cl} ∈M23 for 1 ≤ l ≤ N .
Let w12(l) = w({al, bl}), w23(l) = w({bl, cl}) be the weights of the edges in
M12 and M23 respectively (see Fig. 2). Since weights of edges correspond to
values of the metric h, we have

df,h(T1, T2) + df,h(T2, T3) =
N∑
l=1

(w12(l) + w23(l)) ≥
N∑
l=1

w123(l),

where w123(l) = w({al, cl}) is the weight of the edge in G13 that forms a
triangle with the edges {al, bl} ∈ M12 and {bl, cl} ∈ M23 (see Fig. 2). It
is easy to see that

∑N
l=1w123(l) ≥ df,h(T1, T3), thus finally df,h(T1, T2) +

df,h(T2, T3) ≥ df,h(T1, T3).

...

...
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Fig. 2. Illustration of the proof

The computational complexity of the metric depends on three aspects:
computation of the functions f and h, and computation of a minimum weight
perfect matching in bipartite graphs, which can be done very efficiently,
in time O(|E|

√
|V | log(|V |maxe∈E w(e))) [12]. Weighted bipartite matching

algorithms can be implemented efficiently, and can be applied to graphs of
reasonably large size (about 100000 vertices). In this paper, we consider only
fully resolved (binary) trees and suggest two special cases of the definition.
In both cases considered the cardinalities of the parts of the graph G are
equal (we do not need to perform the operation described in the second item
of the definition); therefore, the dummy element O is unnecessary.

Lemma 2.3. Let df,h be the metric defined by (2.1) and let k ∈ f(T1)
∪{O}, l ∈ f(T2)∪{O}. If k = l, then there exists a minimum weight perfect
matching M that contains an edge whose ends correspond to k and l and
whose weight is 0.



6 D. Bogdanowicz

Proof. For simplicity we denote by {u, v} the edge between the vertices
in G that correspond to description elements u and v. Suppose that there
exist elements k and l such that k ∈ f(T1)∪{O}, l ∈ f(T2)∪{O}, k = l and
the edge {k, l} does not belong to a minimum weight perfect matching M .
Then there exist x, y such that x ∈ f(T1) ∪ {O}, y ∈ f(T2) ∪ {O} and
the edges {x, l}, {y, k} belong to M . We can always create a new perfect
matching M ′ = M \ {{x, l}, {y, k}} ∪ {{k, l}, {x, y}}. Since weights of edges
correspond to values of the metric h, we have

w({x, l}) + w({y, k}) ≥ w({x, y}) = w({x, y}) + w({k, l}).
Therefore, the weight of the matching M ′ is less than or equal to the weight
of M . Since M is a minimum weight perfect matching, so is M ′, and in
addition it fulfills all conditions of the lemma.

The property described in Lemma 2.3 can be used to improve the cal-
culation time of the metric. Namely, during the calculation, the description
elements that are present in both trees can be omitted without changing the
value of a minimum weight perfect matching.

3. Classical phylogenetic tree metrics for unrooted trees. In this
section, we present three definitions of well-known phylogenetic metrics for
fully resolved (binary) unrooted trees, which have been used during the
experiment described in Section 6. An unrooted phylogenetic tree is defined
as an acyclic connected graph with no vertices of degree two and every leaf
(vertex of degree one) labeled uniquely. In a binary unrooted phylogenetic
tree every internal (i.e. non-leaf) vertex has degree three.

T1

a

b

c d

e T2

a

c

d b

e

Fig. 3. Examples of binary unrooted trees with five leaves

Definition 3.1 ([5]). Let T be a tree over a set L of leaves and let e be
an edge of T . If we remove e, then we divide T into two components. Let A
be the set of leaves in one component and B be the set of leaves in the other
component. This partition of leaves of T is denoted by A|B and called the
split corresponding to the edge e.

The split A|B is an unordered pair (i.e. A|B = B|A). If |A| = 1 or
|B| = 1, then A|B is trivial, otherwise it is non-trivial [5]. The set of splits
corresponding to all edges in T is called the set of splits of T and is denoted
β(T ) [5]. Let L(T ) be the leaf set of T and set |L(T )| = n.
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Definition 3.2. The Robinson–Foulds distance (RF) [18] between two
trees T1 and T2 is defined as

dRF (T1, T2) = 1
2 |β(T1) \ β(T2)|+ 1

2 |β(T2) \ β(T1)|.
The Robinson–Foulds distance between the trees in Fig. 3 is equal to 2.

