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REGULARITY OF DISPLACEMENT SOLUTIONS
IN HENCKY PLASTICITY.
II: THE MAIN RESULT

Abstract. The aim of this paper is to study the problem of regularity of
displacement solutions in Hencky plasticity. Here, a non-homogeneous mate-
rial is considered, where the elastic-plastic properties change discontinuously.
In the first part, we have found the extremal relation between the displace-
ment formulation defined on the space of bounded deformation and the stress
formulation of the variational problem in Hencky plasticity.

In the second part, we prove that the displacement solution belongs to
the appropriate Sobolev space (if the stress solution belongs to the interior
of a set of admissible stresses, at each point). Then we deduce a regularity
theorem for displacement solutions in composite materials.

1. Introduction. The principal aim of this contribution is to prove
the regularity of displacement solutions in Hencky plasticity. Here, a non-
homogeneous body is considered whose elastic-plastic properties change dis-
continuously.

The regularity of displacement solutions is investigated in [10] for an
isotropic Hencky material with the von Mises yield criterion. The elastic-
plastic problems with the Tresca yield criterion or the yield criterion of soil
material are not investigated. Moreover, the authors of [10] do not consider
bodies clamped on the boundary.

Anzellotti andGiaquinta [1] study functionals defined on the spaceBV (Ω).
They obtain the regularity of the minimizers under the assumption that the
normal integrand Ω × Rn×m 3 (x,p) 7→ j(x,p) is of class C2 with respect
to p, and is continuous with respect to the first variable.
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In [6, 12, 14] the authors study the regularity of solutions of quasi-linear
(or linear) elliptic boundary transmission problems in a domain Ω (composed
of a finite family of regular subdomains Ωi).

In the first part of this paper, we have found the extremal relation be-
tween the displacement formulation (defined on BD(Ω)) and the stress for-
mulation of the variational problems in Hencky plasticity (cf. [4]). In the
second part, we prove that the displacement solution belongs to the space
LD(Ω) (if the stress solution belongs to the interior of a set of admissible
stresses, at each point). Moreover, under the above mentioned assumption,
the relaxed Dirichlet condition is satisfied exactly by the displacement solu-
tion.

We consider all the standard yield criteria (von Mises, Tresca or the
yield criterion of soil material). However, we have to assume that the stress
solution belongs to the space Wn(Ω, div) (see (2.4)).

We do not assume the continuity of the displacement field on the inter-
face between subdomains, because the space BD(Ω) contains discontinuous
functions (see (2.2)). The elastic-plastic potential is a normal integrand (see
[8, Chapter 8, p. 232] and Definition 1), so it is a discontinuous function with
respect to the space variable for the case of a non-homogenized body (com-
posed of a few components). Moreover, the yield criterion may change in a
discontinuous way, i.e., it may jump on the interface between subdomains.

The study of the regularity of displacement solutions is significant for the
understanding of appearance of cracks.

2. Some basic definitions and theorems. Let Ω ⊂⊂ Ω1 be bounded,
open (Ω = intΩ), connected sets of class C1 in Rn.

We define the following Banach spaces (see [11], [16], [17]):

LD(Ω) ≡ {u ∈ L1(Ω)n | 2εij(u) ≡ (∂ui/∂xj + ∂uj/∂xi) ∈ L1(Ω),(2.1)
i, j = 1, . . . , n},

BD(Ω) ≡ {u ∈ L1(Ω)n | εij(u) ∈Mb(Ω), i, j = 1, . . . , n},(2.2)

with the natural norms

(2.3) ‖u‖LD = ‖u‖L1 +
n∑
i,j

‖εij(u)‖L1 , ‖u‖BD = ‖u‖L1 +
n∑
i,j

‖εij(u)‖Mb
.

There exists a continuous surjective linear trace γB from [BD(Ω), ‖·‖BD]
into [L1(FrΩ)n, ‖ · ‖L1 ] such that γB(u) = u|FrΩ for all u ∈ BD ∩ C(Ω)n

(see [16]).
A net (generalized sequence) {uδ}δ ∈ D ⊂ BD(Ω) is convergent to u0 ∈

BD(Ω) in the weak∗ BD topology if
	
Ω g·(u0−uδ) dx+

	
Ω h : ε(u0−uδ)→ 0

for all (g,h) ∈ Cc(Ω,Rn)×Cc(Ω,Ens ) (see [9, pp. 73–81]). The trace γB is not
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continuous on [BD(Ω), weak∗ topology] if the space L1(FrΩ)n is endowed
with a Hausdorff topology (or a T1-topology, see [2], [9], [16]).

In this paper we define the Banach space of measurable functions

(2.4) Wn(Ω, div) ≡ {σ ∈ L∞(Ω,Ens ) | divσ ∈ Ln(Ω)n}

endowed with the natural norm ‖σ‖Wn(Ω,div) = ‖σ‖L∞(Ω,Ens )+‖divσ‖Ln(Ω)n

(see [16, Chapter 2, Section 7] and [2]).

Assumption 1 (cf. [2]). Let K : Ω → 2Ens be a multifunction such that
for all x ∈ Ω, K(x) is a convex closed subset of Ens and:

(i) if z(x) ∈ K(x) for dx-almost every x ∈ Ω, z ∈ C(Ω,Ens ) and z|intΩ ∈
Wn(Ω, div), then z(y) ∈ K(y) for every y ∈ Ω;

(ii) for every y ∈ Ω and every w ∈ K(y) there exists z ∈ C(Ω,Ens )
such that z|intΩ ∈ Wn(Ω, div), z(y) = w and z(x) ∈ K(x) for every
x ∈ Ω.

Definition 1. A function j∗ : Ω × Ens → R ∪ {∞} is called a convex
normal integrand if

(i) Ens 3 w∗ 7→ j∗(x,w∗) is convex and l.s.c. for dx-a.e. x ∈ Ω,
(ii) there exists a Borel function j̃∗ : Ω × Ens → R ∪ {∞} such that

j̃∗(x, ·) = j∗(x, ·) for dx-a.e. x ∈ Ω (cf. [8, Chapter 8, p. 232]).

Moreover, let

(2.5) K(x) = {w∗ ∈ Ens | j∗(x,w∗) <∞} for dx-a.e. x ∈ Ω.

