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AN OPTIMAL CONTROL APPROACH TO CANCER
TREATMENT UNDER IMMUNOLOGICAL ACTIVITY

Abstract. Mathematical models for cancer treatment that include im-
munological activity are considered as an optimal control problem with an
objective that is motivated by a separatrix of the uncontrolled system. For
various growth models on the cancer cells the existence and optimality of
singular controls is investigated. For a Gompertzian growth function a syn-
thesis of controls that move the state into the region of attraction of a benign
equilibrium point is developed.

1. Introduction. In 1980, Stepanova [12] proposed a mathematical
model of two ordinary differential equations for the interactions between
cancer cell growth and the activity of the immune system during the de-
velopment of cancer. Despite its simplicity, depending on the parameter
values, this model allows for various medically observed features. By now
the underlying equations have been widely accepted as a basic model and
have become the basis for numerous extensions and generalizations (e.g.,
[8, 5, 6] and the references therein). An extensive analysis of the dynamical
properties of mathematical models including tumor immune-system inter-
actions has been carried out in the literature. Kuznetsov et al. [8] give a
bifurcation analysis and estimate parameters based on in vivo experimental
data. De Vladar and González [5] further analyze Stepanova’s model, and
d’Onofrio [6] formulates and investigates a general class of models. Among
the more important common theoretical findings are the following ones:
while under certain conditions the immune system can be effective in the
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control of small cancer volumes (and in these cases what actually is medi-
cally considered cancer never develops), so-called immune surveillance, for
large volumes the cancer dynamics suppresses the immune dynamics and the
two systems effectively become separated [5, Appendix B]. Consequently, in
this case only a therapeutic effect on the cancer (e.g., chemotherapy, radio-
therapy, ...) needs to be analyzed. There is, however, the interesting case “in
the middle” when both a benign (microscopic or macroscopic) stable equi-
librium exists and uncontrolled growth is possible as well. In this case, there
also exists an unstable equilibrium point and its stable manifold becomes
a separatrix between the benign region and the malignant region of uncon-
trolled cancer growth. It may then be possible to shift an initial condition of
the system from the region of uncontrolled growth into the region of attrac-
tion of the benign equilibrium through therapy and thus control the cancer.
In this paper, for Stepanova’s model we formulate this aim as an optimal
control problem and, based on necessary conditions for optimality, derive
a structure of controls that achieves this objective when cancer growth is
modeled by a Gompertzian growth function.

Optimal control approaches have been considered previously in the con-
text of cancer immune interactions, for example, in the work by de Pillis et
al. [3, 4]. In these papers, for a larger and more detailed model of the tumor
immune system interactions, optimal controls are computed numerically for
an a priori specified time horizon. In contrast, our approach is analytical
and the final time is free with the overall amount of therapeutic agents to
be given specified. But the main difference of our formulation considered
here lies in the selection of an objective that is determined by geometric
properties of the underlying uncontrolled system. Preliminary research in
this direction has been presented in [9].

2. Stepanova’s mathematical model for cancer immune res-
ponse. In a slightly modified form, the dynamical equations are given by

ẋ = µCxF (x)− γxy,(1)

ẏ = µI(x− βx2)y − δy + α,(2)

where x denotes the tumor volume and y represents the immunocompetent
cell densities related to various types of T -cells activated during the immune
reaction; all Greek letters denote constant coefficients.

Equation (2) summarizes the main features of the immune system’s re-
action to cancer in a one-compartment model with the T -cells as the most
important indicator. The coefficient α models a constant rate of influx of
T -cells generated through the primary organs and δ is simply the rate of
natural death of the T -cells. The first term in this equation models the
proliferation of lymphocytes. For small tumors, it is stimulated by the anti-
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tumor antigen which is assumed to be proportional to the tumor volume x.
But large tumors predominantly suppress the activity of the immune sys-
tem and this is expressed through the inclusion of the term −βx2. Thus
1/β corresponds to a threshold beyond which the immunological system be-
comes depressed by the growing tumor. The coefficients µI and β are used
to calibrate these interactions and in the product with y collectively de-
scribe a state-dependent influence of the cancer cells on the stimulation of
the immune system.

