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BLOW-UP VERSUS GLOBAL EXISTENCE OF SOLUTIONS
TO AGGREGATION EQUATIONS

Abstract. A class of nonlinear viscous transport equations describing ag-
gregation phenomena in biology is considered. General conditions on an in-
teraction potential are obtained which lead either to the existence or to the
nonexistence of global-in-time solutions.

1. Introduction. The following Cauchy problem for the heat equation
corrected by the nonlocal and nonlinear transport term

ut = ∆u−∇ · (u(∇K ∗ u)), x ∈ Rn, t > 0,(1.1)
u(x, 0) = u0(x)(1.2)

has been used to describe a collective motion and aggregation phenomena
in biology and mechanics of continuous media. Here, the unknown function
u = u(x, t) ≥ 0 is either the population density of a species or the density of
particles in a granular medium. From the mathematical point of view, equa-
tion (1.1) can be considered as either a viscous conservation law with a non-
local (quadratic) nonlinearity or a viscous transport equation with nonlocal
velocity, and its character depends strongly on the properties of the given
kernel K. If this kernel is radially symmetric, the nonincreasing function
K(r), r = |x|, corresponds to the attraction of particles while nondecreasing
one is repulsive.

Let us first emphasize that problem (1.1)–(1.2) contains, as a particular
case, the (simplified) Patlak–Keller–Segel system for chemotaxis describing
the motion of cells, usually bacteria or amoebae, that are attracted by a
chemical substance and are able to emit it (see e.g. [17] for a general intro-
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duction to chemotaxis). This parabolic-elliptic system has the form

ut = ∇ · (∇u− u∇v), x ∈ Rn, t > 0,(1.3)
0 = ∆v − αv + u,(1.4)

where α > 0 is a given constant. In this model, the function u = u(x, t)
represents the cell density and v = v(x, t) is the concentration of the chemical
attractant which induces a drift force. Computing v from equation (1.4) and
substituting it into the transport term in equation (1.3), we immediately
obtain equation (1.1) with the kernel K = K(x) given by the fundamental
solution of the operator −∆+α on Rn. In this case, the function K is called
the Bessel potential and it is singular at the origin if n ≥ 2, more precisely,
it satisfies |∇K(x)| ∼ |x|−n+1 as |x| → 0 and it decays exponentially when
|x| → ∞ (see [20, Ch. 5.3] for more details). Hence, when n ≥ 2, we see that
∇K ∈ Lq′(Rn) for every q′ < n/(n− 1) and ∇K /∈ Lp(Rn) if p ≥ n/(n− 1).
On the other hand, for n = 1, this fundamental solution is given explicitly
by K(x) = exp(−

√
α|x|), hence ∇K ∈ Lq′(R) for all q′ ∈ [1,∞]. We refer

the reader to the recent works [4, 7–10, 12, 14, 18] (this list is by no means
exhaustive) and to the references therein for mathematical results on the
Patlak–Keller–Segel system (1.3)–(1.4).

In this work, we are motivated by recent results on the local and global
existence of solutions to the inviscid aggregation equation

ut +∇ · (u(∇K ∗ u)) = 0,(1.5)

which has been thoroughly studied in [13] under some additional hypotheses
on the kernel (see also [1, 3]). In particular, kernels that are smooth (not
singular) at the origin x = 0 lead to the global in time existence of solutions
(see e.g. [3, 2, 13]). Nonsmooth kernels (and C1 off the origin, like K(x) =
e−|x|) may lead to blowup of solutions either in finite or infinite time [1, 2,
3, 13, 14]. Singular kernels of potential type (arising in chemotaxis theory,
cf. e.g. [5, 6] and the references therein) K(x) = c|x|β−d, with 1 < β < d,
usually lead to finite time blowup of all nonnegative solutions (see e.g. [6]).

In particular, in the recent work by Bertozzi et al. [2] on the inviscid
aggregation equation (1.5), the kernelK is assumed to be radially symmetric,
K(x) = k(|x|) with the function k(r) increasing in r, smooth away from zero
and bounded from below. The authors of [2] obtained natural conditions on
K such that all solutions to equation (1.5), supplemented with bounded,
nonnegative, and compactly supported initial data, either blow up in finite
time or exist for all t > 0. More precisely, they introduce the quantity

1�

0

1
k′(r)

dr(1.6)

and show that if (1.6) is finite, the solution of (1.5) blows up in finite time.
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On the other hand, if (1.6) is infinite, a global-in-time solution to (1.5) is
constructed.