Assumption 2. There exist k, r1 > 0 such that j∗(x,w∗) ≤ k for every
w∗ ∈ BEns (0, r1) and dx-a.e. x ∈ Ω, and j∗ is non-negative on Ω × Ens .
Moreover, for every r̂ > 0 there exists cbr such that

(2.6) sup
{ �

Ω

j∗(x, z∗) dx
∣∣∣ z∗ ∈ L∞(Ω,Ens ), ‖z∗‖L∞ < r̂

and z∗(x) ∈ K(x) for dx-a.e. x ∈ Ω
}
< cbr <∞.

That is, the dual elastic potential z∗ 7→
	
Ω j
∗(x, z∗) dx is finite for every

z∗ ∈ L∞(Ω,Ens ) that is an admissible stress field.
We consider an elastic-perfectly plastic body, occupying the given set Ω,

with the elasticity convex domain K(x) (at all x ∈ Ω). We define

(2.7) j(x,w) ≡ j∗∗(x,w) ≡ sup{w : w∗ − j∗(x,w∗) | w∗ ∈ Ens }

for dx-a.e. x ∈ Ω and for all w ∈ Ens . This function j is a convex normal
integrand (cf. [8]). Let j∞ : Ω × Ens → R ∪ {∞} be defined by

(2.8) j∞(x,w) ≡ sup{w : w∗ − IK(x)(w
∗) | w∗ ∈ Ens }
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for all x ∈ Ω and w ∈ Ens . Let f ∈ Ln(Ω)n and g ∈ L∞(Γ1)n be the volume
and boundary forces. We consider the functional of total energy

(2.9) BD(Ω) 3 u 7→ dPλ,je(u) ≡ Fλ(u) +Gj(ε(u)),

where

(2.10) Fλ(u) ≡ −λL(u) + ICa(u0)(u), L(u) ≡
�

Ω

f · u dx+
�

Γ1

g · γB(u) ds,

and Ca(u0) is the set of kinematically admissible displacements,

(2.11) Ca(u0) ≡ {u ∈ BD(Ω) | γB(u)|Γ0
= u0 on Γ0, u0 ∈ L1(Γ0)n}.

The elastic-plastic energy Gj : Mb(Ω,Ens ) → R ∪ {∞} is given by Gj(µ) ≡	
Ω j(x,µ) dx if µ ∈ L1(Ω,Ens ) (i.e., µ is absolutely continuous with respect
to dx) and Gj(µ) ≡ ∞ otherwise.

Formula (2.9) describes the total elastic-perfectly plastic energy of a body
occupying the given subset Ω of the space Rn. The constant λ ≥ 0 (λ <∞)
is the load multiplier (see [16, Chapter 1, Section 4]).

Assumption 3. Let Γ1 = FrΩ ∩ C, where C = cl int C ⊂ Ω1 is a closed
Caccioppoli set and ds(FrΩ ∩ Fr C) = 0 (cf. [4, (5.3)]).

3. Regularity of displacement solutions. In this section we state our
main result that the displacement solution belongs to the space LD(Ω) (if
the stress solution belongs to the interior of a set of admissible stresses,
at each point). The proof is given in Section 5. Here, u0 = 0 on Γ0 is
assumed. Moreover, it is not assumed that the set K(x) is bounded for any
x ∈ Ω.

The original problem (Pλ,j) defined in [4, (6.5)], where u0 = 0 on Γ0, is
connected with the limit analysis problem (P0,j)AL:

(3.1) (P0,j)AL find inf
{ �

Ω

j∞(x, ε(u)) dx
∣∣∣ u ∈ LD(Ω),

γB(u) = 0 on Γ0, L(u) = 1
}

(see (2.8), (2.10) and [4, (3.13)]). The formula (Pλ,j) describes the total
elastic-perfectly plastic energy of a body occupying Ω. The limit analysis
problem (P0,j)AL is significant for the study of coercivity of the elastic-
perfectly plastic energy (Pλ,j) (see Proposition 14). The bidual relaxed prob-
lem (RP ∗∗λ,j) defined in [4, (4.16)] with u0 = 0 on Γ0 is connected with the
limit analysis problem
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(3.2) (RP ∗∗0,j)AL find inf
{ �

Γ0

j∞(x,−γB(u)⊗s ν) ds+
�

Ω

j∞(x, ε(u)a) dx

+
�

Ω

j∞

(
x,

dε(u)s
d|ε(u)s|

)
d|ε(u)s|

∣∣∣∣ u ∈ BD(Ω), L(u) = 1
}
.

The functional dP ∗λ,je is defined by

(3.3) Wn(Ω, div) 3 σ 7→ dP ∗λ,je(σ) = −(Fλ,1)∗(−ε∗(σ))−G∗1,j(σ),

where (Fλ,1)∗ and G∗1,j are given in [4, (6.7) and (6.8)].
A maximizer of dP ∗λ,je is a solution of the stress problem. Similarly, a

minimizer of (RP ∗∗λ,j) is a solution of the relaxed displacement problem. Due
to [4, Lemma 13 and Proposition 25] the dual problem (given by dP ∗λ,je) and
the relaxed dual problem (RP ∗λ,j) (cf. [4, (4.15), (4.10), (4.13) and (7.62)])
are equivalent.

Assumption 4. There exist λr > 0 and σλr ∈ C(Ω,Ens ) ∩Wn(Ω, div)
such that βB(σλr) = λrg on Γ1 and σλr(x) ∈ K(x) for every x ∈ Ω.
Moreover, let L(u) = L(u + u) for every u ∈ LD(Ω) and u ∈ LD(Ω) with
ε(u) = 0 in Ω, if ds(Γ0) = 0 and inf(P0,j)AL =∞.

By Assumption 4 the boundary force g ∈ L∞(Γ1)n is a regular function.
We define the function dRP ∗∗λ,je : BD(Ω)→ R ∪ {+∞} by

(3.4) dRP ∗∗λ,je(u) = (Fλ,R)∗∗(u) +G∗∗j (ε(u)),

where

(Fλ,R)∗∗(u) ≡ −λ
( �

Ω

f · u dx+
�

Γ1

g · γB(u) ds
)

(3.5)

+
�

Γ0

j∞(x, (u0 − γB(u))⊗s ν) ds

and

(3.6) G∗∗j (ε(u)) =
�

Ω

j(x, ε(u)a) dx+
�

Ω

j∞

(
x,
d(ε(u)s)
d|ε(u)s|

)
d|ε(u)s|

for every u ∈ BD(Ω) (cf. [4, (4.8), (4.12), (4.16) and (7.64)]). Here, dRP ∗∗λ,je
describes the relaxed total elastic-perfectly plastic energy.