The RF distance is one of the best known and widely used methods of
comparison. Our general method can easily yield the RF distance if the
functions f and h are defined as follows:

f(T ) = β(T ) and h(s1, s2) =
{

0 if s1 = s2,
1 otherwise.

Definition 3.3 ([5]). Given a split A|B. We define the quartet set of
the split to be

q(A|B) = {ab|cd : a, b ∈ A, c, d ∈ B, a 6= b, c 6= d}.
Let T be a phylogenetic tree, and set q(T ) =

⋃
A|B∈β(T ) q(A|B) [5].

Definition 3.4. The Quartet distance [21] between two trees T1 and T2

is defined as

dQt(T1, T2) = 1
2 |q(T1) \ q(T2)|+ 1

2 |q(T2) \ q(T1)|.
The Quartet distance between the trees in Fig. 3 is equal to 4. Our

general method yields the Quartet distance if the functions f and h are
defined as follows:

f(T ) = q(T ) and h(q1, q2) =
{

0 if q1 = q2,
1 otherwise.

Let v(T ) be a vector of non-negative integers, defined as follows. Each
entry in v(T ) gives the number of edges in a path between two leaves in T .
Let len(v) be the number of elements in v. Then

len(v(T )) = |L(T )| |L(T )| − 1
2

.

Definition 3.5. The Nodal distance [3] between two trees T1 and T2 is
defined as

dNd(T1, T2) =
len(v(T1))∑

i=1

|v(T1)(i)− v(T2)(i)|,

where the vectors v(T1) and v(T2) are ordered so that the values on the
same positions correspond to the same pair of leaves in both vectors.

The Nodal distance between the trees in Fig. 3 is equal to 10.

4. The Matching Split distance. Based on the method described in
the second section we can define a new metric that is also based on splits.
We will call it the Matching Split distance (MS).
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Definition 4.1. Let f and h be functions defined as follows:

f(T ) = β(T ) and h(A1|B1, A2|B2) = min{|A1 	A2|, |A1 	B2|},
where A1|B1, A2|B2 are splits corresponding to edges in T1, T2 and A	B =
(A \B) ∪ (B \A). We then define the Matching Split (MS) distance as

dMS(T1, T2) = df,h(T1, T2).

For example, we calculate the Matching Split distance between the trees
in Fig. 3. Note that we do not need to consider trivial splits for binary
unrooted trees because they are the same in each tree. We have the following
non-trivial splits for T1: ab|cde, abc|de, and for T2: ac|bde, acd|be. Using the
function h we calculate the distances between those splits: h(ab|cde, ac|bde)
= 2, h(ab|cde, acd|be) = 2; h(abc|de, ac|bde) = 1, h(abc|de, acd|be) = 2. The
weight of a minimum weight perfect matching is 3, so dMS(T1, T2) = 3.

Definition 4.2 ([1]). Any internal edge of an unrooted binary tree has
four subtrees attached to it. A nearest neighbor interchange (NNI) occurs
when one subtree on one side of an internal edge is swapped with a subtree
on the other side of the edge.

T1

e
AB CD T2

A BCD
T3

A DBC
Fig. 4. The trees T2 and T2 are results of two possible NNI operations about edge e in T1.
The circles represent any binary subtrees over sets of leaves A, B, C and D.

Lemma 4.3. Let T1, T2 ∈ TL. If dRF (T1, T2) = 1 then 2 ≤ dMS(T1, T2) ≤
bn/2c, where |L| = n.

Proof. Let A,B,C,D denote the sets of leaves in the subtrees in Fig. 4.
First, notice that if dRF (T1, T2) = 1, then the trees T1 and T2 are at a
distance of exactly one NNI operation [4]. Therefore, we have dMS(T1, T2) =
min{|B|+|D|, |A|+|C|}. It is easy to observe that the function h has maximal
value equal to bn/2c. The distance is minimal and equal to 2 if |B| = 1 and
|D| = 1 or if |A| = 1 and |C| = 1. Depending on the number of leaves in the
subtrees, the distance between the trees T1 and T2 can vary between 2 and
bn/2c.