The purpose of this paper is to describe an analogous influence of singu-
larities of the kernel ∇K on the existence and nonexistence of global-in-time
solutions of the “viscous” problem (1.1)–(1.2). Roughly speaking, our results
can be summarized as follows. If ∇K ∈ Lq

′
(Rn) for some q′ ∈ [1,∞], we

can always construct local-in-time solutions to (1.1)–(1.2), however, some
additional regularity assumptions on the initial conditions have to be im-
posed if ∇K is too singular in the scale of Lp-spaces. Next, we show that
the initial value problem (1.1)–(1.2) with a mildly singular interaction ker-
nel, namely ∇K ∈ Lq

′
(Rn) for some q′ ∈ (n,∞], has a global-in-time so-

lution for any nonnegative and integrable initial datum (1.2). On the other
hand, there are strongly singular kernels, such that some solutions of problem
(1.1)–(1.2) blow up in finite time. In particular, we show that the behavior
|∇K(x)| ∼ |x|−1, as |x| → 0, appears to be critical for the existence and the
nonexistence of global-in-time solutions to problem (1.1)–(1.2). In the next
section, we state and discuss our results more precisely.

To conclude this introduction, we would like to mention that completely
analogous results can be obtained for the aggregation equation with the
fractional dissipation

ut +∇ · (u(∇K ∗ u)) = −ν(−∆)γ/2u,(1.7)

where ν > 0 and γ ∈ (1, 2]. Some results in this direction, mainly for the
kernel K either of the form K(x) = e−|x| or given by the Bessel potential,
were published in [5, 6, 14].

Notation. Throughout this paper, we denote the norm of the usual
Lebesgue space Lp(Rn), 1 ≤ p ≤ ∞, by ‖ · ‖Lp . The constants (always
independent of x, t, and u) will be denoted by the same letter C, even if
they may vary from line to line. Sometimes, we write, e.g., C = C(T ) when
we want to emphasize the dependence of C on a parameter T . We write
f(x) ∼ g(x) if there is a constant C > 0 such that C−1g(x) ≤ f(x) ≤ Cg(x).

2. Results and comments. We begin by introducing the terminology
systematically used in this work.

Definition 2.1. The interaction kernel K : Rn → R is called

• mildly singular if ∇K ∈ Lq′(Rn) for some q′ ∈ (n,∞];
• strongly singular if ∇K ∈ Lq

′
(Rn) for some q′ ∈ [1, n] and ∇K /∈

Lp(Rn) for every p > n.

Notice that any function ∇K satisfying |∇K(x)| ∼ |x|−a as |x| → 0 and
rapidly decreasing if |x| → ∞ is mildly singular in the sense stated above
if a < 1 and strongly singular for a ≥ 1. Hence, the Bessel potential K



246 G. Karch and K. Suzuki

(appearing in the case of the chemotaxis system) is strongly singular when
n ≥ 2 and mildly singular for n = 1.

In order to describe the influence of singularities of the function ∇K on
the existence/nonexistence of solutions to the initial value problem (1.1)–
(1.2), we discuss separately conditions leading to the local-in-time existence
of solutions, their global-in-time existence, as well as the blowup of solutions
in finite time.

Local existence of solutions. First, we show that the critical exponent
q′ = n from Definition 2.1 appears already in the construction of local-in-time
solutions to (1.1)–(1.2) with kernels satisfying ∇K ∈ Lq′(Rn). Notice that
for strongly singular kernels we have to consider more regular (in the sense
of Lp-spaces) initial conditions. In the following two theorems, the quantity
n/(n− 1) stands for ∞ if n = 1.

Theorem 2.2 (Mildly singular kernels). Assume that ∇K ∈ Lq
′
(Rn)

with q′ ∈ (n,∞]. Let q ∈ [1, n/(n− 1)
)
satisfy 1/q + 1/q′ = 1. For every

u0 ∈ L1(Rn) there exists T = T (‖u0‖L1 , ‖∇K‖Lq′ ) > 0 and a unique mild
solution of problem (1.1)–(1.2) in the space

XT = C([0, T ], L1(Rn)) ∩ C((0, T ], Lq(Rn))

equipped with the norm ‖u‖XT
≡ sup0≤t≤T ‖u‖L1 +sup0≤t≤T t

n
2
(1−1/q)‖u‖Lq .

Theorem 2.3 (Strongly singular kernels). Assume that ∇K ∈ Lq′(Rn)
with q′ ∈ [1, n]. Let q ∈ [n/(n− 1),∞] satisfy 1/q + 1/q′ = 1. For every
u0 ∈ L1(Rn) ∩ Lq(Rn), there exists T = T (‖u0‖L1 , ‖u0‖Lq , ‖∇K‖Lq′ ) > 0
and a unique mild solution of problem (1.1)–(1.2) in the space

YT = C([0, T ], L1(Rn)) ∩ C([0, T ], Lq(Rn))

equipped with the norm ‖u‖YT
≡ sup0≤t≤T ‖u‖L1 + sup0≤t≤T ‖u‖Lq .