Assumption 5. There exist σL ∈Wn(Ω, div), where dP ∗λL,je(λLσL) =
sup{dP ∗λL,je(σ) | σ ∈ Wn(Ω, div)} < ∞ and 0 ≤ λL < inf(P0,j)AL (cf.
(3.3)).

Assumption 6. inf{dPλL, je(u) | u ∈ BD(Ω)} = sup{dP ∗λL, je(σ) | σ ∈
Wn(Ω, div)}, where λL satisfies Assumption 5 (cf. [4, Theorem 14]).
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The relaxed limit analysis problem (P̃0,j)AL is defined by:

(3.7) (P̃0,j)AL find inf
{ �

Ω

j∞(x,w) dx
∣∣∣

w ∈ L1(Ω,Ens ),
�

Ω

σL : w dx = 1
}
.

Here, the infimum is taken over the set {w ∈ L1(Ω,Ens ) |
	
Ω σL : w dx = 1}

where σL satisfies Assumption 5.
Due to (3.3), Assumption 5 and [4, (6.7), (6.8)], we obtain divσL = −λf

in Ω and βB(σL) = λg on Γ1. If w = ε(u) and u ∈ LD(Ω)∩Ca(u0), where
u0 = 0, then

(3.8)
�

Ω

σL : w dx =
�

Ω

σL : ε(u) dx = −
�

Ω

(divσL) · u dx

+
�

FrΩ

βB(σL) · γB(u) ds =
�

Ω

λf · u dx+
�

Γ1

λg · γB(u) ds

(see [4, (3.9)]). Therefore, directly from (3.1) we get inf(P0,j)AL≥ inf (P̃0,j)AL.
That is, (P0,j)AL is a stronger limit analysis problem than (P̃0,j)AL.

Assumption 7. For every r̂ > 0 there exists δbr > 0 such that

(3.9) |j∗(x,w∗1)− j∗(x,w∗2)| ≤ δbr‖w∗1 −w∗2‖Ens
for dx-a.e. x ∈ Ω and for all w∗1,w

∗
2 ∈ K(x) with ‖w∗1‖Ens , ‖w

∗
2‖Ens < r̂.

The main result of this paper is the following criterion of regularity of
displacement solutions.

Theorem 1. Let 0 ≤ λL < λr < inf (P̃0,j)AL. If Assumptions 4–7 hold,
then every minimum ũ ∈ BD(Ω) of dRP ∗∗λL,je belongs to the space LD(Ω)
and γB(ũ) = 0 on Γ0 (cf. (3.4) and (3.7)).

4. Coercivity of elastic-plastic energy. We now study the coercivity
of dPλ,je (cf. Proposition 14). Here, the elastic-perfectly plastic potential j
satisfies only (2.5), (2.7) and Assumptions 1–2. In this section, we always
assume that Assumptions 1–3 are fulfilled, and Assumption 4 holds if it is
stated explicitly. We do not assume that the set K(x) is bounded for each
x ∈ Ω.

The original problem (Pλ,j), defined in [4, (6.5)], is connected with the
limit analysis problem (P0,j)AL for the case when u0 = 0 on Γ0 (see Sec-
tion 3). Similarly, (RP ∗∗λ,j), defined in [4, (4.16)] with u0 = 0 on Γ0, is con-
nected with the relaxed bidual limit analysis problem (RP ∗∗0,j)AL (cf. Sec-
tion 3).
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We consider the spaces

(4.1) Y1(Ω) ≡ {M ∈Mb(Ω,Ens ) |
∃û ∈ BD(Ω1), ε(û)|Ω = M, û|Ω1−Ω = 0},

(4.2) C(Ω,Ens ) ∩Wn(Ω, div) ≡ {σ ∈ C(Ω,Ens ) | σ|Ω ∈Wn(Ω, div)}.
Let ε(u)|Ω = M, where u ∈ BD(Ω1) and u|Ω1−Ω = 0. Moreover, let σ1 ∈
Wn(Ω1, div) where σ1|Ω = σ (see [4, Remark 1]). Then we define
(4.3)
〈M,σ〉Y1×Wn(Ω,div) =

�

Ω

σ1 : ε(u) =
�

Ω

σ : ε(u)|Ω −
�

FrΩ

βB(σ) · γIB(u) ds

(cf. [3, Lemma 5 and Remark 1], [4, (3.8), (5.4) and (5.5)]).

Remark 1. We should consider duality between Y1(Ω) and [C(Ω,Ens )∩
Wn(Ω, div)]/{σ ∈ C(Ω,Ens ) | divσ = 0 in Ω} or another quotient space.
To simplify the proofs, the definitions (4.1)–(4.3) are considered. We do
not obtain a contradiction, since we do not use the Hausdorff property of
σ(Wn(Ω, div),Y1(Ω)) and σ(C(Ω,Ens ) ∩Wn(Ω, div),Y1(Ω)).

The space BD(Ω) is isomorphic to A ≡ {u ∈ BD(Ω1) | u|Ω1−Ω = 0}.
Moreover, A is isomorphic to Y1(Ω) via A 3 u 7→ ε(u)|Ω ∈ Y1(Ω).
The Banach spaces [BD(Ω), ‖ · ‖BD] and [Y1(Ω), ‖ · ‖Mb(Ω)] are isomorphic
(cf. [2, Proposition 4.24]). Each closed ball cl‖·‖(BY1(0, r)) (in Y1) is com-
pact in the topology σ(Y1(Ω);C(Ω,Ens ) ∩Wn(Ω, div)), where cl‖·‖ denotes
the closure in the norm of BD(Ω) (see [2, Proposition 4.23]). The space
[cl‖·‖BD(BBD(0, r)), weak∗ BD(Ω) topology] is homeomorphic to the space
[cl‖·‖BD(BBD(0, r)), σ(Y1(Ω); C(Ω,Ens ) ∩Wn(Ω, div))] for every r > 0 (cf.
[2, Proposition 4.25]).

We say that a net {Mδ}δ∈D ⊂ Y1(Ω) is convergent to M0 ∈ Y1(Ω) in
the topology σ(Y1(Ω),Wn(Ω, div)) if

(4.4) 〈(Mδ −M0),σ〉Y1×Wn(Ω,div) → 0 ∀σ ∈Wn(Ω, div).

Proposition 2. Each closed ball cl‖·‖Mb (BY1(0, r)) (in Y1(Ω)) is com-
pact in σ(Y1(Ω),Wn(Ω, div)). If n = 1 then Ln/(n−1)(Ω)n shoud be replaced
by L∞(Ω) in the proof below.