The first equation, (1), models tumor growth. The coefficient γ denotes
the rate at which cancer cells are eliminated through the activity of T -cells
and this term thus models the beneficial effect of the immune reaction on the
cancer volume. Lastly, µC is a tumor growth coefficient. In our formulation
above, F is a functional parameter that allows one to specify various growth
models for the cancer cells. In Stepanova’s original formulation this term F
is simply given by FE(x) ≡ 1, i.e., exponential growth of the cancer cells
is considered. While there exists a time frame when exponential growth is
realistic, over prolonged periods usually saturating growth models are pre-
ferred. For instance, there exists medical evidence that some tumors follow
a Gompertzian growth model [11, 10] in which case the function F is given
by FG(x) = − ln(x/x∞) with x∞ denoting a fixed carrying capacity for the
cancer. But also logistic and generalized logistic growth models of the form
FL(x) = 1 − (x/x∞)ν with ν > 0 have been considered as models for tu-
mor growth. We here thus mostly consider the model with a general growth
term F only assuming that F is a positive, twice continuously differentiable
function defined on the interval (0, x∞).
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Fig. 1. Phase portrait of the system given by equations (1) and (2) with a Gompertzian
growth function

An example of the phase portrait of this system for a Gompertzian
growth function is shown in Fig. 1. The parameter values that were used
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to generate this figure are given by α = 0.1181, β = 0.00264, γ = 1,
δ = 0.37451, µC = 0.5618, µI = 0.00484, and x∞ = 780. The parameters
α through δ are directly taken from the paper [8] by Kuznetsov et al. who
estimate parameters based on in vivo experimental data for B-lymphoma
BCL1 in the spleen of mice. In that paper a classical logistic growth model
is used to model cancer growth and we therefore adjusted the remaining
parameters to account for a Gompertzian growth model using linear data
fitting. Also, the functional form (x − βx2)y used in Stepanova’s model in
equation (2) is a quadratic expansion of the term used in [8]. The speci-
fied parameter values only serve to illustrate our results and computations
numerically. There exist three equilibria, an asymptotically stable focus at
(72.961, 1.327), a saddle point at (356.174, 0.439) and an asymptotically sta-
ble node at (737.278, 0.032). Clearly this structure depends on the parameter
values chosen and it is not generally valid for the underlying system. How-
ever, it is correct for a large range of close-by values.

3. Formulation of the optimal control problem. We consider this
dynamics under the application of a therapeutic agent and, following [5],
assume that the elimination terms are proportional to tumor volume and
immunocompetent cell densities (the so-called log-kill hypothesis). Hence we
subtract terms κXxu, respectively κY yu, from the x and y dynamics. The
coefficients κX and κY allow us to normalize the control set, i.e., we assume
that 0 ≤ u ≤ 1. Fig. 2 shows the phase portrait of the system when u = 1
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Fig. 2. Phase portrait of the system with Gompertzian growth and u = 1 and (κX , κY ) =
(1, 0)

and (κX , κY ) = (1, 0). Again these values are for illustrative purposes only.
In this case the system has only one equilibrium with positive values at
(x̄, ȳ) = (43.017, 0.622), which is a globally asymptotically stable focus for
the region R2

+ = {(x, y) : x > 0, y > 0}, the region of interest. For κY > 0
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the y-coordinate ȳ of the equilibrium will be smaller, but the beneficial effect
on the cancer volume will be diminished and thus x̄ will be larger. But for
any values of (κX , κY ) it is in principle possible (ignoring side effects) to
reduce the cancer volume to a small enough chronic state.

