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SOLVABILITY OF THE HEAT EQUATION
IN WEIGHTED SOBOLEV SPACES

Abstract. The existence of solutions to an initial-boundary value problem
to the heat equation in a bounded domain in R3 is proved. The domain
contains an axis and the existence is proved in weighted anisotropic Sobolev
spaces with weight equal to a negative power of the distance to the axis.
Therefore we prove the existence of solutions which vanish sufficiently fast
when approaching the axis. We restrict our considerations to the Dirichlet
problem, but the Neumann and the third boundary value problems can be
treated in the same way. The proof of the existence is split into the following
steps. First by an appropriate extension of initial data the initial-boundary
value problem is reduced to an elliptic problem with a fixed t ∈ R. Applying
the regularizer technique it is considered locally. The most difficult part is to
show the existence in weighted spaces near the axis, because the existence in
neighbourhoods located at a positive distance from the axis is well known. In
a neighbourhood of a point where the axis meets the boundary, the elliptic
problem considered is transformed to a problem near an interior point of the
axis by an appropriate reflection.

Using cutoff functions the problem near the axis is considered in R3

with sufficiently fast decreasing functions as |x| → ∞. Then by applying
the Fourier–Laplace transform we are able to show an appropriate estimate
in weighted spaces and to prove local in space existence. The result of this
paper is necessary to show the existence of global regular solutions to the
Navier–Stokes equations which are close to axially symmetric solutions.

1. Introduction. The aim of this paper is to prove the existence of solu-
tions to an initial-boundary value problem for the heat equation in weighted
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Sobolev spaces H l,l/2
−µ (ΩT ), l ∈ N0 = N ∪ {0}, µ ∈ R+ \ Z, ΩT = Ω × (0, T ),

where Ω ⊂ R3 is a bounded domain which contains a distinguished axis L.

Definition 1.1. We denote by H l,l/2
−µ (ΩT ), l ∈ N0, µ ∈ R+ the comple-

tion of the C∞(Ω× (0, T )) functions vanishing sufficiently fast on approach-
ing L in the norm

‖u‖
H
l,l/2
−µ (ΩT )

=
( ∑
|α|+2a≤l

�

ΩT

|Dα
x∂

a
t u(x, t)|2%(x)2(−µ+|α|+2a−l) dx dt

)1/2
,

if l is even, where |α| = α1 +α2 +α3, Dα
x = ∂α1

x1
∂α2
x2
∂α3
x3
, αi, a ∈ N0, i = 1, 2, 3,

%(x) = dist(x, L), and

‖u‖
H
l,l/2
−µ (ΩT )

=
( ∑
|α|+2a≤l

�

ΩT

|Dα
x∂

a
t u|2%(x)2(−µ+|α|+2a−l) dx dt

+
�

Ω

T�

0

T�

0

%(x)−2µ |∂
l/2]
t′ u(x, t′)− ∂[l/2]

t′′ u(x, t′′)|2

|t′ − t′′|2
dx dt′ dt′′

)1/2

for l odd.
We denote by H l

−µ(Ω), l ∈ N0, µ ∈ R+, the space with the finite norm

‖u‖Hl
−µ(Ω) =

( ∑
|α|≤l

�

Ω

|Dα
xu|2%(x)2(−µ+|α|−l) dx

)1/2
.

We consider the Cauchy–Dirichlet problem

(1.1)

ut −∆u = f in ΩT ,

u = 0 on ST = S × (0, T ),
u|t=0 = u0 in Ω,

where S = ∂Ω. We assume that L meets S in two points: s1 and s2.
We shall restrict ourselves to problem (1.1) to simplify the presentation.

The techniques of this paper can also be applied to the nonhomogeneous
problem (1.1), the Neumann problem and the third boundary value prob-
lem. The tools of this paper are sufficient to show solvability of any initial-
boundary value problem for a general linear parabolic system of the second
order. Moreover, we can consider unbounded domains because the existence
in a domain with boundary follows from the regularizer technique.

The main result of this paper is the following

Theorem 1.2. Assume that f ∈ H
l,l/2
−µ (ΩT ), u0 ∈ H l+1

−µ (Ω), l ∈ N0,
µ ∈ R+ \ Z, S ∈ C l+2. Assume the compatibility condition

(1.2) u0|S = 0 mod H l+1/2
−µ (S).
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Then there exists a solution u ∈ H l+2,l/2+1
−µ (ΩT ) to problem (1.1) such that

(1.3) ‖u‖
H
l+2,l/2+1
−µ (ΩT )

≤ c(‖f‖
H
l,l/2
−µ (ΩT )

+ ‖u0‖Hl+1
−µ (Ω)),

where c does not depend on u, f and u0.

Let us consider the nonhomogeneous problem (1.1),

(1.4)

ut −∆u = f in ΩT ,

u = g on ST ,

u|t=0 = u0 in Ω.

Similarly to Theorem 1.2 we prove

Theorem 1.3. Assume that f ∈ H
l,l/2
−µ (ΩT ), g ∈ H

l+3/2,l/2+3/4
−µ (ST ),

u0 ∈ H l+1
−µ (Ω), l ∈ N0, µ ∈ R+ \ Z, S ∈ C l+2. Assume the compatibility

condition

(1.5) u0|S − g|t=0 = 0 mod H l+1
−µ (S).

Then there exists a solution u ∈ H l+2,l/2+1
−µ (ΩT ) to problem (1.4) such that

(1.6) ‖u‖
H
l+2,l/2+1
−µ (ΩT )

≤ c(‖f‖
H
l,l/2
−µ (ΩT )

+ ‖g‖
H
l+3/2,l/2+3/4
−µ (ST )

+ ‖u0‖Hl+1
−µ (Ω)),

where c does not depend on u, f, g, u0.

To omit some technical difficulties related to weighted spaces of traces
on S we consider problem (1.1). The norms of weighted Sobolev spaces of
traces can be found in [5, 8, 13].

Finally, we consider the Neumann problem

(1.7)

ut −∆u = f in ΩT ,

∂u

∂n
= g on ST ,

u|t=0 = u0 in Ω,

where ∂
∂n denotes the normal derivative on S. We have

Theorem 1.4. Assume that f ∈ H
l,l/2
−µ (ΩT ), g ∈ H

l+l/2,l/2+1/4
−µ (ST ),

u0 ∈ H l+1
−µ (Ω), l ∈ N0, µ ∈ R+ \ Z, S ∈ C l+2. Assume the compatibility

condition

(1.8)
∂u0

∂n

∣∣∣∣
S

− g|t=0 = 0 mod H l−1/2
−µ (S).
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Then there exists a unique solution u ∈ H l+2,l/2+1
−µ (ΩT ) to (1.7) such that

(1.9) ‖u‖
H
l+2,l/2+1
−µ (ΩT )

≤ c(‖f‖
H
l,l/2
−µ (ΩT )

+ ‖g‖
H
l+1/2,l/2+1/4
−µ (ST )

+ ‖u0‖Hl+1
−µ (Ω)),

where c does not depend on u, f, g, u0.

We prove Theorem 1.2 in the following steps. First we extend the initial
data for t > 0 to a function ũ0 such that

ũ0|t=0 = u0, ũ0|S = 0 and ũ0 ∈ H l+2,l/2+1
−µ (ΩT )

with

(1.10) ‖ũ0‖Hl+2,l/2+1
−µ (ΩT )

≤ c‖u0‖Hl+1
−µ (Ω).

Introducing the new function

(1.11) v = u− ũ0,

we see that v is a solution to the problem

(1.12)
vt −∆v = f − ũ0,t +∆ũ0 ≡ g in Ω × (0, T ),
v|S = 0 on S × (0, T ),
v|t=0 = 0 in Ω.

Assuming the compatibility conditions

(1.13) ∂σt g|t=0 = 0, σ ≤ [l/2]− 1,

we can extend g by 0 onto Ω × (−∞, 0].
Let g′ be the extended function. Then

(1.14) ‖g′‖
H
l,l/2
−µ (Ω×(−∞,T ))

≤ c‖g‖
H
l,l/2
−µ (Ω×(0,T ))

.