Proof. Step 1. Let {ε(uδ)|Ω}δ∈D ⊂ Y1(Ω) be bounded in the norm
‖ · ‖Mb(Ω). Then {uδ |Ω}δ∈D ⊂ BD(Ω) is bounded in ‖ · ‖BD. There exists a
continuous injection of BD(Ω) into Ln/(n−1)(Ω)n (see [16, Chapter 2, The-
orem 2.2]). Thus {uδ |Ω}δ∈D is a bounded net in Ln/(n−1). Therefore, there
exist a finer net {uδα}α∈A ⊂ {uδ}δ∈D and a function u1 ∈ Ln/(n−1)(Ω)n

such that
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(4.5) 〈ε(uδα),σ〉Y1×Wn(Ω,div) = −
�

Ω

(divσ) · uδα dx→ −
�

Ω

(divσ) · u1 dx

for everyσ ∈Wn(Ω, div), since divσ ∈ Ln(Ω)n. Moreover, there is a finer net
{uδαβ } and a measure µ1 ∈Mb(Ω,Ens ) such that

	
Ω ϕ : ε(uδαβ )→

	
Ω ϕ : µ1

for every ϕ ∈ C1
c (Ω,Ens ). The symmetric distributional derivative ε(u1) of

u1 is equal to µ1, since C1
c (Ω1,Ens ) ⊂ Wn(Ω1, div). Then u1 ∈ BD(Ω)

and ε(uδαβ )|Ω converges to ε(ũ1)|Ω in σ(Y1(Ω),Wn(Ω, div)), where ũ1 ∈
BD(Ω1), ũ1|Ω = u1 in Ω and ũ1|Ω1−Ω = 0 in Ω1 −Ω.

Step 2. The net {ε(uδ)|Ω}δ∈D ⊂ Y1 is contained in cl‖·‖Mb (BY1(0, r)).
Then

(4.6) ‖ε(ũ1)|Ω‖Mb
≤ sup
σ∈C1

0

{lim sup
δ
〈ε(uδ),σ〉Y1×Wn(Ω1,div) |

‖σ(x)‖Ens ≤ 1, ∀x ∈ Ω1} ≤ r.

Theorem 3. The topologies σ(Y1(Ω);C(Ω,Ens ) ∩ Wn(Ω, div)) and
σ(Y1(Ω),Wn(Ω, div)) are equivalent on each closed ball cl‖·‖Mb (BY1(Ω)(0, r)).

Proof. The topology σ(Y1(Ω);C(Ω,Ens ) ∩Wn(Ω, div)) is weaker than
σ(Y1(Ω),Wn(Ω, div)). Moreover, σ(Y1(Ω);C(Ω,Ens ) ∩ Wn(Ω, div)) is a
Hausdorff topology and [cl‖·‖Mb (BY1(0, r)), σ(Y1(Ω),Wn(Ω, div))] is a com-
pact topological space. Among all Hausdorff topologies, compact topologies
are minimal (see [9, Corollary 3.1.14]).

Lemma 4. The functional L : [BD(Ω), ‖ · ‖BD] → R is continuous (see
(2.10)).

Proof. The trace γB : [BD(Ω), ‖ · ‖BD]→ [L1(FrΩ)n, ‖ · ‖L1 ] is continu-
ous (cf. [16, Chapter 2, Theorem 1.1]). Moreover, BD(Ω) 3 u 7→

	
Ω f ·u dx ∈

R is continuous in ‖ · ‖BD (see [16, Chapter 2, Theorem 1.2]).

Lemma 5. If ds(Γ0) > 0, then for every g ∈ L∞(Γ1)n, f ∈ Ln(Ω)n there
exists σ̂ ∈Wn(Ω, div) with div σ̂ = −f in Ω and βB(σ̂) = g on Γ1.

If ds(Γ0) = 0, then for every g ∈ L∞(Γ1)n, f ∈ Ln(Ω)n (such that for
every u ∈ LD(Ω) and u ∈ LD(Ω) with ε(u) = 0 we have L(u) = L(u+u))
there exists σ̂0 ∈ Wn(Ω, div) with div σ̂0 = −f in Ω and βB(σ̂0) = g on
FrΩ.

Proof. Step 1. Let ĵm : Ω × Ens → R be defined by

(4.7) ĵm(x,w) ≡ sup{w : w∗ | w∗ ∈ Ens , ‖w∗‖Ens ≤ m}.

Then ĵm is a normal integrand for every m ∈ N. We have ĵm(x,w) ≥
mcn‖w‖Ens for every m ∈ N, x ∈ Ω and w ∈ Ens , where cn depends only on
the dimension of the space Ens (cf. definition of the norm ‖ · ‖Ens ).
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Step 2. Let ds(Γ0) > 0. For every u ∈ LD(Ω) such that γB(u) = 0
on Γ0, there exists c0 > 0 such that

	
Ω ‖ε(u)‖Ens dx ≥ c

0‖u‖LD(Ω). Then

(4.8) inf
u∈LD(Ω)

{ �

Ω

ĵm(x, ε(u)) dx
∣∣∣ γB(u) = 0 on Γ0, ‖u‖LD = 1

}
≥ mcnc0.

We take m0 ∈ N such that sup{|L(u)| | u ∈ LD(Ω), ‖u‖LD(Ω) = 1} <
m0cnc

0; then inf{dP1,bjm0
e(u) | u ∈ LD(Ω)} > −∞ (cf. (2.9)). Therefore,

(P ∗
1,bjm0

) has a solution (see [4, Theorem 14 and Lemma 13]).

Step 3. Let ds(Γ0) = 0. Then, for every u ∈ LD(Ω), there exists c0 > 0
such that

(4.9)
�

Ω

‖ε(u)‖Ens dx ≥ c
0 inf{‖u + u‖LD(Ω) | u ∈ LD(Ω), ε(u) = 0}.

We have

(4.10) inf
u

{ �

Ω

ĵm(x, ε(u)) dx
∣∣∣ u ∈ LD(Ω) and

inf
u
{‖u + u‖LD(Ω) | u ∈ LD(Ω), ε(u) = 0} = 1

}
≥ mcnc0.

This yields the second part of this lemma (cf. Step 2).

We define a subspace GLD(Ω) of L1(Ω,Ens )× L1(FrΩ)n by

(4.11) GLD(Ω) ≡ {(w, z) | ∃ũ ∈ LD(Ω), (w, z) = (ε(ũ),γB(ũ))}.