4.1. Differences between the MS and RF metrics. Although the
MS and RF distances seem similar because both use splits, there are sub-
stantial differences between them.
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Let us consider trees that are as close as possible in the RF metric. The
trees T1 and T2 (or T1 and T3) in Fig. 4 are examples of such trees. For
example, for n = 8 based on Lemma 4.3 we can always find a pair of totally
balanced trees that are at distance bn/2c in the MS metric, which gives a
distance of 4 in this case, whereas in the case of the RF metric it is always 1.
We can say that the MS metric is sensitive to the sizes of the subtrees that
are swapped during an NNI operation; the RF metric is insensitive to it.

e1

a

e2 en−5 en−4 c b

d

T1

T2

a

b

e1 e2 en−5 en−4 c

d

Fig. 5. Differences between the RF and MS distances. Solid arrows indicate connections
that appear when computing the MS metric in a minimum weight perfect matching.

The next case considered in this section is important because it illustrates
an interesting, not necessarily desired, property of the RF metric.

Consider the trees in Fig. 5. T2 is obtained from T1 as a result of removing
the leaf b and attaching it to the edge of the leaf d. In spite of the fact
that we have done only one modification, we obtain two trees that are as
far as possible in the RF metric, i.e. dRF (T1, T2) = n − 3. Considering
the MS distance we obtain dMS(T1, T2) = n − 2, which is much smaller
than the maximal possible distance in this metric, e.g. for n = 8 we obtain
dMS(T1, T2) = 6, whereas the maximal possible value is 16. The quotient of
dMS(T1, T2) by the maximal distance in the MS metric for n = 8 equals 3/8,
while in the case of the RF metric it is constant and equal to 1 because the
maximal distance in that metric is n− 3.

Another argument for substantial similarity of those two trees comes
from an agreement subtree approach. Let T be an unrooted tree, and let
A be a subset of its leaf set L(T ). Consider the minimal subgraph T (A)
of T that connects elements of A. Let T|A denote an unrooted tree that is
obtained by deleting all vertices of degree two in T (A) and identifying their
adjacent edges. T|A is called the subtree of T induced by A.

Definition 4.4. A tree T with a leaf set X ⊆ L is called an agreement
subtree of trees T1, T2 ∈ TL if T = T1|X = T2|X . A Maximum Agreement
Subtree or MAST is an agreement subtree with the maximum number of
leaves.
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MAST is one of several methods for extracting information common to
trees. In the case of our trees T1 and T2 the number of leaves in MAST(T1, T2)
is equal to n−1 (almost all leaves), which means that those two tress describe
evolutionary relationships very similarly. This similarity is not noticed by the
RF distance, where the trees are classified as 100% dissimilar, but it is taken
into consideration by the MS distance, which describes the dissimilarity as
only 37.5% (for n = 8).

4.2. Distribution of the MS distance for random trees. In the
last part of this section we would like to consider average distances and
distributions of the MS metric in the case where the trees are randomly
generated. In order to generate random trees we have used the Evolver ap-
plication from the PAML 4 package [26]. Since tree comparisons are often
performed by testing the null hypothesis that the trees are not more con-
gruent (topologically similar) than expected by chance [24], it is important
to know what the distribution of distances between random trees for a par-
ticular metric looks like. Knowing the distribution of a particular metric on
pairs of trees generated by some random process is also useful to interpret
the significance of a measured value of the metric on a pair of phylogenetic
trees [20].
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Fig. 6. Average distances in the MS metric for 10000 randomly generated pairs of trees

In Fig. 6 we present the average distance between random trees as a
function of the number of leaves in those trees. The character of the relation
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seems to be subquadratic; however, we do not have any analytical argument
for this. Approximation using the least squares method based on randomly
generated data gives the following relation: AVGMS(n) = 2.4359n log2 n −
7.9490n+ 15.7946 with R2 = 0.999983.
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Fig. 7. Distributions of the MS and RF metrics for 10000 randomly generated pairs of
trees

In Fig. 7 we present the distributions of the MS and RF metrics for
10000 random pairs of trees with 10, 25 and 100 leaves. Comparing these
distributions, we see that the MS metric has a much larger range so it is
more discriminating than the RF distance. We can also observe that the
shape of the MS distribution is similar to a normal distribution, whereas,
as shown by Steel and Penny in [20], the distribution of the RF distance is
described asymptotically by a Poisson distribution.
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5. A new metric for rooted trees. In this section, we give an example
of a new metric for binary rooted trees, the Matching Pair distance (MP).
A rooted binary phylogenetic tree is defined similar to unrooted binary tree,
except that one internal vertex, which has degree two, is distinguished and
called the root. In biological context, the root corresponds to the oldest
ancestor of the species under study.