Naturally, side effects of the drugs invalidate this reasoning and our aim
is to investigate how an initial condition (x0, y0) in the region of malignant
cancer growth for the uncontrolled system could be transferred in an effi-
cient and effective way into the region of attraction of the stable, benign
equilibrium point. Such a transfer requires minimizing the cancer cells x
while not depleting the T -cell density y too strongly. The system under
consideration is Morse–Smale [7] and thus the boundary between these two
types of behaviors consists of a union of smooth curves, the stable manifolds
of unstable equilibria. For the classical version of Stepanova’s model with
exponential growth there exists one saddle point and this separatrix is given
by the stable manifold of this saddle. In general, it is not possible to give an
analytic description of this manifold. But its tangent space is spanned by the
stable eigenvector of the saddle point and this easily computable quantity
can serve as a first approximation. In fact, the separatrix shown in Fig. 1 is
well approximated by its tangent line in the region where the tumor volume
is not too large (otherwise the immune system will not be very effective
anyway [5]) and also the one of Fig. 2 in [5] is almost linear. It thus becomes
a reasonable strategy to minimize an objective of the form ax− by where a
and b are positive coefficients determined by the stable eigenvector

(3) vs =
(
b

a

)
of the saddle that determines the boundary between the two stable be-
haviors of the system. For example, for the parameter values used earlier,
normalizing b = 1 we have a = 0.00192.

Side effects of the treatment still need to be taken into account and
there exist various options of modeling them. For example, if u denotes a
cytotoxic agent, one can include its cumulative effects in the objective and
aim to minimize a weighted average of the form

(4) J(u) = ax(T )− by(T ) + ε

T�

0

u(t) dt

with some ε > 0. Such an objective will strike a balance between the benefit
at the terminal time T and the overall side effects measured by the total
amount of drugs given. However, it is still possible that this amount far
exceeds any tolerable limits in order to gain the “optimal” benefit. It is
therefore sometimes a more useful approach to limit the overall amount of
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cytotoxic agents to be given a priori,

(5)
T�

0

u(t) dt ≤ A,

and then to ask how this amount can best be applied. This is the approach
we take here. In such a formulation, T does not correspond to a therapy
horizon, but it merely denotes the time when the minimum for the objective
is realized. Based on a solution to this optimal control problem, possibly for
various values of the overall amount A, an appropriate therapy interval can
then be determined. In any case, the necessary conditions for optimality for
these two formulations are closely related and thus it can be expected that
the structure of optimal solutions is similar.

Adjoining the isoperimetric constraint (5) as a third variable z, we thus
consider the following optimal control problem:

[OC] for a free terminal time T , minimize the objective

(6) J(u) = ax(T )− by(T ),

a > 0, b > 0, subject to the dynamics

ẋ = µCxF (x)− γxy − κXxu, x(0) = x0,(7)

ẏ = µI(x− βx2)y − δy + α− κY yu, y(0) = y0,(8)
ż = u, z(0) = 0,(9)

over all Lebesgue measurable functions u : [0, T ]→ [0, 1] for which
the corresponding trajectory satisfies z(T ) ≤ A.

It is not difficult to see that for positive initial conditions x0 and y0

and for any admissible control u all states remain positive and thus there is
no need to impose this condition as a state-space constraint. Since we are
interested in the case when the immune activity can have some influence,
but, on the other hand, by itself is not able to suppress the cancer, here we
only consider trajectories that lie in the region

(10) G = {(x, y) : x > 1/(2β), y > 0}
where the cancer volume is not too small. If the initial condition (x0, y0)
lies in the malignant region, but outside of G, the phase portrait of the
uncontrolled system (see Fig. 1) shows that the tumor volume increases for
u ≡ 0 and thus also in this case the system will eventually enter the region
G if no actions are taken and then our analysis will apply. Of course, it is not
claimed that it would be an optimal strategy to let the tumor grow to the size
1/(2β), but in principle this allows us to reduce the problem mathematically
to considering the region G only. Also, while we derive some properties of
optimal controls in general, in this paper we restrict our core analysis to the
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case when the elimination effects on the immunocompetent cells are much
smaller than on the tumor cells, κY � κX , and for simplicity we then set
κY = 0.

4. Necessary conditions for optimality. First-order necessary con-
ditions for optimality of a control u are given by the Pontryagin Maximum
Principle (some recent textbooks on the topic are [1, 2]): For a row-vector
λ = (λ1, λ2, λ3) ∈ (R3)∗, we define the Hamiltonian H = H(λ, x, y, u) as

H = λ1(µCxF (x)− γxy − κXxu)(11)

+ λ2(µI(x− βx2)y − δy + α− κY yu) + λ3u.