Let Θ̃λ : L1(Ω,Ens )× L1(FrΩ)n → R ∪ {+∞} be given by

Θ̃λ(w,γB(u)) = −λ
�

Γ1

g · γB(u) ds+
�

Ω

j∞(x,w) dx(4.12)

+
�

Γ0

I{γB(u)⊗sν=0}(−γB(u)⊗s ν) ds

for w ∈ L1(Ω,Ens ) and u ∈ LD(Ω) (note that γB(LD(Ω)) = L1(FrΩ)n).
The restriction of Θ̃λ to GLD(Ω) is equal to Θλ. Let Wn(Ω, div) and
L1(Ω,Ens ) × L1(FrΩ)n be vector spaces placed in duality by the bilinear
pairing

(4.13) 〈σ, (w,p)〉2 =
�

Ω

σ : w dx−
�

FrΩ

βB(σ) · p ds

for σ ∈ Wn(Ω, div),w ∈ L1(Ω,Ens ) and p ∈ L1(FrΩ)n. In view of the
duality we obtain

(4.14) Θ̃#
λ (σ) ≡ sup{〈σ, (w,γB(u))〉2 − Θ̃λ(w,γB(u)) |

(w,γB(u)) ∈ L1 × L1}
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for every σ ∈Wn(Ω, div), and

(4.15) Θ̃##
λ (w,γB(u)) = sup{〈σ, (w,γB(u))〉2 − Θ̃#

λ (σ) | σ ∈Wn(Ω, div)}
for every w ∈ L1(Ω,Ens ) and u ∈ LD(Ω). Moreover, due to the duality
between Wn(Ω, div) and GLD(Ω), we define Θ#

λ and Θ##
λ : GLD(Ω) →

R ∪ {+∞} by

(4.16) Θ#
λ (σ) ≡ sup

(ε(u),γB(u))∈GLD(Ω)
{〈σ, (ε(u),γB(u))〉2 −Θλ(ε(u),γB(u))}

for σ ∈Wn(Ω, div), and

(4.17) Θ##
λ (ε(u), γB(u))

= sup{〈σ, (ε(u),γB(u))〉2 −Θ#
λ (σ) | σ ∈Wn(Ω, div)}.

Similarly to [2, (4.62)], we obtain

Proposition 6. We have

(4.18) Θ̃#
λ (σ) =

�

Ω

j∗∞(x,σ) dx+
�

Γ1

I{σ|βB(σ)=λg}(σ) ds

for every σ ∈Wn(Ω, div). If λr satisfies Assumption 4, then

Θ̃##
λr

(w,γB(u)) = −λr
�

Γ1

g · γB(u) ds+
�

Ω

j∞(x,w) dx(4.19)

+
�

Γ0

j∞(x,−γB(u)⊗s ν) ds

for every w ∈ L1(Ω,Ens ) and u ∈ LD(Ω) (see [3, Proposition 7]).

Lemma 7 (see [3, Lemma 6]). For every σ ∈Wn(Ω, div) we have Θ̃#
λ (σ)

≥ Θ#
λ (σ). Moreover, Θ̃##

λ (ε(u), γB(u)) ≤ Θ##
λ (ε(u), γB(u)) for every

(ε(u),γB(u)) ∈ GLD(Ω).

Lemma 8 (cf. [3, Lemma 8]). Let λr satisfy Assumption 4. For every
u ∈ LD(Ω) such that γB(u) = 0 on Γ0, we have

(4.20) Θ̃##
λr

(ε(u),γB(u)) = Θ##
λr

(ε(u),γB(u)) = Θλr(ε(u),γB(u)).

Lemma 9 (see [3, Lemma 9]). For every σ ∈ Wn(Ω, div) and every
σs ∈Wn(Ω, div) such that divσs = 0, we have Θ#

λ (σ) = Θ#
λ (σ + σs).

We say that the net {σκ}κ∈K⊂Wn(Ω, div) converges toσ0 ∈Wn(Ω, div)
in

(4.21) σ(Wn(Ω, div);L1(Ω,Ens )× {ϕ ∈ Y1(Ω)|FrΩ | ϕ|Γ0
= 0}),

if 〈σκ, (w,p)〉2 → 〈σ0, (w,p)〉2 for every (w,p) ∈ L1(Ω,Ens ) × L1(FrΩ)n

such that p|Γ0
= 0 (note that Y1(Ω)|FrΩ = γB(LD(Ω))⊗s ν).
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Lemma 10. Let f̂ : Wn(Ω, div) → R be a linear functional, continuous
in the topology (4.21), such that f̂(σs) = 0 for every σs ∈ Wn(Ω, div)
with divσs = 0 in Ω. Then there exists ũ ∈ LD(Ω) such that for every
σ ∈Wn(Ω, div), we have f̂(σ) = 〈σ, (ε(ũ),γB(ũ))〉2 and γB(ũ) = 0 on Γ0

(cf. (4.13)).

Proof. It is a modification of the proof of [3, Lemma 10]. By [7, Theorem
V.3.9] there exist m ∈ L1(Ω,Ens ) and û ∈ BD(Ω) such that γB(û) = 0
on Γ0 and f̂(σ) = 〈σ, (m,γB(û))〉2 for all σ ∈ Wn(Ω, div). For every
σ1 ∈ C(Ω1,Ens ) ∩Wn(Ω1, div) such that divσ1 = 0 in Ω1, we have 〈σ1|Ω,
(m,γB(û))〉2 = 0 (since σ1|Ω ∈ Wn(Ω, div)). Then by [16, Chapter 2,
Proposition 1.1, Theorem 1.3], [4, (5.5)] and [13], there exists ũ ∈ LD(Ω)
such that the conclusion of this lemma holds.

Let Q : Wn(Ω, div)→ R ∪ {+∞} be defined by

(4.22) Q(σ) = inf
σs
{Θ̃#

λr
(σ + σs) | σs ∈Wn(Ω, div) and divσs = 0}.

Proposition 11. Let λr satisfy Assumption 4. For every σ∈Wn(Ω, div)
we have

(4.23) Θ#
λr

(σ) = cl(4.21)Q(σ),

where cl(4.21)Q denotes the largest minorant which is less than Q and is
l.s.c. in the topology (4.21) (i.e., cl(4.21)Q is the l.s.c. regularization of Q in
(4.21)).

Proof. We prove the proposition in the same way as [3, Proposition 11],
with Cdiv(Ω,Ens ) and the topology [3, (4.12)] replaced with Wn(Ω, div) and
(4.21).