Recall that, as usual, the function u = u(x, t) is called a mild solution of
(1.1)–(1.2) if it satisfies the integral equation

u(t) = G(·, t) ∗ u0 −
t�

0

∇G(·, t− s) ∗
(
u(∇K ∗ u)

)
(s) ds(2.1)

with the heat kernel denoted by G(x, t) = (4πt)−n/2 exp(−|x|2/(4t)). We
construct solutions to the integral equation (2.1) using the Banach contrac-
tion principle and, in the proofs of Theorems 2.2 and 2.3, we emphasize that
different estimates are necessary according to the singularity of ∇K.

Remark 2.4. In this work, we skip completely questions of regular-
ity of mild solutions to (1.1)–(1.2) because there are standard and well-
known results (see e.g. the monograph by Pazy [19] for more details). In
particular, by a bootstrap argument, one can show that any mild solution
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u ∈ C([0, T ], Lq(Rn)) of equation (2.1) satisfies u ∈ C1((0, T ], Lq(Rn)) ∩
C((0, T ],W 1,q(Rn)) and u(t) ∈ W 2,q(Rn) for every t ∈ (0, T ]. Moreover, if
the initial condition is nonnegative, so is the corresponding solution.

Global existence of solutions. For mildly singular kernels, nonnega-
tive solutions to problem (1.1)–(1.2) are global in time.

Theorem 2.5 (Mildly singular kernels). Let q, q′ ∈ [1,∞] satisfy 1/q +
1/q′ = 1. Assume that ∇K ∈ Lq

′
(Rn) with q′ ∈ (n,∞]. For every u0 ∈

L1(Rn) such that u0 ≥ 0, there exists a unique global-in-time solution u of
problem (1.1)–(1.2) satisfying

u ∈ C([0,∞), L1(Rn)) ∩ C((0,∞),W 1,q(Rn)) ∩ C1((0,∞), Lq(Rn)).

On the other hand, problem (1.1)–(1.2) with strongly singular kernels
has a global-in-time solution under suitable smallness assumptions imposed
on initial conditions. To formulate this result, it is more convenient to ex-
tend the class of kernels considered and to assume that ∇K ∈ Lq′,∞(Rn),
where Lq′,∞(Rn) is the weak Lq′-space defined as the space of all measurable
functions f such that supλ>0 λ|{x : |f(x)| > λ}|1/q′ <∞.

Here, let us recall the well-known embedding Lq′(Rn) ⊂ Lq
′,∞(Rn) for

all q′ ∈ [1,∞). However, it follows immediately from the definition of the
Lq
′,∞-space that

(2.2) | · |−n/q′ ∈ Lq′,∞(Rn) \ Lq′(Rn) for 1 < q′ ≤ n.
In the following, we are going to use the weak Young inequality

(2.3) ‖∇K ∗ f‖Lk ≤ C‖∇K‖Lq′,∞‖f‖Lp

with p, q′, k ∈ (1,∞) satisfying 1/p + 1/q′ = 1 + 1/k, a constant C =
C(n, k, p, q′) > 0 and all f ∈ Lp(Rn) (see e.g. [15, Sect. 4.3] for the proof of
(2.3)).

Theorem 2.6 (Strongly singular kernels). Let n ≥ 2. Assume that ∇K ∈
Lq
′,∞(Rn) with q′ ∈ (1, n]. Denote

(2.4) q∗ =
n

n+ 1− n/q′
∈ [1, n).

There is an ε > 0 such that for every u0 ∈ Lq∗(Rn) with ‖u0‖Lq∗ < ε,
there exists a global-in-time mild solution of problem (1.1)–(1.2) satisfying
u ∈ C([0,∞), Lq∗(Rn)).

Remark 2.7. Notice that, if n ≥ 2, the Bessel potential K = K(x)
satisfies ∇K ∈ Lq′,∞(Rn) with q′ = n/(n− 1).

Remark 2.8. In the one-dimensional case, nonnegative solutions of prob-
lem (1.1)–(1.2) are always global in time for every kernel ∇K ∈ L1(R)
provided initial conditions are regular enough (see [11, Thm. 2.1] for more
details).
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Blowup versus non-blowup of solutions. Next, we state conditions
on strongly singular kernels under which we can observe the blowup in finite
time of solutions to the initial value problem (1.1)–(1.2).

Theorem 2.9 (Strongly singular kernels). Assume that the kernel K :
Rn → R satisfies the following conditions:

(i) K(x) = K(|x|) for all x ∈ Rn,
(ii) there exist δ > 0, γ > 0, and C > 0 such that

sup
0<s≤δ

sK ′(s) ≤ −γ and |sK ′(s)| ≤ Cs2 for all s ≥ δ.

For the initial datum u0 ∈ L1(Rn) satisfying u0 ≥ 0 and |x|2u0 ∈ L1(Rn),
denote

I(0) =
�

Rn

|x|2u0(x) dx and M =
�

Rn

u0(x) dx = ‖u0‖L1 .

If

M >
2n+ 4(C + γ/δ2)I(0)

γ
,

then there is T = T (M, I(0), δ, γ, C) > 0 such that the corresponding non-
negative local-in-time solution to the initial value problem (1.1)–(1.2) cannot
be extended beyond [0, T ].