The possibility of such extensions is described in Lemma 2.4.
By the Hestenes–Whitney method, g′ can be extended onto Ω × [T,∞)

in such a way that the extended function g′′ is in H l,l/2
−µ (Ω × R) and

(1.15) ‖g′′‖
H
l,l/2
−µ (Ω×R)

≤ c‖g′‖
H
l,l/2
−µ (Ω×(−∞,T ))

.

Then problem (1.12) will be considered in Ω × R. Hence (1.12) takes the
form

(1.16)
vt −∆v = g′′ in Ω × R,
v|S = 0 on S × R.

To apply the regularizer technique (see [4]) we examine problem (1.16) locally
in space variables. We distinguish four cases:

1. in a neighbourhood of an interior point of L;
2. near a point where L meets S;
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3. near an interior point of Ω located at a positive distance from L;
4. near a point of S located also at a positive distance from L.

In cases 1 and 3 problem (1.16) can be transformed to

(1.17) vt −∆v = ḡ in R3 × R,

while in cases 2 and 4 it can be formulated as

(1.18)
vt −∆v = ḡ in R3

+ × R,
v|x3 = 0 on R2 × R,

where ḡ is g localized to the corresponding neighbourhood.
In cases 3 and 4 the weighted spaces H l,l/2

−µ will not be used because the
problems are considered in neighbourhoods located at a positive distance
from L so the weighted and nonweighted spaces are equivalent.

We do not know how to examine problem (1.18) in case 2 as a boundary
value problem. Therefore it is transformed to problem of the form (1.17) by
reflection with respect to the plane x3 = 0.

Summarizing, we need to examine the local problem (1.17) for case 1.
This problem describes the behaviour of solutions near the distinguished
axis L. Solvability and existence for other problems (cases 3 and 4) is well
known (see [4]).

We show an appropriate estimate in weighted spaces for solutions to
(1.17) in Section 3 but the existence is proved in Section 4. In Section 3 we
perform all calculations on the Laplace transforms of solutions of (1.17), so
we obtain the estimate in terms of Laplace transforms (see Definition 2.5).

The equivalence of norms introduced in Definitions 2.1 and 2.2 (in these
spaces Theorem 1.2 is formulated) and in Definition 2.5 is shown in Lem-
ma 2.6.

Having the existence for local problems, the existence in a bounded do-
main with vanishing initial data is proved by the regularizer technique in
Section 5. Finally, in Section 6 the existence with nonvanishing initial data
is proved.

The results of this paper are necessary for the proof of existence of global
regular solutions to the Navier–Stokes equations which remain close to axi-
ally symmetric solutions (see [7, 11, 12, 13]).

2. Notation and auxiliary results. We consider a domain Ω ⊂ R3

with a distinguished axis L. Assume that a global Cartesian system x =
(x1, x2, x3) in Ω is such that L is the x3-axis. 1 We denote by H l,l/2(Ω ×
(0, T )), l ∈ N0, the classical Sobolev–Slobodetskĭı spaces W l,l/2

2 (Ω × (0, T ))
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with the finite norm

‖u‖Hl,l/2(Ω×(0,T )) =
( ∑
|α|≤l

T�

0

�

Ω

|Dα
xu|2 dx dt+

∑
a≤[l/2]

T�

0

�

Ω

|∂at u|2 dx dt

+
�

Ω

T�

0

T�

0

|∂[l/2]
t′ u(x, t′)− ∂[l/2]

t′′ u(x, t′′)|2

|t′ − t′′|2
dx dt′ dt′′

)1/2

,

where the last integral disappears for l even. Then we define

L2(Ω × (0, T )) = H0,0(Ω × (0, T )).

Definition 2.1. Let l be even, µ ∈ R+. We denote by H l,l/2
−µ (Ω× (0, T ))

the completion of C∞(Ω × (0, T )) functions vanishing sufficiently fast near
L in the norm

‖u‖
H
l,l/2
−µ (Ω×(0,T ))

=
( ∑
|α|+2a≤l

T�

0

�

Ω

|Dα
x∂

a
t u|2|x′|2(−µ−l+|α|+2a) dx dt

)1/2
,

where Dα
x = ∂α1

x1
∂α2
x2
∂α3
x3
, α = (α1, α2, α3) is a multiindex, αi ∈ N0, i = 1, 2, 3,

|α| = α1 + α2 + α3, x′ = (x1, x2), |x′| =
√
x2

1 + x2
2.

Definition 2.2. Let l be odd, µ ∈ R+. Then H
l,l/2
−µ (Ω×(0, T )) is defined

to be the closure of C∞(Ω× (0, T )) functions vanishing sufficiently fast near
L in the norm

‖u‖
H
l,l/2
−µ (Ω×(0,T ))

=
( ∑
|α|≤l

T�

0

�

Ω

|Dα
xu|2|x′|2(−µ−l+|α|) dx dt

+
∑
2a<l

T�

0

�

Ω

|∂at u|2|x′|2(−µ−l+2a) dx dt

+
�

Ω

T�

0

T�

0

|x′|−2µ |∂
[l/2]
t′ u(x, t′)− ∂[l/2]

t′′ u(x, t′′)|2

|t′ − t′′|2
dx dt′ dt′′

)1/2

,

where we have used the fact that l/2− [l/2] = 1/2.

Definition 2.3 (see [1, 6]). Let l ∈ N0, µ ∈ R+, γ ≥ 0. Then we
introduce the space H l,l/2

−µ,γ(Ω × (0, T )) of functions u ∈ H
l,l/2
−µ (Ω × (0, T ))

such that e−γtu ∈ H l,l/2
−µ (Ω × (0, T )),

∂at u|t=0 = 0 for a ≤ l/2− 1 for even l,(2.1)

∂at u|t=0 = 0 for a < l/2 for odd l,(2.2)

and
e−γtu ∈ H l,l/2

−µ (Ω × (−∞, T )).
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The space H
l,l/2
−µ,γ(Ω × (0, T )) has the property that its elements can be

extended by zero for t < 0 and the extended function also belongs to
H
l,l/2
−µ,γ(Ω × (−∞, T )).

In the nonweighted case the spaces H l,l/2
γ (Ω× (0, T )) were introduced in

[1, 6]. The time behaviour of elements of H l,l/2
−µ,γ and H l,l/2

γ is the same.
We also write L2,−µ,γ(Ω × (0, T )) = H0,0

−µ,γ(Ω × (0, T )) and L2,−µ(Ω ×
(0, T )) = H0,0

−µ(Ω × (0, T )).

Lemma 2.4 (see [6]). Let u satisfy either (2.1) or (2.2). Let T < ∞.
Then the norms

‖u‖
H
l,l/2
−µ (Ω×(0,T ))

and ‖u‖
H
l,l/2
−µ,0(Ω×(−∞,T ))

are equivalent if and only if

∂at u|t=0 = 0, a ≤ [l/2],

�

Ω

dx

T�

0

|x′|−2µt−2(l/2−[l/2])|∂[l/2]
t u|2 dt <∞.

Let us introduce the Laplace transform for a function u ∈ H
l,l/2
−µ (Ω ×

(0, T )) satisfying either (2.1) or (2.2) by

(2.3) ũ(x, s) =
∞�

0

e−stu(x, t) dt, s = γ + iξ0, ξ0 ∈ R, γ > 0.

By the Paley–Wiener theorem the inverse Laplace transform of ũ vanishes
for t < 0 and satisfies either (2.1) or (2.2).

Definition 2.5. Let H̃ l,l/2
−µ,γ(Ω×R) be the space of functions u with the

finite norm

(2.4) ‖u‖
H̃
l,l/2
−µ,γ(Ω×R)

=
( l∑
j=0

∞�

−∞
dξ0 |s|j‖ũ‖2Hl−j

−µ (Ω)

)1/2
,

where ũ = ũ(x, s) is the Laplace transform of u defined by (2.3).