Proposition 12 (see [4, Proposition 19]). Let Aek ≡ {σ ∈Wn(Ω, div) |
‖divσ‖Ln ≤ k̃} and let λr satisfy Assumption 4. For all σ̂ ∈ Wn(Ω, div)
and all k̃ > ‖div σ̂‖Ln we have

(4.24) Θ#
λr

(σ̂) = clAek Q(σ̂),

where clAek Q is the l.s.c. regularization of the function σ 7→ Q(σ) + IAek(σ)
in the topology (4.21) and IAek(·) is the indicator function of Aek.

Proof. We argue as for [3, Proposition 13], replacing Cdiv(Ω,Ens ) with
Wn(Ω, div). In the proof, we use the topology (4.35) of [3].

If ds(Γ0) = 0 and ∞ > inf (P0,j)AL > 0 then for every u,u ∈ LD(Ω)
such that ε(u) = 0 in Ω, we have L(u) = L(u + u) (cf. (2.10)).

Proposition 13. Let 0 < λr ≤ inf (P0,j)AL, where λr satisfies Assump-
tion 4. Moreover, let dP fs

λr,j∞
e∗ be equal to dP ∗λr,j∞e, where f is replaced by

fs (cf. (2.10), (3.3), [4, (6.6)]). Then there exists a sequence {σm}m∈N ⊂
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Wn(Ω, div) such that βB(σm) = λrg on Γ1 for every m ∈ N and ‖λrf +
divσm‖Ln → 0. Here, σm(x) ∈ K(x) for dx-a.e. x ∈ Ω and every m ∈ N.
Moreover, if u0 = 0 on Γ0, then dP− divσm

λr,j∞
e∗ has a maximum inWn(Ω, div),

for each m ∈ N.

Proof. Let u0 = 0 on Γ0. Then 0 ≤ inf{dPλr,j∞e(u) | u ∈ LD(Ω)}, since
λr ≤ inf (P0,j)AL (see (2.9), (2.10) and (3.1)). In view of Lemma 5, there
exists σ̂ ∈ Wn(Ω, div) such that div σ̂ = −f in Ω and βB(σ̂) = g on Γ1.
Then, by the Green formula [4, Theorem 2] and Proposition 12, there exists
0 < kbσ < +∞ such that

(4.25) 0 ≤ inf
u∈LD

{dPλr,j∞e(u)}

= − sup
{ �

Ω

λrσ̂ : ε(u) dx−
�

FrΩ

βB(λrσ̂) · γB(u) ds

−Θλr(ε(u), γB(u))
∣∣∣ u ∈ LD(Ω)

}
= −Θ#

λr
(λrσ̂) = − clAkbσ Q(λrσ̂),

where u0 = 0 on Γ0. Therefore, by (4.18), there exists a net {σt}t∈T ⊂
Wn(Ω, div) such that βB(σt) = λrg on Γ1, σt(x) ∈ K(x) for dx-a.e. x ∈
Ω and every t ∈ T , and 〈(σt − λrσ̂), (w,p)〉2 → 0 for every (w,p) ∈
L1(Ω,Ens )×L1(FrΩ)n with p|Γ0

= 0. Then, by the Green formula [4, (3.9)],	
Ω(λrf + divσt) · u dx→ 0 for every u ∈ LD(Ω) with γB(u) = 0 on Γ0.

Due to (4.25) and Proposition 12 the net {‖divσt‖Ln}t∈T is bounded by
kbσ < +∞. The set {u ∈ LD(Ω) | γB(u)|Γ0

= 0} is dense in [Ln/(n−1)(Ω)n,
‖ · ‖Ln/(n−1) ], because C1

0 (Ω)n is dense in Ln/(n−1)(Ω)n. The space [cl‖·‖Ln
(BLn(0, ‖λrf‖Ln + kbσ)), σ(Ln, Ln/(n−1))] is compact and Ln(Ω)n endowed
with the topology σ(Ln(Ω)n, {u ∈ LD(Ω) | γB(u)|Γ0

= 0}) is a Hausdorff
space. Then

(4.26)
�

Ω

(λrf + divσt) ·w dx→ 0 ∀w ∈ Ln/(n−1)(Ω)n,

since among all Hausdorff topologies compact topologies are minimal (see [9,
Corollary 3.1.14]). Therefore, by the Mazur lemma, there exists a sequence
{σm}m∈N ⊂Wn(Ω, div) such that βB(σm) = λrg on Γ1, σm(x) ∈ K(x) for
dx-a.e. x ∈ Ω and every m ∈ N. Moreover, ‖λrf + divσm‖Ln(Ω)n → 0.

The following criterion of coercivity of dPλ,je is formulated for any elastic-
plastic potential j (which satisfies (2.5), (2.7) and Assumptions 1–2).

Proposition 14 (cf. [2] and [16]). Assume that λr satisfies Assump-
tion 4, where λr is replaced by λr. If inf (P0,j)AL > λr > λr ≥ 0 then
inf{dPλr,je(u) | u ∈ LD(Ω)} > −∞. The converse holds in the following
form: if inf{dPλr,je(u) | u ∈ LD(Ω)} > −∞, then inf(P0,j)AL ≥ λr. More-
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over, if inf(P0,j)AL > λr > λr ≥ 0 then any sequence {um}m∈N ⊂ BD(Ω)
such that

(4.27) inf
z
{‖um + z‖BD | z ∈ BD(Ω) and ε(z) = 0} → +∞

satisfies limm→∞(Fλr(um) +Gj(ε(um))) = +∞ (cf. (2.10)).

Proof. Step 1. Let inf (P0,j)AL > λr > λr ≥ 0. By Proposition 13
there exist sequences {σm}m∈N ⊂ Wn(Ω, div) and {rm}m∈N ⊂ R such that
‖σm‖L∞ < rm, βB(σm) = λrg on Γ1 and σm(x) ∈ K(x) for dx-a.e. x ∈ Ω.
Moreover, ‖λrf + divσm‖Ln(Ω)n → 0. Then, by (2.6), we obtain

(4.28) inf
{
−

�

Ω

(−divσm) · u dx− λr
�

Γ1

g · γB(u) ds

+
�

Ω

j(x, ε(u)) dx
∣∣∣ u ∈ LD(Ω), γB(u) = 0 on Γ0

}
= inf

{
−

�

Ω

σm : ε(u) dx+
�

Ω

j(x, ε(u)) dx
∣∣∣

u ∈ LD(Ω), γB(u) = 0 on Γ0

}
≥ − sup

{ �

Ω

σm : w dx−
�

Ω

j(x,w) dx
∣∣∣ w ∈ L1(Ω,Ens )

}
= −

�

Ω

j∗(x,σm) dx > −crm > −∞ ∀m ∈ N.