Remark 2.10. Any interaction kernel K = K(x) satisfying the assump-
tions of Theorem 2.9 has to be strongly singular in the sense of Definition
2.1. Indeed, this follows immediately from the inequalities

‖∇K‖pp =
�

Rn

∣∣∣∣ x|x|K ′(|x|)
∣∣∣∣p dx =

�

Rn

|K ′(|x|)|p dx = C

∞�

0

|K ′(s)|psn−1 ds

≥ Cγp
δ�

0

s−p+n−1 ds =∞

for every p ∈ [n,∞). Notice that, for n = 1, these calculations imply that
every one-dimensional kernel K satisfying the assumptions of Theorem 2.9
satisfies also ∇K /∈ Lp(R) for each p ∈ [1,∞].

Remark 2.11. If n ≥ 2, one can prove, following the reasoning e.g. from
[12, Lem. 3.1], that the Bessel potential satisfies the assumptions of Theo-
rem 2.9.

We conclude the presentation of our results by a non-blowup criterion for
the initial value problem (1.1)–(1.2) with suitable strongly singular kernels.

Theorem 2.12 (Strongly singular kernels). Let n ≥ 1. Assume that
∇K ∈ Lq′(Rn) with q′ ∈ [1, n] and let q ∈ [n/(n− 1),∞] satisfy 1/q + 1/q′

= 1. Suppose, moreover, that the kernel K can be decomposed into two parts,
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K = K1 +K2, where ∆K1 is nonnegative (as e.g. a tempered distribution)
and ∇K2 ∈ L∞(Rn). Then, for every u0 ∈ L1(Rn) ∩ Lq(Rn) with u0 ≥ 0,
the local-in-time solution from Theorem 2.3 exists, in fact, for all t > 0.

Remark 2.13. Let n = 2. The function K defined by its Fourier trans-
form

K̂(ξ) =
−1
|ξ|2 + 1

is an example of a strongly singular kernel satisfying the assumptions of
Theorem 2.12 (this is the Bessel potential, discussed just below (1.3)–(1.4),
with the reverse sign). Indeed, using the decomposition

K̂(ξ) = K̂1(ξ) + K̂2(ξ) ≡
−1
|ξ|2

+
1

|ξ|2(|ξ|2 + 1)
,

we see that ∆K1 is the Dirac delta and ∇K2 ∈ L∞(R2), because ∇̂K2 ∈
L1(R2). In other words, the two-dimensional initial value problem for the
parabolic-elliptic system (1.3)–(1.4), where the sign “−” in the first equation
is replaced by “+”, is globally wellposed for any nonnegative initial condition
from L1(R2) ∩ Lq(R2) for some q ∈ (2,∞].

The result of Theorem 2.12 on the global-in-time existence of nonnegative
solutions is far from being optimal. We have stated it here to emphasize the
important role of the sign of a strongly singular kernel K in the blowup
phenomenon described by Theorem 2.9.

3. Construction of local-in-time solutions. As usual, a solution to
the initial value problem (1.1)–(1.2) is obtained as a fixed point of the integral
equation (2.1). Here, it is convenient to apply the following abstract approach
proposed by Meyer [16].

Lemma 3.1. Let (X , ‖·‖X ) be a Banach space, y ∈X , and B : X × X →X
be a bilinear form satisfying ‖B(x1, x2)‖X ≤ C‖x1‖X ‖x2‖X with a positive
constant C and all x1, x2 ∈ X . If 4C‖y‖X < 1, the equation x = y+B(x, x)
has a solution in X satisfying ‖x‖X ≤ 2‖y‖X . Moreover, the solution is
unique in the ball U(0, 1/(2C)) ⊂ X .

We skip the proof of Lemma 3.1 which is a direct consequence of the
Banach fixed point theorem.

To prove Theorems 2.2 and 2.3, we are going to apply Lemma 3.1 to the
“quadratic” equation (2.1), written in the form u(t) = G(·, t)∗u0+B(u, u)(t),
with the bilinear form

B(u, v)(t) = −
t�

0

∇G(·, t− s) ∗ (u(∇K ∗ v))(s) ds(3.1)
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defined on a suitable Banach space. In our reasoning, we use the following
well-known estimates of the heat kernel which are immediate consequences
of the Young inequality for convolution:

‖G(·, t) ∗ f‖Lp ≤ Ct−
n
2
( 1

q
− 1

p
)‖f‖Lq ,(3.2)

‖∇G(·, t) ∗ f‖Lp ≤ Ct−
n
2
( 1

q
− 1

p
)− 1

2 ‖f‖Lq(3.3)

for every 1 ≤ q ≤ p ≤ ∞, each f ∈ Lq(Rn), and C = C(p, q) independent of
t, f . Notice that C = 1 in inequality (3.2) for p = q because ‖G(·, t)‖L1 = 1
for all t > 0.