From [1] we have

Lemma 2.6. For any γ ≥ 0 there exist constants c1 and c2 independent
of u and γ such that

(2.5) c1‖u‖H̃l,l/2
−µ,γ(Ω×R)

≤ ‖u‖
H
l,l/2
−µ,γ(Ω×R)

≤ c2‖u‖H̃l,l/2
−µ,γ(Ω×R)

.

Recall that functions in H̃ l,l/2
−µ,γ(Ω×R) and H l,l/2

−µ,γ(Ω×R) vanish for t < 0.
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Proof. To prove the lemma we use the Parseval identity

(2.6)
∞�

−∞
dξ0

�

Rn
|f̃(x, γ + iξ0)|2 dx = 2π

∞�

0

e−2γt dt
�

Rn
|f(x, t)|2 dx.

From (2.6) we have
∞�

0

e−2γt‖u(t)‖2
Hl
−µ(Ω)

dt = (2π)−1
∞�

−∞
dξ0 ‖ũ(·, γ + iξ0)‖2

Hl
−µ(Ω)

,

∞�

0

e−2γtγl‖u(t)‖2L2,−µ(Ω) dt = (2π)−1
∞�

−∞
dξ0 γ

l‖ũ(·, γ + iξ0)‖2L2,−µ(Ω),

∞�

0

e−2γt‖∂l/2t u‖2L2,−µ(Ω) dt = (2π)−1
∞�

−∞
dξ0 |s|l‖ũ(·, γ + iξ0)‖2L2,−µ(Ω),

for l even.
For l odd we consider
∞�

0

e−2γtdt

∞�

0

‖∂kt u(·, t− τ)− ∂kt u(·, t)‖2L2,−µ(Ω)

dτ

τ1+l−2k

= (2π)−1
∞�

−∞
|s|2k‖ũ(·, s)‖2L2,−µ(Ω) dξ0

∞�

0

|e−τs − 1|2 dτ

τ1+l−2k
,

where k = [l/2].
From [6, Lemma 2.1] there exist constants c3, c4 such that

c3|s|l−2k ≤
∞�

0

|e−τs − 1|2 dτ

τ1+l−2k
≤ c4|s|l−2k

which concludes the proof.

Lemma 2.7. For T <∞ the norms

‖u‖
H
l,l/2
−µ,γ(Ω×(−∞,T ))

and ‖u‖
H
l,l/2
−µ,0(Ω×(−∞,T ))

are equivalent.

Proof. The equivalence of the norms

‖u‖
H̃
l,l/2
−µ,γ(Ω×(0,T ))

and ‖u‖
H̃
l.l/2
−µ,0(Ω×(0,T ))

follows from u|t<0 = 0, T < ∞ and e−γT ≤ e−γt ≤ 1 for t ∈ [0, T ]. An
application of the proof of Lemma 2.6 concludes the proof.

For the Laplace transform ũ(x, s) of u(x, t) and for a given s we introduce
the space E l−µ(Ω) endowed with the norm
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(2.7) ‖ũ(·, s)‖2El−µ(Ω)
=

l∑
j=0

|s|j‖ũ(·, s)‖2
Hl−j
−µ (Ω)

.

Applying the Laplace transform yields

(2.8) ‖u‖2
H̃
l,l/2
−µ,γ(Ω×R)

=
∞�

−∞
dξ0 ‖ũ(·, γ + iξ0)‖2El−µ(Ω)

.

3. A priori estimates for solutions to problem (1.1) in R3 × R.
In this section we consider problem (1.1) in the form

(3.1) ut −∆u = f in R3 × R,
where functions u and f are extended by zero for t < 0. Applying the Laplace
transform

(3.2) ũ(x, s) =
�

R+

u(x, t)e−st dt,

where s = γ + iξ0, γ > 0, ξ0 ∈ R, to problem (3.1), yields

(3.3) sũ−∆ũ = f̃ in R3.

Lemma 3.1. Assume that f ∈ L2,−µ(R3×R), µ ∈ R+\Z. Then solutions
u ∈ H2,1

−µ(R3 × R) of (3.1) satisfy

(3.4)
�

R
dξ0

�

R3

(|s|2|ũ|2 + |s| |∇ũ|2)|x′|−2µ dx+
�

R
dξ0 ‖ũ‖2H2

−µ(R3)

≤ c
�

R
dξ0 |s|

�

R3

|ũ|2|x′|−2µ−2 dx+ c
�

R
dξ0

�

R3

|f̃ |2|x′|−2µ dx,

where c does not depend on u and f .

Proof. Multiplying (3.3) by ϕ̄, where ϕ = (1 + i sign Ims)ũ|x′|−2µ and ϕ̄
is the complex conjugate to ϕ, integrating the result over R3 and by parts,
we obtain

(3.5)
�

R3

[sũ(1− i sign Im s)¯̃u|x′|−2µ +∇ũ · ∇((1− i sign Im s)¯̃u|x′|−2µ)] dx

=
�

R3

f̃(1− i sign Im s)¯̃u|x′|−2µ dx.

Comparing the real parts and performing estimates for nonpositive terms
yields

(3.6)
�

R3

(|s| |ũ|2 + |∇ũ|2)|x′|−2µ dx

≤ 2µ
�

R3

|∇ũ| |ũ| |x′|−2µ−1 dx+
�

R3

|f̃ | |ũ| |x′|−2µ dx.
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Applying the Hölder and the Young inequalities, the first term on the r.h.s.
is estimated by

1
2

�

R3

|∇ũ|2|x′|−2µ dx+ 2µ2
�

R3

|ũ|2|x′|−2µ−2 dx,

and the second by
1
2
|s|

�

R3

|ũ|2|x′|−2µ dx+
1

2|s|

�

R3

|f̃ |2|x′|−2µ dx.

In view of the above estimates, (3.6) takes the form

(3.7)
�

R3

(|s|2|ũ|2 + |s| |∇ũ|2)|x′|−2µ dx

≤ 4µ2|s|
�

R3

|ũ|2|x′|−2µ−2 dx+ 2
�

R3

|f̃ |2|x′|−2µ dx.

From [14] we have

(3.8) ‖ũ‖H2
−µ(R3) ≤ c‖f̃−sũ‖2L2,−µ(R3) ≤ c‖f̃‖

2
L2,−µ(R3) +c|s|2‖ũ‖2L2,−µ(R3).

Inequalities (3.7) and (3.8) imply

(3.9)
�

R3

(|s|2|ũ|2 + |s| |∇ũ|2)|x′|−2µ dx+ ‖ũ‖2H2
−µ(R3)

≤ c|s|
�

R3

|ũ|2|x′|−2µ−2 dx+ c
�

R3

|f̃ |2|x′|−2µ dx.

Integrating (3.9) with respect to ξ0 yields (3.4). This concludes the proof.

To estimate the first term on the r.h.s. of (3.4) we need

Lemma 3.2. Let f ∈ L2,−µ(R3 × R), µ ∈ R+, and u ∈ H2,1
−µ(R3 × R) be

a solution to (3.1). Let 0 < a1 < a2. Then
�

R
dξ0 |s|

�

R3

|ũ|2|x′|−2µ−2 dx ≤ 2a1

�

R
dξ0

�

R3

|ũ|2|x′|−2µ−4 dx(3.10)

+
2
a2

�

R
dξ0

�

R3

|ũ|2|s|2|x′|−2µ dx.

Proof. We set

Q1 = {(s, x′) : |s| |x′|2 ≤ a1},
Q2 = {(s, x′) : |s| |x′|2 ≥ a2},
Q3 = {(s, x′) : a1 ≤ |s| |x′|2 ≤ a2}.
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For given s we introduce

d1(s) = {x′ ∈ R2 : |s| |x′|2 ≤ a1},
d2(s) = {x′ ∈ R2 : |s| |x′|2 ≥ a2},
d3(s) = {x′ ∈ R2 : a1 ≤ |s| |x′|2 ≤ a2}.