Step 2. If ds(Γ0) = 0, then for every m ∈ N and every ũ ∈ LD(Ω) such
that ε(ũ) = 0 in Ω, we have L−divσm, λrg

(ũ) = 0 where

(4.29) L−divσm, λrg
(u) ≡

�

Ω

(−divσm) · u dx+ λr
�

Γ1

g · γB(u) ds

for every u ∈ LD(Ω). Indeed, if L−divσm, λrg
(ũ) 6= 0 and ε(ũ) = 0 in Ω,

then (4.28) is not bounded from below, where j is replaced by j∞.

Step 3. Let {(f̃m, g̃m)}m∈N ⊂ Ln(Ω)n×L∞(Γ1)n and Lefm, egm(ũ) = 0 for
every (m, ũ) ∈ N×LD(Ω) with ε(ũ) = 0 in Ω, where Lefm, egm is defined by

(4.29). Moreover, suppose ‖f̃m − f̃0‖Ln(Ω)n → 0 and ‖g̃m − g̃0‖L∞(Γ1)n → 0.
Then Lef0, eg0

(ũ) = 0 for every ũ ∈ LD(Ω) such that ε(ũ) = 0 in Ω.

Step 4. We define a continuous linear function

(4.30) Wn(Ω, div) 3 σ 7→ Φa(σ)
= (−divσ,βB(σ)|Γ1

) ∈ Ln(Ω)n × L∞(Γ1)n,

where the spaces Wn(Ω, div), Ln(Ω)n and L∞(Γ1)n are endowed with the
norms ‖ · ‖Wn(Ω,div), ‖ · ‖Ln and ‖ · ‖L∞ . Let σ1,σ2 ∈ Wn(Ω, div) and
L−divσ1, βB(σ1)|Γ1

(ũ) = 0 = L−divσ2, βB(σ2)|Γ1
(ũ) for every ũ ∈ LD(Ω)
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with ε(ũ) = 0 in Ω. Then, for all a, b ∈ R, σ3 = aσ1 + bσ2 satisfies the
equality L−divσ3, βB(σ3)|Γ1

(ũ) = 0 for all ũ ∈ LD(Ω) such that ε(ũ) = 0
in Ω.

Let {σ̃m} ⊂ Wn(Ω, div) with ‖σ̃m − σ̃0‖Wn(Ω,div) → 0. Moreover, sup-
pose L−divσm, βB(σm)|Γ1

(ũ) = 0 for every m ∈ N and every ũ ∈ LD(Ω) such
that ε(ũ) = 0 in Ω. Then, by the continuity of Φa we obtain
L−divσ0, βB(σ0)|Γ1

(ũ) = 0 for every ũ ∈ LD(Ω) such that ε(ũ) = 0 in Ω.

Step 5. There exists a closed (in ‖ · ‖Wn(Ω,div)) subspace Wn
L (Ω, div) of

Wn(Ω, div) such that for every σ̂ ∈Wn
L (Ω, div) we have L− div bσ, βB(bσ)|Γ1

(ũ)
= 0 for every ũ ∈ LD(Ω) with ε(ũ) = 0 in Ω. Moreover, by Lemma 5, for
every (f̃ , g̃) ⊂ Ln(Ω)n × L∞(Γ1)n such that Lef , eg(ũ) = 0 (if ε(ũ) = 0, for

ũ ∈ LD(Ω)), there exists σ̃ ∈Wn
L (Ω, div) and Φa(σ̃) = (f̃ , g̃).

In view of Steps 3 and 4, Φa|Wn
L (Ω,div) is a continuous linear functional de-

fined on the Banach space [Wn
L (Ω, div), ‖·‖Wn(Ω,div)]. Moreover, Φa|Wn

L (Ω,div)

is a surjection on the Banach space

(4.31) {(f ,g) ∈ Ln(Ω)n×L∞(Γ1)n | Lf , g(ũ) = 0 ∀ũ ∈ LD(Ω), ε(ũ) = 0}
endowed with the norm ‖ · ‖Ln × ‖ · ‖L∞ .

Step 6. Let ds(Γ0) > 0. By the first part of Lemma 5, Φa is a surjection on
the Banach space Ln(Ω)n×L∞(Γ1)n. Then, in view of the interior mapping
principle [7, Theorem II.2.1], there exist open balls intBLn(Ω)×L∞(Γ1)(z, ra)
⊂ Ln(Ω)n × L∞(Γ1)n and intBWn(Ω,div)(0, rb) ⊂Wn(Ω, div) such that

intBLn(Ω)×L∞(Γ1)(z, ra) ⊂ Φa(intBWn(Ω,div)(0, rb)).

There exists rc > 0 (rb < rc <∞) such that −z ∈ Φa(intBWn(Ω,div)(0, rc)).
Then intBLn(Ω)×L∞(Γ1)(0, (ra/2)) ⊂ Φa(intBWn(Ω,div)(0, rc)), since Φa is
linear and rc > rb.

Step 7. By Step 5 and the interior mapping principle [7], there exist open
sets intB(4.31)(0, r̂a) (a ball in the space (4.31)) and intBWn

L (Ω,div)(0, r̂b) ⊂
Wn
L (Ω, div) with

(4.32) intB(4.31)(0, r̂a) ⊂ Φa(intBWn
L (Ω,div)(0, r̂b)).

Step 8. Let {σm}m∈N be as in Step 1. Then λrg = βB(σmλr/λr) on Γ1,
‖λrf + div(σmλr/λr)‖Ln(Ω)n → 0 and σm ∈ K(x) for dx-a.e. x ∈ Ω.

If ds(Γ0) = 0, then L−divσm, λrg
(ũ) = 0 = Lλrf , λrg(ũ) for all ũ ∈

LD(Ω) with ε(ũ) = 0 in Ω (see Steps 2 and 3). Therefore, there exists
a sequence {σ̃m}m∈N ⊂ Wn(Ω, div) such that βB(σ̃m) = 0 on Γ1 and
div(σ̃m(λr − λr)/λr) = −λrf −div(σmλr/λr) in Ω for every m ∈ N. In
view of (4.32) we can assume that ‖σ̃m‖Wn(Ω,div) → 0 as m → ∞, because
‖div σ̃m‖Ln(Ω)n → 0 and Φa is a linear function.