Proof of Theorem 2.2. First, we observe that for every q′ ∈ (n,∞], the
relation 1/q + 1/q′ = 1 implies q ∈ [1, n/(n− 1)).

Here, we use Lemma 3.1 with X ≡ XT = C([0, T ], L1(Rn)) ∩ C((0, T ],
Lq(Rn)), which is a Banach space with the norm ‖u‖XT

≡ sup0≤t≤T ‖u‖L1

+ sup0<t≤T t
n
2
(1− 1

q
)‖u‖Lq .

By inequality (3.2), we immediately obtain

‖G(·, t) ∗ u0‖L1 ≤ ‖u0‖L1 and t
n
2
(1− 1

q
)‖G(·, t) ∗ u0‖Lq ≤ C(q, 1)‖u0‖L1

for every u0 ∈ L1(Rn), hence, y ≡ G(·, t) ∗ u0 ∈ XT with ‖y‖XT
≤

(1 + C(q, 1))‖u0‖L1 .
Next, we show that the bilinear operator defined in (3.1) satisfies B :

XT × XT → XT and there exists a constant C1 > 0 such that for all T > 0
and all u, v ∈ XT we have

(3.4) ‖B(u, v)‖XT
≤ C1T

1
2
(1−n(1− 1

q
))‖∇K‖Lq′‖u‖XT

‖v‖XT
.

Assume that u, v ∈ XT . First, we compute the L1-norm of B(u, v)(t).
By inequalities (3.2) and (3.3) combined with the Hölder inequality and the
Young inequality, we have

‖B(u, v)(t)‖L1 ≤
t�

0

‖∇G(·, t− s) ∗ (u(∇K ∗ v))(s)‖L1 ds

≤ C
t�

0

(t− s)−1/2‖u(∇K ∗ v)(s)‖L1 ds

≤ C
t�

0

(t− s)−1/2‖u(s)‖Lq‖∇K‖Lq′‖v(s)‖L1 ds
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≤ C‖∇K‖Lq′

(
sup

0<s<T
s

n
2
(1− 1

q
)‖u(s)‖Lq

)(
sup

0<s<T
‖v(s)‖L1

)
×

t�

0

(t− s)−1/2s
−n

2
(1− 1

q
)
ds

≤ C‖∇K‖Lq′‖u‖XT
‖v‖XT

t�

0

(t− s)−1/2s
−n

2
(1− 1

q
)
ds,

where C is a positive constant. Here, notice that −n
2 (1− 1/q) > −1 because

q ∈ [1, n/(n− 1)), consequently,
t�

0

(t− s)−1/2s
−n

2
(1− 1

q
)
ds = t

1
2
(1−n(1−1/q))B

(
1− n

2

(
1− 1

q

)
,
1
2

)
,

where B denotes the beta function. Therefore, we obtain

sup
0<t≤T

‖B(u, v)‖L1 ≤ CT
1
2
(1−n(1− 1

q
))‖∇K‖Lq′‖u‖XT

‖v‖XT
.(3.5)

where 1
2(1− n(1− 1/q)) > 0.

To deal with the Lq-norm of B(u, v)(t), we proceed similarly:

t
n
2
(1− 1

q
)‖B(u, v)(t)‖Lq

≤ Ct
n
2
(1− 1

q
)
t�

0

(t− s)−1/2‖u(s)‖Lq‖∇K‖Lq′‖v(s)‖Lq ds

≤ Ct
n
2
(1− 1

q
)‖∇K‖Lq′

(
sup

0≤s<T
s

n
2
(1− 1

q
)‖u(s)‖Lq

)(
sup

0≤s<T
s

n
2
(1− 1

q
)‖v(s)‖Lq

)
×

t�

0

(t− s)−1/2s
−n(1− 1

q
)
ds

≤ Ct
1
2
−n

2
(1− 1

q
)‖∇K‖Lq′B

(
1− n

(
1− 1

q

)
,

1
2

)
‖u‖XT

‖v‖XT
.

Hence, we have

(3.6) sup
0≤t≤T

t
n
2
(1−1/q)‖B(u, v)(t)‖LqCT

1
2
(1−n(1−1/q))‖∇K‖Lq′‖u‖XT

‖v‖XT
.

Estimates (3.5) and (3.6) imply that the bilinear form B satisfies (3.4).
Hence, it follows from Lemma 3.1 that if we choose T > 0 so small that

4C1T
1
2
(1−n(1− 1

q
))‖∇K‖Lq′‖u0‖L1(1 + C(q, 1)) < 1,(3.7)

then there is a solution in the space XT with ‖u‖XT
≤ 2‖u0‖L1(1 +C(q, 1)).

By Lemma 3.1, this is the unique solution in the ball U(0, 1/(2C)) with
the constant C = C1T

1
2
(1−n(1−1/q))‖∇K‖Lq′ . However, using a standard ar-

gument based on the Gronwall lemma combined with the estimates leading
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to (3.5) and (3.6), one can show that this is the unique solution in the whole
space XT . This completes the proof.