For λ > 0 we define

Ωλ = {(s, x′) : λ|s| |x′|2 ≤ 1}, wλ(s) = {x′ ∈ R2 : λ|s| |x′|2 ≤ 1}.
Clearly, we have

(3.11) Q3 ⊂ Ωλ for λ ∈ (0, a−1
2 ].

We express the first term on the r.h.s. of (3.4) in the form

(3.12)
�

R
|s|

�

R3

|ũ|2|x′|−2µ−2 dx dξ0

=
3∑
i=1

�

R
dx3

�

Qi

dξ0 dx
′ |s| |ũ|2|x′|−2µ−2 ≡

3∑
i=1

Ii.

From the properties of the sets Qi, i = 1, 2, 3, we have

(3.13)

I1 ≤ a1

�

R
dξ0

�

R3

|ũ|2|x′|−2µ−4dx,

I2 ≤
1
a2

�

R
dξ0

�

R3

|ũ|2|s|2|x′|−2µ dx,

I3 ≤
1

a1+µ
1

�

R
dξ0

�

R3

|s|2+µ|ũ|2 dx ≡ I.

Let us introduce a smooth function χ = χ(t) such that χ(t) = 1 for t ≤ 1
and χ(t) = 0 for t ≥ 2, 0 ≤ χ(t) ≤ 1, |χ′(t)| ≤ 2. Set χλ(x′, s) = χ(λ|s| |x′|2).
Then ∇χλ(x′, s) 6= 0 for λ−1 ≤ |s| |x′|2 ≤ 2λ−1.

Multiplying (3.3) by (1 + i sign Im s)ũχ2
λ and integrating over R3 we ob-

tain �

R3

(sũ−∆ũ)(1− i sign Im s)¯̃uχ2
λ dx =

�

R3

f̃(1− i sign Im s)¯̃uχ2
λ dx.

Integrating by parts, taking the real parts and estimating we get

(3.14)
�

R3

(|s| |ũ|2 + |∇ũ|2)χ2
λ dx ≤

�

R3

|∇ũ¯̃u|2χλ∇χλ dx+
�

R3

|f̃ ¯̃u|χ2
λ dx.

The first term on the r.h.s. of (3.14) is estimated by
1
2

�

R3

|∇ũ|2χ2
λ dx+ 2

�

R3

|ũ|2|∇χλ|2 dx
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and the second by

ε

2

�

R
|ũ|2|s|1+µ|x′|2µχ2

λdx+
1
2ε

1
|s|1+µ

�

R3

|f̃ |2|x′|−2µχ2
λ dx ≡ J.

On suppχλ we have |s|µ|x′|2µ ≤
(

2
λ

)µ, so the first term in J is bounded by

ε

2

(
2
λ

)µ �

R3

|s| |ũ|2χ2
λ dx.

Assuming that ε
(

2
λ

)µ = 1 we obtain from (3.14) the inequality
�

R3

(|s| |ũ|2 + |∇ũ|2)χ2
λ dx

≤ 4
�

R3

|ũ|2|∇χλ|2 dx+
(

2
λ

)µ 1
|s|1+µ

�

R3

|f̃ |2|x′|−2µχ2
λ dx.

Multiplying the above inequality by |s|1+µ and integrating the result with
respect to ξ0 yields

(3.15)
�

R
dξ0 |s|1+µ

�

R3

(|s| |ũ|2 + |∇ũ|2)χ2
λ dx

≤ 4
�

R
dξ0 |s|1+µ

�

R3

|ũ|2|∇′χλ|2 dx+
(

2
λ

)µ �

R
dξ0

�

R3

|f̃ |2|x′|−2µχ2
λ dx,

where ∇′ denotes (∂x1 , ∂x2). Using |∇′χλ| ≤ 4λ|s| |x′| in (3.15) implies the
inequality

(3.16)
�

R
dξ0 |s|1+µ

�

R3

(|s| |ũ|2 + |∇ũ|2)χ2
λ dx

≤ 26λ
�

R
dξ0

�

R3∩ supp∇χλ

|s|2+µ|ũ|2 dx+
(

2
λ

)µ �

R
dξ0

�

R3

|f̃ |2|x′|−2µ dx.

On supp∇χλ we have |s| |x′|2 ≤ 2
λ . Then (3.16) takes the form

(3.17)
�

R
dξ0 |s|1+µ

�

R3

(|s| |ũ|2 + |∇ũ|2)χ2
λ dx

≤ 26λ
�

R
dξ0

�

R3∩ supp∇χλ

|s|2+µ|ũ|2 dx+
(

2
λ

)µ+1 �

R
dξ0

�

R3

|f̃ |2|x′|−2µ dx,

where λ < 2 was used. Since ∇′χλ 6= 0 for λ−1 ≤ |s| |x′|2 ≤ (λ/2)−1, we have
supp∇′χλ ⊂ wλ/2(s) \ wλ(s) for any s.
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Multiplying (3.17) by (λ/2)µ+1 yields

(3.18)
(
λ

2

)µ+1 �

R
dξ0 |s|1+µ

�

R3

(|s| |ũ|2 + |∇ũ|2)χ2
λdx

≤ 272µλ
(
λ/2
2

)µ+1 �

R
dξ0 |s|2+µ

�

wλ/2(s)\wλ(s)

|ũ|2 dx+
�

R
dξ0

�

R3

|f̃ |2|x′|−2µ dx.

Let λ be so small that 272µλ ≤ 1
2 . Then iterating (3.18) k times we obtain

(3.19)
(
λ

2

)µ+1 �

R
dξ0 |s|2+µ

�

wλ(s)

|ũ|2 dx

≤ 1
2k

(
λ/2k

2

)µ+1 �

R
dξ0 |s|2+µ

�

wλ/2
k+1

(s)\wλ/2k (s)

|ũ|2 dx+2
�

R
dξ0

�

R3

|f̃ |2|x′|−2µ dx,

where

wλ/2
k+1

(s) \ wλ/2k(s) =
{
x′ ∈ R2 :

2
λ/2k

≤ |s| |x′|2 ≤ 2
λ/2k+1

}
(3.20)

=
{
x′ ∈ R2 :

2k+1

λ
≤ |s| |x′|2 ≤ 2k+2

λ

}
.

On the set (3.20) we have

|s| ≤ 2
2k+1

λ
|x′|−2,

so the first term on the r.h.s. of (3.19) is estimated by

(3.21)
1
2k

(
λ

2k+1

)µ+1(2k+2

λ

)µ+1 �

R
dξ0 |s|

�

wλ/2
k+1

(s)\wλ/2k (s)

|ũ|2|x′|−2µ−2 dx

=
1
2k

�

R
dξ0 |s|

�

wλ/2
k+1

(s)\wλ/2k (s)

|ũ|2|x′|−2µ−2 dx.

From (3.12), (3.13), (3.19) and (3.21) we obtain

(3.22)
�

R
dξ0 |s|

�

R3

|ũ|2|x′|−2µ−2 dx

≤ a1

�

R
dξ0

�

R3

|ũ|2|x′|−2µ−4 dx+
1
a2

�

R
dξ0

�

R3

|ũ|2|s|2|x′|−2µ dx

+
(

2
a1

)1+µ 1
2k

�

R
dξ0|s|

�

R3

|ũ|2|x′|−2µ−2 dx.
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For k so large that (2/a1)1+µ2−k ≤ 1/2 we obtain from (3.22) inequality
(3.10). This concludes the proof.

From (3.4), (3.10) and for sufficiently small a1 and sufficiently large a2

we obtain

(3.23)
�

R3

(|s|2|ũ|2 + |s| |∇ũ|2)|x′|−2µ dx+
�

R3

|s| |ũ|2|x′|−2µ−2 dx

+ ‖ũ‖2H2
−µ(R3) ≤ c

�

R3

|f̃ |2|x′|−2µdx.