Ignoring one trivial situation when the optimal control is constant and is
given by u = 1 over the full interval, we can restrict our analysis to so-called
normal extremals when the multiplier λ0 corresponding to the objective is
non-zero and we normalize λ0 = 1. Hence, if u∗ is an optimal control defined
over the interval [0, T ] with corresponding trajectory (x∗, y∗, z∗), then there
exists an absolutely continuous co-vector, λ : [0, T ] → (R3)∗, such that the
following conditions hold:

(a) λ3 is constant, and λ1 and λ2 satisfy the adjoint equations

λ̇1 = −∂H
∂x

(12)

= −λ1(µC(F (x) + xF ′(x))− γy − κXu)− λ2µI(1− 2βx)y,

λ̇2 = −∂H
∂y

= λ1γx− λ2(µI(x− βx2)− δ − κY u),(13)

with terminal conditions λ1(T ) = a and λ2(T ) = −b,
(b) for almost every time t ∈ [0, T ], the optimal control u∗(t) minimizes

the Hamiltonian along (λ(t), x∗(t), y∗(t)) over the control set [0, 1]
with minimum value given by 0.

The following properties of the multipliers directly follow from these
conditions:

Proposition 1. If an optimal trajectory x entirely lies in the region G,
then λ1 is positive and λ2 is negative on the closed interval [0, T ].

Proof. The adjoint equations (12) and (13) form a homogeneous system
of linear ODE’s and thus λ1 and λ2 cannot vanish simultaneously. It follows
from the terminal conditions that λ1(T ) > 0 and λ2(T ) < 0. Suppose now λ2

has a zero in the interval [0, T ) and, if there are more than one, let τ be the
last one. This zero must be simple (otherwise λ2 and λ1 vanish identically)
and therefore λ̇2(τ) = λ1(τ)γx(τ) is negative, implying that λ1(τ) < 0. But
then λ1 must have a zero in (τ, T ) and, once more taking σ as the last one,
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we have λ̇1(σ) = −λ2(σ)µI [1 − 2βx(σ)]y(σ) > 0. But λ2(σ) < 0 and in the
region G also 1 − 2βx(σ) < 0. Contradiction. Thus λ2 has no zero in the
interval [0, T ). The reasoning just given then also implies that λ1 cannot
have a zero.

The optimal control u∗(t) minimizes the Hamiltonian H(λ(t), x∗(t),
y∗(t), u) over the interval [0, 1] a.e. on [0, T ]. Since H is linear in u, and
defining the so-called switching function Φ as

(14) Φ(t) = λ3 − λ1(t)κXx∗(t)− λ2(t)κY y∗(t),

it follows that

(15) u∗(t) =
{

0 if Φ(t) > 0,
1 if Φ(t) < 0.

The minimum condition by itself does not determine the control at times
when Φ(t) = 0. However, if Φ(t) ≡ 0 on an open interval, then also all
derivatives of Φ(t) must vanish and this typically allows one to compute the
control. Controls of this kind are called singular [1] while we refer to the
constant controls u = 0 and u = 1 as the bang controls. For example, if
Φ(τ) = 0, but Φ̇(τ) 6= 0, then the control switches between u = 0 and u = 1
depending on the sign of Φ̇(τ).

Optimal controls need to be synthesized from these candidates. This
requires analyzing the switching function and its derivatives. The computa-
tions of the derivatives of the switching function simplify significantly within
the framework of geometric optimal control theory. We define the state vec-
tor as w = (x, y, z)T and express the dynamics in the form

(16) ẇ = f(w) + ug(w)

where

(17) f(w) =

 µCxF (x)− γxy
µI(x− βx2)y − δy + α

0

 and g(w) =

−κXx−κY y
1

 .