Proof of Theorem 2.3. Now, we assume that q′ ∈ [1, n] and we apply
Lemma 3.1 in the space X ≡ YT = C([0, T ], L1(Rn)) ∩ C([0, T ], Lq(Rn))
endowed with the norm ‖u‖YT

≡ sup0≤t≤T ‖u‖L1 + sup0≤t≤T ‖u‖Lq .
By inequality (3.2), it is clear that

‖G(·, t) ∗ u0‖L1 ≤ ‖u0‖L1 and ‖G(·, t) ∗ u0‖Lq ≤ ‖u0‖Lq

for all u0 ∈ L1(Rn) ∩ Lq(Rn). These inequalities imply that y ≡ G(·, t) ∗ u0

∈ YT and ‖G(·, t) ∗ u0‖YT
≤ ‖u0‖L1 + ‖u0‖Lq .

Next, for u, v ∈ YT , we see that

‖B(u, v)(t)‖L1 ≤ C
t�

0

(t− s)−1/2‖u(s)‖Lq‖∇K‖Lq′‖v(s)‖L1 ds

≤ CT 1/2‖∇K‖Lq′‖u‖YT
‖v‖YT

,

where C is a positive constant. In a similar way, we show the Lq-estimate

‖B(u, v)(t)‖Lq ≤ C
t�

0

(t− s)−1/2‖u(∇K ∗ u)(s)‖Lq ds

≤ C
t�

0

(t− s)−1/2‖u(s)‖Lq‖∇K‖Lq′‖v(s)‖Lq ds

≤ CT 1/2‖∇K‖Lq′‖u‖YT
‖v‖YT

.

Summing up these inequalities, we obtain

‖B(u, v)‖YT
≤ C
√
T‖∇K‖Lq′‖u‖YT

‖v‖YT
.(3.8)

Therefore, by Lemma 3.1, if we choose T > 0 such that

4C
√
T‖∇K‖Lq′ (‖u0‖L1 + ‖u0‖Lq) < 1,(3.9)

then we obtain a local-time solution in the space YT which is unique in the
open ball U

(
0, (2C

√
T‖∇K‖Lq′ )−1

)
. As in the proof of Theorem 2.2, using

an argument involving the Gronwall lemma, we can show that this is the
unique solution in the whole space YT .

4. Construction of global-in-time solutions

Proof of Theorem 2.5. We are going to show that any nonnegative local-
in-time mild solution u = u(x, t) constructed in Theorem 2.2 exists, in fact,
on every time interval [0, T ].

First, we note that the condition u0(x) ≥ 0 implies u(x, t) ≥ 0 for all
x ∈ Rn and t ≥ 0. Next, integrating equation (2.1) with respect to x, using
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the Fubini theorem, and the identities�

Rn

G(x, t) dx = 1 and
�

Rn

∇G(x, t) dx = 0 for all t > 0,

we obtain the conservation of the L1-norm of nonnegative solutions:

(4.1) ‖u(t)‖L1 =
�

Rn

u(x, t) dx =
�

Rn

u0(x) dx = ‖u0‖L1 .

For this reason, the local existence time T = T (‖u0‖L1 , ‖∇K‖Lq′ ) from The-
orem 2.3 does not change for all nonnegative u0 ∈ L1(Rn) with the same
L1-norm. From now on, it suffices to follow a standard procedure which
consists in applying repeatedly Theorem 2.2 to equation (1.1) supplemented
with the initial datum u(x, kT ) to obtain a unique solution on the interval
[kT, (k + 1)T ] for every k ∈ N. This completes the proof of Theorem 2.5.

Next, we deal with strongly singular kernels from the space Lq′,∞(Rn)
with 1 < q′ ≤ n. The following lemma plays an important role in the proof
of Theorem 2.6.

Lemma 4.1. Assume that ∇K ∈ Lq′,∞(Rn) with 1 < q′ ≤ n. For every
r, p ∈ (1,∞) satisfying

1
r

=
2
p

+
1
q′
− 1(4.2)

there is a positive number C = C(r, p, n, q′, ‖∇K‖Lq′,∞) such that for all
u, v ∈ Lp(Rn) we have

‖u(∇K ∗ v)‖Lr ≤ C‖u‖Lp‖v‖Lp .(4.3)

Proof. First, we use the Hölder inequality to estimate

‖u(∇K ∗ v)‖Lr ≤ C‖u‖Lp‖∇K ∗ v‖Lk with
1
r

=
1
p

+
1
k
.

Next, we apply the weak Young inequality (2.3) which leads to ∇K ∗ v ∈
Lk(Rn) with 1/k = 1/p+ 1/q′ − 1.