In view of notation (2.7) we can express (3.23) in the form

(3.24) ‖ũ‖2E2−µ(Ω) ≤ c‖f̃‖
2
L2,−µ(Ω).

By (2.8) we have

Lemma 3.3. Assume that f ∈ L2,−µ(R3 × R), µ ∈ R+ \ Z, and u ∈
H̃2,1
−µ,γ(R3 × R) is a solution to (3.1). Then

(3.25) ‖u‖
H̃2,1
−µ,γ(R3×R)

≤ c‖f‖L2,−µ(R3×R),

where c does not depend on u and f .

Lemma 3.4. Assume that f ∈ H̃ l,l/2
−µ,γ(R3 × R), l ∈ N, µ ∈ R+ \ Z, and

u ∈ H̃ l+2,l/2+1
−µ,γ (R3 × R) is a solution to (3.1). Then

(3.26) ‖u‖
H̃
l+2,l/2+1
−µ,γ (R3×R)

≤ c‖f‖
H̃
l,l/2
−µ,γ(R3×R)

,

where c does not depend on u and f .

Proof. First we prove the assertion for l = 1. Let f̃ ∈ E1
−µ(R3). Then

‖f̃‖2E1−µ(R3) = |s| ‖f̃‖2L2,−µ(R3) + ‖f̃‖2H1
−µ(R3) <∞.

From the elliptic equation

(3.27) ∆ũ = f̃ − sũ
we have

(3.28) ‖ũ‖2H3
−µ(R3) ≤ c‖f̃‖

2
H1
−µ(R3) + c|s|2‖ũ‖2H1

−µ(R3).

Multiplying (3.23) by |s| we get

(3.29) |s|3‖ũ‖2L2,−µ(R3) + |s|2‖ũ‖2H1
−µ(R3) + |s| ‖ũ‖2H2

−µ(R3)

≤ c|s| ‖f̃‖2L2,−µ(R3) ≤ c‖f̃‖
2
E1−µ(R3).

From (3.28) and (3.29) we have

(3.30) ‖ũ‖2E3−µ(R3) ≤ c‖f̃‖
2
E1−µ(R3).

Using (2.8) proves the assertion for l = 1.
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Assume that the assertion is proved for l = σ. Then we have

(3.31) ‖u‖2
H̃
σ,σ/2
−µ,γ (R3×R)

≤ c‖f‖2
H̃
σ−2,σ/2−1
−µ,γ (R3×R)

.

Then for the Laplace transforms we obtain

(3.32) ‖ũ‖2Eσ−µ(R3) ≤ c‖f̃‖
2
Eσ−2
−µ (R3)

.

Let us assume that f̃ ∈ Eσ−1
−µ (R3), so

(3.33) ‖f̃‖2
Hσ−1
−µ (R3)

+ |s| ‖f̃‖2Eσ−2
−µ (R3)

<∞.

Let us consider (3.27). Then it follows that

(3.34) ‖ũ‖2
Hσ+1
−µ (R3)

≤ c‖f̃‖2
Hσ−1
−µ (R3)

+ c|s|2‖ũ‖2
Hσ−1
−µ (R3)

.

From (3.31) we get

(3.35) |s|2‖ũ‖2
Hσ−1
−µ (R3)

≤ |s| ‖ũ‖2Eσ−µ(R3) ≤ c|s| ‖f̃‖
2
Eσ−2
−µ (R3)

≤ c‖f̃‖2Eσ−1
−µ (R3)

.

Hence (3.34) and (3.35) imply that

(3.36) ‖ũ‖2Eσ+1
−µ (R3)

≤ c‖f̃‖2Eσ−1
−µ (R3)

.

Applying (2.8) shows that (3.36) proves the assertion for l = σ + 1.
Hence by a recurrence argument the lemma is proved.

Some ideas used in this section were borrowed from [2, 3].

4. Existence in R3 × R+. Since we are going to prove the existence
of solutions to problem (1.1) in a bounded domain and in weighted Sobolev
spaces, we have to consider it locally. Local considerations require examining
problem (1.1) with vanishing initial data and either in R3 or in R3

+. But
we are interested in proving the existence of solutions to problem (1.1) in
weighted Sobolev spaces so local solutions in neighbourhoods of L must be
treated in a special way. We shall restrict ourselves to such neighbourhoods
only because properties of local solutions in neighbourhoods located at a
positive distance from L are well known. Natural neighbourhoods near L are
cylinders with axis of symmetry equal to L. Now we examine local solutions
to (1.1) in such cylinders. First, we shall restrict our considerations to the
case l = 0 (see Theorem 1.2).

Let A > 0 be given. We denote by CA the cylinder

CA = {x ∈ R3 : |x′| < A, x3 ∈ R},

where x′ = (x1, x2), |x′| =
√
x2

1 + x2
2, x = (x1, x2, x3) is the Cartesian system

in R3 with L as the x3-axis.
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Let R > 0 be given. Then we consider the problem

(4.1)
ut −∆u = f in CR × R,
u = 0 on ∂CR × R,
u→ 0 as |x3| → ∞,

where ∂CR = {x ∈ R3 : |x′| = R, x3 ∈ R}.
To prove the existence of solutions to problem (4.1) in weighted Sobolev

spaces we introduce an approximate solution. Let δ ∈ (0, R) be given. Let
CR,δ = CR \ C̄δ, where C̄δ is the closure of Cδ. Then we consider the problem

(4.2)
uδ,t −∆uδ = fδ in CR,δ × R+,

uδ = 0 on ∂CR,δ × R+,

uδ → 0 as |x3| → ∞,
We have

Lemma 4.1. Assume that fδ ∈ L2,γ(CR,δ ×R). Then there exists a solu-
tion uδ ∈ H2,1

γ (CR,δ × R) to problem (4.2) such that

(4.3) ‖uδ‖H2,1
γ (CR,δ×R)

≤ c‖fδ‖L2,γ(CR,δ×R),

where c does not depend on uδ and fδ.

Let us introduce the cylindrical coordinates (r, ϕ, z) by the relations x1 =
r cosϕ, x2 = r sinϕ, x3 = z.

Now we extend solutions of (4.2) for |x′| > R by zero because we are
not interested in their behaviour as |x′| → ∞. In reality we could consider
problem (4.2) with R = ∞. Then the behaviour of solutions as |x′| → ∞
would be determined by the solution space H2,1(R3 \ C̄δ × R). In Section 5
we prove the existence of solutions to problem (1.1) by the regularizer tech-
nique. Therefore examining solutions vanishing outside C̄R is close to the
considerations from Section 5.

Let ζR(x′) be a smooth function such that ζR(x′) = 1 for |x′| ≤ 3
4R and

ζR(x′) = 0 for |x′| ≥ R. Let u′δ = uδζR, f ′δ = fδζR. Then problem (4.2) takes
the form

(4.4)

u′δ,t −∆u′δ = f ′δ − 2ζR,x′uδ,x′ − ζR,x′x′uδ ≡ f ′′δ in R3 \ C̄δ × R,
u′δ = 0 on ∂Cδ × R,
u′δ → 0 as |x3| → ∞.

In view of Lemma 4.1 we have f ′′δ ∈ H
2,1
γ (R3 \ C̄δ × R) and there exists a

solution u′δ ∈ H
2,1
γ (R3 \ C̄δ × R) to problem (4.4) such that

(4.5) ‖u′δ‖H2,1
γ (R3\C̄δ×R)

≤ c‖f ′′δ ‖L2,γ(R3\C̄δ×R) ≤ c‖fδ‖L2,γ(CR,δ×R).