The adjoint equations then simply read

(18) λ̇(t) = −λ(t)(Df(w(t)) + u∗(t)Dg(w(t)))

with Df and Dg denoting the matrices of the partial derivatives of the
vector fields which are evaluated along w(t). In this notation the switching
function becomes

(19) Φ(t) = λ(t)g(w(t)) = 〈λ(t), g(w(t))〉.

The derivatives of Φ can easily be computed by invoking a well-known direct
calculation.
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Proposition 2. Let w(·) be a solution to the dynamics for control u and
let λ be a solution to the corresponding adjoint equation. For a continuously
differentiable vector field h define Ψ(t) = 〈λ(t), h(w(t))〉. Then the derivative
of Ψ is given by

(20) Ψ̇(t) = 〈λ(t), [f + ug, h](w(t))〉,
where [k, h] = Dh(w)k(w)−Dk(w)h(w) denotes the Lie bracket of the vector
fields k and h.

Proof. Dropping the argument t, we have

Ψ̇ = λ̇h(w) + λDh(w)ẇ
= −λ(Df(w) + uDg(w))h(w) + λDh(w)(f(w) + ug(w))
= λ(Dh(w)f(w)−Df(w)h(w)) + uλ(Dh(w)g(w)−Dg(w)h(w))
= 〈λ, [f + ug, h](w)〉.

The derivative of the switching function Φ thus does not depend on the
control variable u and is given by

(21) Φ̇(t) = 〈λ(t), [f, g](w(t))〉.
For the system considered here, direct calculations verify that

(22) [f, g](w) = κX

 µCx
2F ′(x)

µI(1− 2βx)xy
0

− κY
γxyα

0

 .

Setting κY = 0 we thus get

(23) Φ̇(t) = κX
(
λ1(t)µCx(t)2F ′(x(t)) + λ2(t)µI(1− 2βx(t))x(t)y(t)

)
.

In the case of an exponential growth model we have F ′(x) ≡ 0 and thus by
Proposition 1 the switching function is increasing in the region G. Hence we
have

Proposition 3. For the model with exponential growth (i.e., FE(x)=1),
optimal controls u for trajectories x that entirely lie in the region G are
bang-bang with at most one switching from u = 1 to u = 0.

Hence for this model a full dose therapy is used to move the system
across the separatrix (if the total amount A allows one to do so) and then
the uncontrolled dynamics takes over to steer the system towards the benign
equilibrium point.

5. Problem [OC] with a Gompertzian growth model F (x) =
− ln(x/x∞). For a Gompertzian growth model, FG(x) = − ln(x/x∞), we
have xF ′G(x) = −1 and in this case Φ̇(t) consists of a positive and a negative
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term. In fact, now the derivative Φ̇(t) can be made identically zero and a
singular control exists. With κY = 0 we get

(24) [g, [f, g]](w) = −κ2
XµI(1− 4βx)xy

0
1
0


and thus for trajectories lying in G,

(25) 〈λ(t), [g, [f, g]](w(t))〉 = −λ2(t)κ2
XµI [1− 4βx(t)]x(t)y(t) < 0,

i.e., the strengthened Legendre–Clebsch condition for minimality is satisfied.
Hence the equation for the second derivative of the switching function,

(26) Φ̈(t) = 〈λ(t), [f, [f, g]](w(t))〉+ u(t)〈λ(t), [g, [f, g]](w(t))〉 ≡ 0,

can be solved for u as

(27) usin(t) = −〈λ(t), [f, [f, g]](w(t))〉
〈λ(t), [g, [f, g]](w(t))〉

.

For the Gompertzian growth model the vector fields g, [f, g] and [g, [f, g]]
are everywhere linearly independent on G and thus form a basis. Hence the
second-order bracket [f, [f, g]] can be expressed as a linear combination of
these vector fields with coefficients that are smooth functions of w. It is
easily seen that the third coordinate of [f, [f, g]] is zero and therefore the
coefficient at the vector field g is zero. We therefore have a relation of the
form

(28) [f, [f, g]](w) = ϕ(w)[f, g](w)− ψ(w)[g, [f, g]](w)

with ϕ and ψ easily obtained as solutions of the linear equations defined
by (28).