In this case the function f assigns a set of unordered pairs of leaves to
the internal vertex that is the least common ancestor for every pair in the
set. As a result, f transforms a phylogenetic tree into a family of sets of
pairs. As a measure of distance between sets of pairs we can use symmetric
difference, therefore h(A,B) = 0.5|A	B|, where A,B are sets of unordered
pairs (for example see Fig. 8).

T1 T2

{a, b} {b, c}

{a, c}, {a, d}
{b, c}, {b, d}

a b c d

{a, c} {b, d}

{a, b}, {a, d}
{b, c}, {c, d}

a c b d
{a, b}

{b, c}

{a, c}, {a, d}
{b, c}, {b, d}

1

1
1.5

1

1.5

1.5

1.51

2

{a, c}

{b, d}

{a, b}, {a, d}
{b, c}, {c, d}

Fig. 8. The MP distance between the trees is equal to 4

Because the computational experiments have been performed for un-
rooted trees only, we do not explore the rooted trees further in this paper.

6. Experimental results. In this section, we want to investigate whet-
her distances between trees that are created during a Bayesian MCMC
(Markov Chain Monte Carlo) process are related to the quality of a phyloge-
netic signal in the input data. Bayesian inference of phylogeny is based on a
quantity called the posterior probability of a tree. Bayes’s theorem is used to
combine the prior probability of a phylogeny (Pr[Tree]) with the likelihood
(Pr[Data | Tree]) to produce a posterior probability distribution on trees
(Pr[Tree | Data]) [11]. The posterior probability of a tree can be interpreted
as the probability that the tree is correct. For the phylogeny problem, the
MCMC algorithm involves two steps. In the first step a new tree is proposed
by stochastically perturbing the current tree. In the second step this tree
is either accepted or rejected with a probability described by Metropolis et
al. [14] and Hastings [8]. If the new tree is accepted, then it is subject to a
further perturbation [11]. It turns out that for a properly constructed and
appropriately run Markov chain, the proportion of the time that any tree
is visited is a valid approximation of the posterior probability of that tree
[23], [11].
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The Bayesian MCMC method searches a landscape of possible trees, it
moves from point to point seeking higher points (more likely trees). The
method allows a search to occasionally leap a valley that would otherwise
trap it on a suboptimal hill. The final product is a set of trees that the
program has repeatedly visited.

During the experiment we analyze MrBayes [19] output files generated
based on 16 data sets. Each data set contains an alignment of 8 DNA se-
quences obtained from the EMBL database. The total number of MCMC
generations was set to 10 million. We have omitted the first million of gen-
erations (“burn-in” phase). Next, we sequentially computed the distances
between trees in resolution of 50000 generations in the four metrics consid-
ered above for unrooted trees. In Table 1 we present the average values of
180 distances computed between 181 trees.

Table 1. Average distances derived from eight-taxon data sets obtained from the EMBL-
ALIGN database.