Now we follow some ideas from [10]. To prove the existence of solutions to
problem (1.1) in the weighted Sobolev spaces H l,l/2

−µ,γ introduced in Defini-
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tion 1.1 we extend f ′′δ and u′δ by zero for r < δ. Let us denote the extended
functions by ūδ and f̄δ. Additionally, we assume that f ′δ|r=δ = 0. Then (4.4)1

implies that (u′δ,t −∆u′δ)|r=δ = 0, where we assume that δ < 3
4R. Let

vδ = u′δ|x=x(r,ϕ,z), hδ = f ′′δ |x=x(r,ϕ,z),

v̄δ = ūδ|x=x(r,ϕ,z), h̄δ = f̄δ|x=x(r,ϕ,z).

Then problem (4.4) reads

(4.6)

v̄δ,t −
(

1
r

(rv̄δ,r),r +
1
r2
v̄δ,ϕϕ + v̄δ,zz

)
= h̄δ in R3 × R,

v̄δ|r≤δ = 0, h̄δ|r≤δ = 0,
v̄δ → 0 as |z| → ∞, r > R.

From (4.6) it follows that v̄δ,t = 0, v̄δ,ϕϕ = 0, v̄δ,zz = 0 for r ≤ δ. Moreover, we
have 1

r (rv̄δ,r),r|r=δ = 0. Lemma 4.1 implies that 1
r (rv̄δ,r),r ∈ L2,γ(R3×R) so

(4.4)1 yields that 1
r (rv̄δ,r),r, v̄δ,t ∈ L2,−µ,γ(R3 ×R). By the Hardy inequality

it follows that v̄δ ∈ H2,1
−µ,γ(R3 × R). Then Lemma 3.3 implies the estimate

‖v̄δ‖H2,1
−µ,γ(R3×R)

≤ c‖f̄δ‖L2,−µ,γ(R3×R),

where c does not depend on δ.
Letting δ → 0 we obtain

Lemma 4.2. Assume that f ∈ L2,−µ,γ(R3 × R), µ ∈ R+ \ Z. Then there
exists a solution u ∈ H2,1

−µ,γ(R3 × R) to the problem

ut −∆u = f in R3 × R,
u→ 0 as |x| → ∞,

such that

(4.7) ‖u‖
H2,1
−µ,γ(R3×R)

≤ c‖f‖L2,−µ,γR3×R).

Let us consider the case l > 0. We have

Lemma 4.3. Assume that f ∈ H
l,l/2
γ (CR,δ × R), l ∈ N. Assume the

compatibility conditions

∂ituδ|t=0 = 0, i ≤ [l/2], ∂itfδ|t=0 = 0, i ≤ [l/2]− 1.

Then there exists a solution uδ ∈ H
l+2,l/2+1
γ (CR,δ×R) to problem (4.2) such

that

(4.8) ‖uδ‖Hl+2,l/2+1
γ (CR,δ×R)

≤ c‖fδ‖Hl,l/2
γ (CR,δ×R)

,

where c does not depend on uδ and fδ.

Assuming that f ∈ H l,l/2
−µ,γ(R3 × R) we prove a lemma similar to Lemma

4.2. Let us consider problem (4.4). In view of Lemma 4.3, f ′′δ ∈ H
l,l/2
γ (R3\C̄δ)
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so there exists a solution u′δ ∈ H
l+2,l/2+1
γ (R3 \ C̄δ) to problem (4.4) such that

and

(4.9) ‖u′δ‖Hl+2,l/2+1
γ (R3\C̄δ×R)

≤ c‖f ′′δ ‖Hl,l/2
γ (R3\C̄δ×R)

.

Let us recall the extensions denoted by v̄δ and h̄δ. In view of (4.9) we have
h̄δ ∈ H

l,l/2
−µ,γ(R3 × R) and

(4.10) ‖v̄t‖Hl,l/2
µ,γ (R3×R)

+
∥∥∥∥1
r

(r, v̄δ,r),r

∥∥∥∥
H
l,l/2
−µ,γ(R3×R)

+
∥∥∥∥ 1
r2
v̄δ,ϕϕ

∥∥∥∥
H
l,l/2
−µ,γ(R3×R)

+ ‖v̄δ,zz‖Hl,l/2
−µ,γ(R3×R))

≤ c‖f̄δ‖Hl,l/2
−µ,γ(R3×R)

.

By the Hardy inequality it follows that v̄δ ∈ H
l+2,l/2+1
−µ,γ (R3 × R) (see the

proofs of Lemmas 2.1, 2.3 from [10]).

Remark. We need to choose a sequence of f̄δ that converges to f ∈
H
l,l/2
−µ as δ → 0. For µ ∈ (0, 1) it is meaningful to assume that ∂irf̄δ|r=δ = 0

for i ≤ l − 1 but for µ > 1, ∂irf̄δ|r=δ = 0 for i ≤ l should be imposed. In
view of these assumptions we obtain the corresponding restrictions on v̄δ:
∂ir
(

1
r (rv̄δ,r),r

)∣∣
r=δ

= 0 for i ≤ l − 1 if µ ∈ (0, 1), and for i ≤ l if µ > 1.
Moreover, repeating the considerations from [10] we can show that

∂irv̄δ|r=δ = 0 for i ≤ l − 1.

Then the Hardy inequality works and v̄δ ∈ H
l+2,l/2+1
−µ,γ (R3 × R).

We have to add that the existence in H
l+2,l/2+1
−µ,γ is shown step by step

starting from l = 0. Then Lemma 3.4 yields

(4.11) ‖v̄δ‖Hl+2,l/2+1
−µ,γ (R3×R)

≤ c‖f̄δ‖Hl,l/2
−µ,γ(R3×R)

,

where c does not depend on δ. Letting δ → 0 we obtain

Lemma 4.4. Assume that f ∈ H
l,l/2
−µ,γ(R3 × R), µ ∈ R+ \ Z, l ∈ N0.

Assume the compatibility conditions from Lemma 4.3. Then there exists a
solution u ∈ H l+2,l/2+1

−µ,γ (R3 × R) to the problem

(4.12)
ut −∆u = f in R3 × R,
u→ 0 as |x| → ∞,

such that

(4.13) ‖u‖
H
l+2,l/2+1
−µ,γ (R3×R)

≤ c‖f‖
H
l,l/2
−µ,γ(R3×R)

,

where c does not depend on u and f .
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Finally, we have to recall that the considerations from [9, 14] imply that
there is no existence result for solutions to problem (1.1) in H

l+2,l/2+1
−µ for

µ ∈ Z.

5. Existence in a bounded domain. The aim of this section is to
prove Theorem 1.2 for solutions to (1.1) with vanishing initial data. For this
purpose we use the regularizer technique so we need a partition of unity. Let
us define two collections of open subsets {ω(k)} and {Ω(k)}, k ∈

⋃4
i=1Mi,

such that ω(k) ⊂ Ω(k),
⋃
k ω

(k) =
⋃
k Ω

(k) = Ω, Ω(k)∩S = ∅ for k ∈M1∪M3

and Ω(k) ∩S 6= ∅ for k ∈M2 ∪M4. Here Ω(k), k ∈M1, is a neighbourhood
of an interior point of L ∩ Ω; Ω(k), k ∈ M2, is a neighbourhood of a point
where L meets S; Ω(k), k ∈M3, is a neighbourhood of an interior point of Ω,
located at a positive distance from L; Ω(k), k ∈M4, is a neighbourhood of a
point of S, located at a positive distance from L. We assume that at most N0

of the Ω(k) have nonempty intersection, and supk diamΩ(k) ≤ 2λ for some
λ > 0.

Let ζ(k)(x) be a smooth function such that 0 ≤ ζ(k)(x) ≤ 1, ζ(k)(x)
= 1 for x ∈ ω(k), supp ζ(k) ⊂ Ω(k) and |Dν

xζ
(k)(x)| ≤ c/|λ|ν . Then 1 ≤∑

k(ζ
(k)(x))2 ≤ N0. Introducing the function η(k)(x) = ζ(k)(x)/

∑
l(ζ

(l)(x))2

we have supp η(k) ⊂ Ω(k),
∑

k η
(k)(x)ζ(k)(x) = 1, |Dν

xη
(k)| ≤ c/|λ|ν . By ξ(k)

we denote a fixed interior point of ω(k) and Ω(k) for k ∈ M1 ∪M3, and a
point of ω(k) ∩ S and Ω(k) ∩ S for k ∈M2 ∪M4.