The switching function and its derivative vanish along a singular control
and thus we have Φ̇(t) = 〈λ(t), [f, g](w(t))〉 = 0. Substituting (28) into (27)
we obtain

usin(t) = −〈λ(t), ϕ(w(t))[f, g](w(t))− ψ(w(t))[g, [f, g]](w(t))〉
〈λ(t), [g, [f, g]](w(t))〉

(29)

= −ϕ(w(t))
〈λ(t), [f, g](w(t))〉
〈λ(t), [g, [f, g]](w(t))〉

+ ψ(w(t)) = ψ(w(t)).(30)

Direct calculations verify that

(31) ψ(w) = − 1
kX

[
µC ln

(
x

x∞

)
+ γy− 1− 2βx

1− 4βx

(
α

y
+ γ

µI
µC

(1− 2βx)xy
)]
.

Clearly, it depends on the actual parameter values whether this control is
admissible (i.e., its values lie in the control set [0, 1]) or not. For this model
this property cannot be guaranteed a priori and generally the admissible
portions of the singular control need to be calculated numerically. Note that
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the first two terms in (31) cancel the x-dynamics of the system and thus
along a singular control we have

ẋ = −µCx ln
(
x

x∞

)
− γxy − κXxψ(w)(32)

= −x1− 2βx
1− 4βx

(
α

y
+ γ

µI
µC

(x− 2βx2)y
)
.

Furthermore, the Hamiltonian H,

(33) H = 〈λ(t), f(w(t))〉+ u(t)〈λ(t), g(w(t))〉,

also vanishes identically along an optimal control. Along a singular arc
〈λ(t), g(w(t))〉 ≡ 0 and thus 〈λ(t), f(w(t))〉 vanishes as well. Since the deriva-
tive of the switching function vanishes along a singular arc, that is, Φ̇(t) =
〈λ(t), [f, g](w(t))〉 ≡ 0, the multiplier λ(t) vanishes along f , g and [f, g]. By
Proposition 1, λ is non-zero and thus these vector fields must be linearly
dependent along the singular arc. For this system the control vector field g is
always independent of f and [f, g], and therefore this condition is equivalent
to the linear dependence of the vector fields f and [f, g]. This reduces to the
following relation:

0 = −γµI(x− 2βx2)y2(34)

+ µC

(
−µI ln

(
x

x∞

)
(x− 2βx2) + µI(x− βx2)− δ

)
y + αµC .

If we write this equation in the form

(35) a2(x)y2 + a1(x)y + a0 = 0,

then a2 is positive on G and a0 is a positive constant. Thus positive solutions
y can only exist for a1(x) < 0. Depending on the value of x there exist no,
one or two positive solutions y = ysin(x) that define the singular curve. For
the numerical values given earlier we have 1/(2β) = 189.68 and in the region
G there exist no positive solutions for 1/(2β) < x < 292.82 and x > 927.47,
exactly one for x = 292.82 and x = 927.47, and two positive solutions
for 292.82 < x < 927.47. This singular curve is shown in the top portion
of Fig. 3, and the bottom portion gives the values of the singular control
usin(t) = ψ(w(t)) as w(t) varies along the singular curve; the admissible
control set [0, 1] is marked as well. For these parameter values there exist
two connected segments when the singular control is admissible, separated
by two inadmissible segments. The admissible segments are identified by a
solid curve, while the inadmissible segments are shown as a dotted curve in
Fig. 3. Note that the upper and lower portions on these two graphs are in an
inverted relation to each other, i.e., the upper portion of the singular curve
corresponds to the lower portion of the singular control and vice versa.
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Fig. 3. The singular curve (top) and the singular control (bottom)

Summarizing, for a Gompertzian growth model we thus have the follow-
ing result:

Proposition 4. For the model with Gompertzian growth function (i.e.,
FG(x) = − ln(x/x∞)), there exists a singular curve defined as the zero-set of
equation (34). Along the singular curve the strengthened Legendre–Clebsch
condition for minimality is satisfied and the corresponding singular dynamics
is defined by (32).