No
EMBL-ALIGN

accession number
Sequences
included

Length
Average values

RF Nodal Quartet MS

1 ALIGN 000002 1,2,3,4,5,6,7,8 1632 1.16 13.42 7.44 2.42

2 ALIGN 000521 1,2,3,4,5,6,7,8 1325 0.70 9.77 5.83 1.92

3 ALIGN 000832 2,3,4,5,6,7,9,10 1185 0.79 10.62 6.63 2.04

4 ALIGN 000205 2,3,4,6,8,10,11,12 1386 0.62 7.47 3.11 1.24

5 ALIGN 000297 2,3,4,6,15,16,17,19 1167 2.27 22.32 14.71 4.63

6 ALIGN 000397 2,3,4,6,7,8,9,10 1662 2.01 20.38 13.56 4.13

7 ALIGN 000398 1,2,3,4,5,6,7,8 1656 0.60 7.09 3.31 1.24

8 ALIGN 000623 2,3,4,5,6,10,11,12 1312 0.13 1.69 0.76 0.31

9 ALIGN 000628 2,3,4,5,7,13,17,31 1385 0.01 0.13 0.06 0.02

10 ALIGN 000767 2,3,4,5,6,7,8,10 1386 0.66 7.93 3.31 1.32

11 ALIGN 000771 1,2,3,4,5,6,7,8 4547 1.29 13.84 6.47 2.59

12 ALIGN 000788 2,3,4,5,6,7,12,14 1629 1.70 19.04 12.18 3.60

13 ALIGN 000853 1,2,3,4,5,6,7,8 5307 1.25 14.22 8.22 2.97

14 ALIGN 000930 2,3,4,5,6,7,8,9 1321 3.67 36.09 36.48 8.49

15 ALIGN 000931 2,3,5,14,15,16,19,21 1231 4.63 42.71 45.49 10.81

16 ALIGN 000984 2,3,4,6,7,11,12,13 1139 3.29 31.79 33.59 7.48

In order to compare and analyze the above values, in Table 2 we present
results of analyzing the same sets of sequences obtained by Czarna et al. [6],
where the authors considered different methods for testing a phylogenetic
signal. The last five columns in Table 2 contain results of using those meth-
ods, the lower the score the better the phylogenetic signal in data.
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It is not hard to notice that there is a relation between the quality of
a phylogenetic signal and the average values of distances between trees in
MCMC data. Data sets with small distances (for example data sets 7, 8
and 9) correspond to a high percentage of resolved quartets, which indicates
a good phylogenetic signal. A poor phylogenetic signal corresponds to larger
values of the distances (for example data sets 14, 15 and 16).

Table 2. The percentage of four-taxon subset for which the star topology was the ML
solution (unresolved quartets) was calculated using TreePuzzle. The last four columns
show the number of trees out of possible 10395 included in the 0.95 confidence set using:
expected likelihood weights (ELW) test, Shimodaira-Hasegawa (SH) test, generalised least
squares (GLS) test, and weighted least squares test (WLS) [6].

No
EMBL-ALIGN

accession number
Unresolved
quartets (%)

Number of trees in the 0.95 confidence set

SH ELW GLS WLS

1 ALIGN 000002 22.9 141 14 9 135

2 ALIGN 000521 5.7 135 11 105 107

3 ALIGN 000832 10 327 50 49 315

4 ALIGN 000205 4.3 15 6 18 9

5 ALIGN 000297 31.4 315 258 315 315

6 ALIGN 000397 24.3 2745 328 10395 10206

7 ALIGN 000398 0 477 20 815 77

8 ALIGN 000623 0 380 20 10395 33

9 ALIGN 000628 0 141 5 117 21

10 ALIGN 000767 4.3 15 6 9 9

11 ALIGN 000771 14.3 81 9 10 15

12 ALIGN 000788 24.3 945 80 225 135

13 ALIGN 000853 12.9 225 20 225 45

14 ALIGN 000930 78.6 10395 8925 10395 10393

15 ALIGN 000931 100 10395 9876 10395 10395

16 ALIGN 000984 45.7 10395 2344 10395 10391

7. Conclusion. In this paper, we have presented a general method for
creating phylogenetic metrics. We have considered only binary (fully re-
solved) trees; however, the method can be used for comparing non-binary
trees as well. Another advantage of the method is its time complexity, which
is polynomial (under the condition that both functions f and h can be com-
puted in polynomial time) in contrast with, for example, most metrics based
on edit operations like NNI or TBR [7], [1]. Since the method is based on
matching, it can also be used for visualizing similarities and differences be-
tween phylogenetic trees (similar to the method described in [15]).
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We have defined and investigated some basic properties and advantages
of a special case of the general definition, called the Matching Split metric.
We have also indicated basic differences between the MS distance and the
well-known RF metric.

We have performed computational experiments, whose results indicate
the possibility of application of some of the metrics to estimating a phylo-
genetic signal quality. The experiments have been carried out for data sets
containing 8-taxon trees. The question arises if the results can be generalized
to bigger trees. Another question concerns the possibility of normalizing the
values to make them independent of the number of leaves.
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