Since we consider a problem invariant with respect to translations and
rotations we can introduce a local coordinate system y = (y1, y2, y3) with
centre at ξ(k) such that for k ∈ M2 ∪M4 the part S̃(k) = S ∩ Ω(k) of the
boundary is described by y3 = F (y1, y2). We assume that a point with coor-
dinates (y1, y2, y3), y3 > 0, belongs to Ω. Then we introduce new coordinates
by

(5.1) zi = yi, i = 1, 2, z3 = y3 − F (y1, y2).

We denote by Ψk the transformation Ω(k) 3 y 7→ Ψk(y) = z ∈ Ω̂(k), described
by (5.1), such that ω(k) 3 y 7→ Ψk(y) = z ∈ ω̂(k). We assume that the sets
ω̂(k), Ω̂(k) are described in local coordinates at ξ(k) by the inequalities

(5.2)
|yi| < λ, i = 1, 2, 0 < y3 − F (y1, y2) < λ,

|yi| < 2λ, i = 1, 2, 0 < y3 − F (y1, y2) < 2λ,

respectively.
Let y = Yk(x) be a transformation from the x coordinates to local co-

ordinates with origin at ξ(k) which is a composition of a translation and a
rotation.
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We denote Φk = Ψk ◦ Yk and

(5.3) û(k)(z) = u(Φ−1
k (z)), ũ(k)(z) = û(k)(z)ζ̂(k)(z).

First, we prove

Lemma 5.1. Assume that f ∈ L2,−µ,γ(Ω×R+), µ ∈ (0, 1), u0 = 0. Then
there exists a solution u ∈ H2,1

−µ,γ(Ω × R+) to problem (1.1) such that

(5.4) ‖u‖
H2,1
−µ,γ(Ω×R+)

≤ c‖f‖L2,−µ,γ(Ω×R+).

Proof. Since f ∈ L2,−µ,γ(Ω×R+), µ > 0, we have f ∈ L2,γ(Ω×R+) and

(5.5) ‖f‖L2,γ(Ω×R+) ≤ c‖f‖L2,−µ,γ(Ω×R+),

because Ω is bounded. Thus there exists a solution u ∈ H2,1
γ (Ω × R+) to

problem (1.1) such that

(5.6) ‖u‖
H2,1
γ (Ω×R+)

≤ c‖f‖L2,γ(Ω×R+).

Now we consider problem (1.1) locally.
Let ξ(k) ∈ L ∩ Ω, k ∈ M1. Let us introduce a local Cartesian system

y = (y1, y2, y3) with origin at ξ(k) such that L is the y3-axis. Let R and a be
given positive numbers and let Q be a cylinder of the form

Q = {y ∈ R3 : |y′| < R, |y3| < a},
where y′ = (y1, y2). We assume that Q ∩ S = ∅ and Ω(k) ⊂ Q, k ∈ M1. Let
ζ = ζ(k)(y), k ∈ M1, be a smooth function from the partition of unity such
that supp ζ ⊂ Q. Let ũ = uζ, f̃ = fζ. Then problem (1.1) with u0 = 0 takes
the form

(5.7)
ũt −∆ũ = f̃ − 2∇ζ∇u−∆ζu ≡ f̃0,

ũ|∂Q = 0.

To apply Lemma 4.2 we have to know that f̃0 ∈ L2,−µ,γ(R3 × R+). Since
µ ∈ (0, 1) and by (5.6), ũ ∈ H2,1

γ (R3×R+), the Hardy inequality shows that
∇u ∈ L2,−µ,γ(R3×R+) and u ∈ L2,−µ,γ(R3×R+). Then Lemma 4.2 implies
the existence of a solution ũ ∈ H2,1

−µ,γ(R3 × R+) to problem (5.7) such that

(5.8) ‖ũ‖
H2,1
−µ,γ(R3×R+)

≤ c‖f‖L2,−µ,γ(Ω×R+),

because

‖∇u‖L2,−µ,γ(R3∩Q×R+) + ‖u‖L2,−µ,γ(R3∩Q×R+) ≤ c‖f‖L2,γ(Ω×R+).

Let ξ(k), k ∈ M2, be a point where L meets S. Let us introduce a local
system of coordinates y = (y1, y2, y3) with origin in ξ(k) such that in the
subdomain Ω(k), k ∈ M2, the part of the boundary S̃(k) = S ∩ Ω(k) is
described by

y3 = F (y1, y2),
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where F (0, 0) = 0 and the point (y1, y2, y3) with y3 > 0 belongs to Ω. Let
∇̂i = ∂zk

∂xi
∂
∂zk

, where the summation convention over the repeated indices is
assumed, and z = Φk(x), where k ∈ M2. Then locally problem (1.1) takes
the form

(5.9)

û
(k)
,t − ∇̂2

i û
(k) = f̂ (k) in Ω(k) × R+,

û(k)|z3 = 0 on S(k) × R+,

û(k)|t=0 = 0 in Ω(k),

where k ∈M2.
Let us extend problem (5.9) to z3 < 0 by reflection. We denote the

extended functions by û(k)′ , f̂ (k)′ . Let ζ̂ = ζ̂(k), k ∈M2, be a function from
the partition of unity and let ζ̂ ′ be its extension to z3 < 0. We assume that
supp ζ̂ ′ ⊂ Q′, where

Q′ = {z ∈ R3 : |z′| < R, |z3| < a}.

Set ũ = û(k)′ ζ̂ ′, f̃ = f̂ (k)′ ζ̂ ′. Then problem (5.9) assumes the form

(5.10)
ũ,t − ∇̂2

i ũ = f̃ − 2∇̂û(k)′∇ζ̂ ′ − ∆̂ζ̂ ′û(k)′ ≡ f̃ ′0 in Q′ × R+,

ũ|∂Q′ = 0 on ∂Q′ × R+,

ũ|t=0 = 0 in Q′.

In view of (5.6) and the Hardy inequality we have f̃ ′0 ∈ L2,−µ,γ(Q′ × R+),
µ ∈ (0, 1). Then Lemma 4.2 implies the existence of ũ ∈ H2,1

−µ,γ(Q′ × R+).
From (5.6) it follows that ũ ∈ H2,1

−µ,γ(Ω(k) × R+) in neighbourhoods Ω(k),
k ∈M3 ∪M4, located at a positive distance from L.

To introduce the regularizer we define all local problems in a uniform
way.

Let k ∈M1. Then problem (5.7) is expressed as

(5.11)
ũ

(k)
t −∇2

xũ
(k) = f̃

(k)
∗ in R3 × R+,

ũ(k)|t=0 = 0 in R3.

For k ∈M2 problem (5.10) takes the form

(5.12)
ũ

(k)
t −∇2

zũ
(k) = f̃

(k)
∗ in R3 × R+,

ũ(k)|t=0 = 0 in R3.

For k ∈M3 we consider the problem

(5.13)
ũ

(k)
t −∇2

xũ
(k) = f̃

(k)
∗ in R3 × R+,

ũ(k)|t=0 = 0 in R3.
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For k ∈M4 we have

(5.14)

ũ
(k)
t −∇2

zũ
(k) = f̃

(k)
∗ in R3

+ × R+,

ũ(k)|z3=0 = 0 on R2 × R+,

ũ(k)|t=0 = 0 in R3
+.

Lemma 4.2 implies the existence of solutions to problems (5.11) and (5.12).
The neighbourhoods Ω(k), k ∈M3∪M4, are at a positive distance from L, so
the existence of solutions to problems (5.13) and (5.14) in H l+2

γ is equivalent
to the existence in H l+2

−µ,γ .
Let R(k) be the operator which solves the kth problem. Then we define

(see [4, Ch. 4])
Rf =

∑
k∈M

η(k)(x)u(k)(x, t),

where

u(k)(x, t) =

{
R(k)ζ(k)f for k ∈M1 ∪M3,
Φ−1
k R(k)(Φkζ(k)f) for k ∈M2 ∪M4.