6. Towards a synthesis of solutions. We briefly describe (informally
and without proofs) some aspects of the structure of extremal controls de-
rived above. Recall that the underlying aim is to move an initial condition in
the malignant region into the region of attraction of the benign equilibrium
and that the optimal control formulation [OC] only provides the means for
achieving this objective. Typically an initial condition will lie to the right
of the singular arc and initially an extremal control will be constant given
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by u = 1 until the trajectory hits the singular arc. At the junction with the
singular arc, and assuming the singular control is admissible, the control
switches to the singular control. Assuming enough drugs are available, the
trajectory now follows the singular arc across the separatrix. (For each ini-
tial condition this construction thus allows one to compute the total amount
A of the drug that is needed to move the system into the region of attrac-
tion of the benign equilibrium point.) After the trajectory has crossed the
separatrix, in principle the control could switch to u = 0 and then follow
the uncontrolled trajectory towards the benign equilibrium point. However,
it seems prudent to establish an adequate security margin and move the
state of the system as far away as possible from the separatrix. The remain-
ing drugs can be used to achieve this objective. This leads to the following
three-dimensional minimization problem over variables (τ, σ, α) whose nu-
merical solution then defines the optimal control:

• τ denotes the time along the singular curve when the control switches
from singular to u = 0. At the corresponding point the trajectory
leaves the singular arc and follows the trajectory of the uncontrolled
system.
• σ denotes the time along this trajectory of the uncontrolled system

(u = 0) when chemotherapy becomes reactivated. At this time the
control switches from u = 0 to u = 1.
• α denotes the total amount of the drug that is being used so that the

state at the terminal time T minimizes the objective given in (6). Note
that we may actually have α < A.
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Fig. 4. Example of a trajectory of the type 1s01

Overall, a concatenation sequence for the control of the form 1s01 re-
sults. The solid curve in Fig. 4 gives an example of a trajectory computed
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for specific values of (τ, σ, α). Initially the control is taken as u = 1 un-
til the singular curve is reached. The curved dotted portion for low values
of y represents other points on the singular curve. At the junction point
of the trajectory for u = 1 with the singular curve the singular control is
admissible, and now the solid curve follows the singular curve across the sep-
aratrix. The dash-dotted line represents the tangent line to this separatrix at
the saddle point. At time τ the control swithes to u = 0 and the trajectory
follows this trajectory towards the benign equilibrium point. Once more we
show the continuation of this trajectory as a dotted curve, while the solid
curve then represents a switch to the control u = 1 at time σ.

The presence of the trajectory corresponding to u = 0 actually has im-
portant implication on the structure of optimal controls, and in fact, optimal
controls need not exist in all cases. The reason is that this trajectory pro-
vides a “free pass”(i.e., does not incur a penalty), but can take an infinite
time. It seems clear from the geometric properties of the phase portrait (and
numerical simulations bear this out) that these calculations only give an in-
fimum, but not a minimum. This infimum arises as the controls switch from
the singular control to u = 0 as the singular arc intersects the stable mani-
fold of the saddle that defines the separatrix, then follow the separatrix for
an infinite time to the saddle and then again leave this saddle point along
the unstable manifold again taking an infinite time. It seems intuitively clear
that this would be the best solution in the sense of using the least amounts
of inhibitors. But it is not an admissible trajectory in our system. While the
question of the existence of an optimal control thus becomes a non-trivial
one, as far as the underlying objective is concerned, this does not matter.
The controls of the type 1s01 that are identified from the conditions of the
Maximum Principle indeed accomplish this objective.

7. Conclusion. Based on Stepanova’s mathematical model of immuno-
logical activity during cancer growth, we formulated the problem of how to
transfer a malignant initial condition into a benign region through therapy
as an optimal control problem. For a Gompertzian growth model on the
cancer volume we described the structure of a class of controls that accom-
plish this objective for the case when the effects of the cytotoxic agents on
immunocompetent cells is much smaller than on the tumor cells, κY � κX .
These controls are concatenations of an initial bang arc (given by u = 0 or
u = 1) followed by a singular portion and a final bang-bang sequence of the
form 01.
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