Proof of Theorem 2.6. Recall that q∗ = 1/(1+1/n−1/q′). For p satisfying

1 ≤ max
{
q∗,

1
1− 1/(2q′)

}
< p <

1
1− 1/q′ + 1/(2n)

,(4.4)

we define the Banach space

X = C([0,∞), Lq∗(Rn))

∩
{
C([0,∞), Lp(Rn))

∣∣∣ sup
t>0

t
n
2
( 1

q∗
− 1

p
)‖u(t)‖Lp <∞

}
with the norm ‖u‖X ≡ supt>0 ‖u(t)‖Lq∗ + supt>0 t

n
2
( 1

q∗
− 1

p
)‖u(t)‖Lp .
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For every u0 ∈ Lq∗(Rn), it follows immediately from estimates (3.2) that

‖G(·) ∗ u0‖X ≤ C3‖u0‖Lq∗(4.5)

for some constant C3 > 0.
In the next step, we estimate the bilinear form B(u, v) defined in (3.1)

for any u, v ∈ X . By estimates (3.3) and (4.3), we have

‖B(u, v)(t)‖Lq∗ ≤ C
t�

0

(t− s)−
n
2
( 1

r
− 1

q∗
)− 1

2 ‖u(∇K ∗ v)(s)‖Lr ds

≤ C
t�

0

(t− s)−
n
2
( 1

r
− 1

q∗
)− 1

2 ‖u(s)‖Lp‖v(s)‖Lp ds(4.6)

≤ C‖u‖X ‖v‖X
t�

0

(t− s)−
n
2
( 1

r
− 1

q∗
)− 1

2 s
−n( 1

q∗
− 1

p
)
ds,

where r is defined in (4.2). Inequalities in (4.6) make sense and involve
convergent integrals because, by a direct calculation, it follows from (4.4)
that

1 < r ≤ q∗, −n
2

(
1
r
− 1
q∗

)
− 1

2
> −1, −n

(
1
q∗
− 1
p

)
> −1.

Therefore, after changing the variable on the right-hand side of (4.6), we see
that

‖B(u, v)(t)‖Lq∗ ≤ C‖u‖X ‖v‖X t−
n
2
( 1

r
− 1

q∗
)− 1

2
−n( 1

q∗
− 1

p
)+1

× B
(

1− n
(

1
q∗
− 1
p

)
,
1
2

(
1− n

(
1
r
− 1
q∗

)))
,

where B denotes the beta function. However, for q∗ defined by (2.4), it follows
from (4.2) that

−n
2

(
1
r
− 1
q∗

)
− 1

2
− n

(
1
q∗
− 1
p

)
+ 1 = 0,

hence, the Lq∗-norm of B(u, v) is estimated as

sup
t>0
‖B(u, v)(t)‖Lq∗ ≤ C‖u‖X ‖v‖X(4.7)

with a positive constant C.
By similar arguments to those in the case of the Lq∗-estimate, we obtain

t
n
2
( 1

q∗
− 1

p
)‖B(u, v)(t)‖Lp

≤ C‖u‖X ‖v‖X t
n
2
( 1

q∗
− 1

p
)
t�

0

(t− s)−
n
2
( 1

r
− 1

p
)− 1

2 s
−n( 1

q∗
− 1

p
)
ds

= C‖u‖X ‖v‖X .
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Therefore, there is a constant C > 0 independent of t such that

sup
t>0

t
n
2
( 1

q∗
− 1

p
)‖B(u, v)(t)‖Lp ≤ C‖u‖X ‖v‖X .(4.8)

Finally, it follows from (4.7) and (4.8) that

‖B(u, v)‖X ≤ η‖u‖X ‖v‖X(4.9)

for a positive number η independent of t, u, and v. Hence, we conclude
by Lemma 3.1 that the equation u(t) = G(t) ∗ u0 + B(u, u) has a solution
in X if 4η‖G(t) ∗ u0‖X < 1. However, by (4.5), it suffices to assume that
‖u0‖Lq∗ < 1/(4ηC3) to complete the proof of Theorem 2.6.

5. Nonexistence of global-in-time solutions

Proof of Theorem 2.9. Let us recall that we limit ourselves to nonnegative
solutions to (1.1)–(1.2) satisfying

M =
�

Rn

u(x, t) dx =
�

Rn

u0(x) dx for all t ∈ [0, T ].

As a standard practice, we study the evolution of the second moment of a
solution to (1.1)–(1.2),

I(t) =
�

Rn

|x|2u(x, t) dx.

Here, we skip the well-known argument (see e.g. [12]) that the quantity I(t)
is finite if u0 ∈ L1(Rn, (1 + |x|2) dx).

Differentiating the function I(t) with respect to t, using equation (1.1),
and integrating by parts, we obtain

d

dt
I(t) =

�

Rn

|x|2(∆u−∇ · (u(∇K ∗ u))) dx(5.1)

= 2nM + 2
�

Rn

x · u(∇K ∗ u) dx

= 2nM + 2
�

Rn

�

Rn

u(x, t)u(y, t)x · ∇K(x− y) dx dy.