Let us introduce the spaces H = L2,−µ,γ and V = H2,1
−µ,γ , µ ∈ (0, 1), endowed

with the norms
‖f‖H =

∑
k∈M

‖f (k)‖L2,−µ,γ(R(k)×R+),

‖u‖V =
∑
k∈M

‖u(k)‖
H2,1
−µ,γ(R(k)×R+)

,

where

R(k) =
{

R3 for k ∈M1 ∪M2 ∪M3,
R3

+ for k ∈M4.
Since the solvability of problems (5.11)–(5.14) is known we find that R :
H → V is a bounded operator.

Let Z = ∂t−∆. It can be shown that for f ∈ H there exists an operator
T such that
(5.15) ZRf = (I + T )f,

where T : H → H, ‖T‖ < 1, and I is the identity operator. Moreover, for
v ∈ V we obtain
(5.16) RZv = (I +W )v,

where W : V → V and ‖W‖ < 1.
Relations (5.15) and (5.16) imply the existence of a solution v ∈ V (Ω)

to problem (1.12). We stress that the considerations leading to (5.15) and
(5.16) are done for f ∈ H(Ω) and v ∈ V (Ω). Therefore, choosing the spaces
H(Ω) and V (Ω) we have been able to prove the existence of solutions to
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problem (1.12) in V (Ω). If either ‖T‖ > 1 or ‖W‖ > 1 the existence cannot
be proved in V (Ω) that way. This concludes the proof.

Lemma 5.2. Assume that f ∈ L2,−µ,γ(Ω×R+), µ ∈ (1, 2), S ∈ C2. Then
there exists a solution u ∈ H2,1

−µ,γ(Ω × R+) to problem (1.12) such that

(5.17) ‖u‖
H2,1
−µ,γ(Ω×R+)

≤ c‖f‖L2,−µ,γ(Ω×R+), µ ∈ (1, 2).

Proof. Since f ∈ L2,−µ,γ(Ω×R+), µ ∈ (1, 2) and Ω is bounded, we have
f ∈ L2,−µ,γ(Ω × R+), µ ∈ (0, 1). Hence Lemma 5.1 can be applied. By the
Hardy inequality we get f̃ (k)

∗ ∈ L2,−µ,γ(R3×R+) for µ ∈ (1, 2), k ∈M1∪M2.
Then repeating the considerations from the proof of Lemma 5.1 in the case
H(Ω) = L2,−µ,γ , V (Ω) = H2

−µ,γ , µ ∈ (1, 2), we conclude the proof.

Continuing the considerations we obtain

Lemma 5.3. Assume that f ∈ L2,−µ(Ω × R+), µ ∈ (k, k + 1), k ∈ N0,
u0 = 0, S ∈ C2. Then there exists a solution u ∈ H2,1

−µ,γ(Ω×R+) to problem
(1.1) such that

(5.18) ‖u‖
H2,1
−µ,γ(Ω×R+)

≤ c‖f‖L2,−µ,γ(Ω×R+), µ ∈ (k, k + 1).

Finally, we prove

Lemma 5.4. Assume that f ∈ H
l,l/2
−µ (Ω × R+), µ ∈ R+ \ Z, l ∈ N0,

u0 = 0, S ∈ C l+2. Then there exists a solution u ∈ H l+2,l/2+1
−µ,γ (Ω × R+) to

problem (1.1) such that

(5.19) ‖u‖
H
l+2,l/2+1
−µ,γ (Ω×+)

≤ c‖f‖
H
l,l/2
−µ,γ(Ω×R+)

.

Proof. We prove the lemma recurrently. Take l = 1. From Lemma 5.3
we see that the r.h.s. of (5.11) and (5.12) belong to H1,1/2

−µ,γ (Ω × R+). Then
u ∈ H3,3/2

−µ,γ (Ω × R+) and (5.19) holds for l = 1. To prove the existence we
apply the regularizer technique with H(Ω) = H

1,1/2
−µ,γ (Ω × R+) and V (Ω) =

H
3,3/2
−µ,γ (Ω ×R+). This yields the existence of solutions in H3,3/2

−µ,γ (Ω ×R+) to
problem (1.1) with u0 = 0.

Take l = 2. Then u ∈ H3,3/2
−µ,γ (Ω × R+) implies that the r.h.s. of (5.11)

and (5.12) belong to H2,1
−µ,γ(Ω × R+). Hence we can repeat the above con-

siderations with H(Ω) = H2,1
−µ,γ(Ω × R+) and V (Ω) = H4,2

−µ,γ(Ω × R+).
Continuing the considerations we prove the lemma. This concludes the

proof.

6. Existence of solutions to problem (1.1). In this section we prove
the existence of solutions to problem (1.1). Our aim is to prove Theorem 1.2.
We use [6].
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Assume that f ∈ H l,l/2
−µ (Ω×(0, T )), µ ∈ R+\Z. Moreover, u0 ∈ H l+1

−µ (Ω).
Then there exists a function ũ0 ∈ H l+2,l/2+1

−µ (Ω × (0, T )) such that ũ0|S = 0
and

(6.1) ‖ũ0‖Hl+2,l/2+1
−µ (Ω×(0,T ))

≤ c‖u0‖Hl+1
−µ (Ω)

Then problem (1.1) is transformed into (1.12), where g ∈ H l,l/2
−µ (Ω × (0, T ))

and v = u − ũ0. Since the compatibility conditions (1.13) are satisfied we
have g ∈ H l,l/2

−µ,0(Ω × (0, T )) and

(6.2) ‖g‖
H
l,l/2
−µ,0(Ω×(0,T ))

≤ c‖g‖
H
l,l/2
−µ (Ω×(0,T ))

.

For T finite the norms of H l,l/2
−µ,γ(Ω×(0, T )) and H l,l/2

−µ,0(Ω×(0, T )) are equiv-
alent and

(6.3) ‖g‖
H
l,l/2
−µ,γ(Ω×(0,T ))

≤ c‖g‖
H
l,l/2
−µ,0(Ω×(0,T ))

.

Extending g for t > T and by zero for t < 0 we obtain

(6.4) ‖g‖
H
l,l/2
−µ,γ(Ω×R)

≤ c‖g‖
H
l,l/2
−µ,γ(Ω×(0,T ))

,

where the extended function is also denoted by g.
Lemma 5.4 yields the existence of a solution v ∈ H l+2,l/2+1

−µ,γ (Ω × R) to
problem (1.12) satisfying the estimate

‖v‖
H
l+2,l/2+1
−µ,γ (Ω×R)

≤ c‖g‖
H
l,l/2
−µ,γ(Ω×R)

≤ c‖g‖
H
l,l/2
−µ (Ω×(0,T ))

(6.5)

≤ c(‖f‖
H
l,l/2
−µ (Ω×(0,T ))

+ ‖u0‖Hl+1
−µ (Ω)).

Using the fact that

‖v‖
H
l+2,l/2+1
−µ,γ (Ω×R)

≥ c‖v‖
H
l+2,l/2+1
−µ,γ (Ω,(−∞,T ))

≥ c‖v‖
H
l+2,l/2+1
−µ,0 (Ω×(0,T ))

≥ c‖v‖
H
l+2,l/2+1
−µ (Ω×(0,T ))

and u = v + ũ0, we obtain from (6.5) the estimate

(6.6) ‖u‖
H
l+2,l/2+1
−µ (Ω×(0,T ))

≤ c(‖f‖
H
l,l/2
−µ (Ω×(0,T ))

+ ‖u0‖Hl+1
−µ (Ω)).

Since we also have the existence, we conclude the proof of Theorem 1.2.
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