Symmetrizing in x and y the double integral on the right-hand side of (5.1),
we obtain

(5.2)
d

dt
I(t) = 2nM

+
�

Rn

�

Rn

u(x, t)u(y, t)(x · ∇K(x− y) + y · ∇K(y − x)) dx dy.

Now, notice that the interaction kernel is assumed to be radial, K(x) =
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K(|x|), hence ∇K(x) = (x/|x|)K ′(r), where r = |x|. Therefore,

x ·∇K(x−y)+y ·∇K(y−x) = x · x−y
|x−y|

K ′(|x− y|)+y · y−x
|y−x|

K ′(|y−x|)

= |x− y|K ′(|x− y|).

Now, we apply the assumption (ii) imposed on the kernel K as follows:
d

dt
I(t) = 2nM +

�

Rn

�

Rn

u(x, t)u(y, t)|x− y|K ′(|x− y|) dx dy

≤ 2nM − γ
� �

|x−y|≤δ

u(x, t)u(y, t) dx dy

+ C
� �

|x−y|>δ

u(x, t)u(y, t)|x− y|2 dx dy

≤ 2nM − γM2 + (C + γ/δ2)
� �

|x−y|>δ

u(x, t)u(y, t)|x− y|2 dx dy.

Hence, using the elementary inequality |x− y| ≤ 2(|x|2 + |y|2) we obtain
d

dt
I(t) ≤ 2nM − γM2 + 2(C + γ/δ2)

�

Rn

�

Rn

u(x, t)u(y, t)(|x|2 + |y|2) dx dy

= M(2n− γM + 4(C + γ/δ2)I(t)
)
,

which implies that
d

dt
I(t) ≤M(2n− γM + 4(C + γ/δ2)I(0)) < 0 for all t > 0

provided γM > 2n+ 4(C + γ/δ2)I(0). Consequently, I(T ) = 0 for some 0 <
T <∞. This contradicts the global-in-time existence of regular nonnegative
solutions of problem (1.1)–(1.2).

Proof of Theorem 2.12. In order to show that the local-in-time solution
from Theorem 2.3 exists for all t ∈ [0,∞), it is sufficient to obtain its a
priori Lq-estimate. Indeed, if ‖u(t)‖Lq does not blow up in finite time, we
can apply a continuation argument as in the proof of Theorem 2.5.

Multiplying both sides of (1.1) by uq−1 (recall that u is nonnegative),
integrating over Rn, and using the decomposition of K, we have

(5.3)
1
q

d

dt

�

Rn

uq dx =
�

Rn

uq−1∆udx−
�

Rn

uq−1∇ · (u(∇K ∗ u)) dx

= −(q − 1)
�

Rn

uq−2|∇u|2 dx+ (q − 1)
�

Rn

uq−1∇u · (∇K1 ∗ u) dx

+ (q − 1)
�

Rn

uq−1∇u · (∇K2 ∗ u) dx.
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Notice that the second term of the right-hand side of (5.3) is nonpositive
due to the assumptions of K1 in view of the following calculation:

(q − 1)
�

Rn

uq−1∇u · (∇K1 ∗ u) dx =
q − 1
q

�

Rn

∇uq · (∇K1 ∗ u) dx

= −q − 1
q

�

Rn

uq · (∆K1 ∗ u) dx ≤ 0.

Here, we have assumed K1 to be sufficiently regular and the more general
case can be handled by a standard regularization procedure.

Next, by the ε-Young inequality, the third term of the right-hand side of
(5.3) is estimated as follows:

(q − 1)
�

Rn

uq−1∇u · (∇K2 ∗ u) dx

≤ (q − 1)
[
ε
�

Rn

uq−2|∇u|2 dx+ C(ε)
�

Rn

uq|∇K2 ∗ u|2 dx
]

≤ ε(q − 1)
�

Rn

uq−2|∇u|2 dx+ C(ε)‖∇K2‖2L∞‖u0‖2L1

�

Rn

uq dx

since, by (4.1), we have ‖∇K2 ∗ u(t)‖L∞ ≤ ‖∇K2‖L∞‖u0‖L1 .
Therefore, coming back to (5.3), for ε ≤ 1, we see that

1
q

d

dt

�

Rn

uq dx≤ −(q−1)(1−ε)
�

Rn

uq−2|∇u|2 dx

+ C(ε)‖∇K2‖2L∞‖u0‖2L1

�

Rn

uq dx

≤ C(ε)‖∇K2‖2L∞‖u0‖2L1

�

Rn

uq dx.

Hence, by the Gronwall lemma, ‖u(t)‖Lq ≤ eCt‖u0‖Lq , where C =
C(ε)‖∇K2‖2L∞‖u0‖2L1 . This implies that ‖u(t)‖Lq does not blow up in fi-
nite time and the proof of Theorem 2.12 is complete.
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