Regularity in Hencky plasticity 427

Similarly, if ds(Γ0) > 0, then there exists a sequence {σ̃m}m∈N such that
βB(σ̃m) = 0 on Γ1, div(σ̃m(λr − λr)/λr) = −λrf −div(σmλr/λr) in Ω for
every m ∈ N and ‖σ̃m‖Wn(Ω,div) → 0 as m→∞. Therefore, by (4.28),

(4.33) inf
{
−Lλrf , λrg(u) +

�

Ω

j(x, ε(u)) dx
∣∣∣

u ∈ LD(Ω), γB(u) = 0 on Γ0

}
≥ inf

{
−L−div eσm(λr−λr)/λr, 0(u) + (λr − λr)(λr)−1

�

Ω

j(x, ε(u)) dx
∣∣∣

u ∈ LD(Ω), γB(u) = 0 on Γ
}

+ inf
{
−L−divσmλr/λr, λrg

(u)

+(λr)−1λr
�

Ω

j(x, ε(u)) dx
∣∣∣ u ∈ LD(Ω), γB(u) = 0 on Γ0

}
≥ −(λr − λr)(λr)−1

�

Ω

j∗(x, σ̃m) dx− (λr)−1λr
�

Ω

j∗(x,σm) dx

for allm ∈ N (in both cases). There existsm0 ∈ Nwith ‖σ̃m0‖L∞(Ω)n < r1 (cf.
Assumption 2). Then −

	
Ω j
∗(x, σ̃m0) dx≥−k dx(Ω) and −

	
Ω j
∗(x,σm0) dx

> −crm0
> −∞, where dx(Ω) is the Lebesgue measure of Ω.

Step 9. In view of Definition 1, j∞ ≥ j. Since inf{dPλr,je(u) | u ∈
LD(Ω)} > −∞, it follows that inf{dPλr,j∞e(u) | u ∈ LD(Ω)} > −∞ and
inf (P0,j)AL ≥ λr. In the case when λr > 0, the last part of the proposition
follows from the first part with λr replaced by (λr + λr)/2. If λr = 0, the
last part follows directly from Definition 1 and Assumption 2.

In view of Definition 1, Assumption 2 and the fact that Ω is bounded,
the following result holds.

Theorem 15 (see [3, Theorem 18]). Assume that u0 = 0 and λr satisfies
Assumption 4. If 0 ≤ λr < λr < inf (P0,j)AL, then the l.s.c. regularization of

(4.34) BD(Ω) 3 u 7→ dRPλr,je(u) = Fλr(u) +Gj(ε(u)) ∈ R ∪ {∞}
in the weak∗ BD(Ω) topology is BD(Ω) 3 u 7→ dRP ∗∗λr,je(u) ∈ R ∪ {+∞},
i.e., dRP ∗∗λr,je is the largest l.s.c. minorant less than (4.34).

Corollary 16. Let u0 = 0 on Γ0 and let λs be the supremum of all λr
satisfying Assumption 4. Then min(λs, inf (P0,j)AL)=min(λs, inf (RP ∗∗0,j)AL)
(cf. (3.1) and (3.2)).

Proof. Suppose min(λs, inf (P0,j)AL) > λ̂. We have inf (P0,j)AL ≥ λ̂ if
and only if inf{dPbλ,j∞e(u) | u ∈ BD(Ω)} ≥ 0. By Theorem 15, the l.s.c.
regularization of u 7→ dPbλ,j∞e(u) ∈ R ∪ {∞} in the weak∗ BD(Ω) topology
equals dRP ∗∗bλ,j∞e. Then inf{dRP ∗∗bλ,j∞e(u) | u ∈ BD(Ω)} ≥ 0. Therefore,

inf (RP ∗∗0,j)AL ≥ λ̂.
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5. The proof of regularity of displacement solutions. In this sec-
tion it is proved that every minimum of dRP ∗∗λ,je belongs to the space LD(Ω)
(if the criterion of regularity of displacements is satisfied, cf. Theorem 1). Be-
low u0 = 0 on Γ0. Moreover, it is not assumed that the set K(x) is bounded
for each x ∈ Ω.

The functional Bj,fλ : Y1(Ω)→ R ∪ {∞} is defined by

(5.1) Bj,fλ (ε(u)|Ω) ≡ −λ〈σL, (ε(u)|Ω,γ
I
B(u))〉2 − λ

�

Γ1

βB(σL)γIB(u) ds

+
�

Γ0

I{γIB(u)⊗sν =0}(−γ
I
B(u)⊗s ν) ds+

�

Ω

j(x, ε(u)) dx

if u|Ω ∈ LD(Ω) and u|Ω1−Ω = 0, and Bj,fλ (ε(u)|Ω) ≡ +∞ otherwise. By

(2.9) we have Bj,fλ (ε(u)|Ω) = Fλ(u|Ω) + Gj(ε(u|Ω)) if u|Ω ∈ LD(Ω) and
u|Ω1−Ω = 0. The extension Ỹ1(Ω) of Y1(Ω) is given by

(5.2)
Ỹ1(Ω) ≡ {(z,−γIB(u)⊗s ν) ∈ span(ε(BD(Ω)), L1(Ω,Ens ))×Y1(Ω)|FrΩ |

∃w ∈ L1(Ω,Ens ), ∃ũ ∈ BD(Ω) such that z = w dx+ ε(ũ)
and γIB(u)⊗s ν = γB(ũ)⊗s ν}

(cf. [4]). The bilinear form between Ỹ1(Ω) and Wn(Ω, div) is given by

(5.3) 〈(z,−γIB(u)⊗s ν), σ〉1 ≡
�

Ω

σ : z−
�

FrΩ

βB(σ) · γIB(u) ds

for σ ∈Wn(Ω, div) and (z,−γIB(u)⊗sν) ∈ Ỹ1(Ω). A net {Mt}t∈T ⊂ Ỹ1(Ω)
is convergent to M0 in σ(Ỹ1(Ω),Wn(Ω, div)) if 〈Mt,σ〉1 → 〈M0,σ〉1 for
all σ ∈Wn(Ω1,div). The extension of Bj,fλ on the space Ỹ1(Ω) is

(5.4) B̃j,fλ (z,−γB(u)⊗s ν)

≡ −λ〈(z,−γB(u)⊗s ν),σL〉1 − λ
�

Γ1

βB(σL)γB(u) ds

+
�

Γ0

I{γB(u)⊗sν = 0}(−γB(u)⊗s ν) ds+
�

Ω

j(x, z) dx

if z = wdx+ε(u)with (w,u) ∈ L1(Ω,Ens )×LD(Ω), and B̃j,fλ (z,−γB(u)⊗sν)
≡ +∞ otherwise.

Because of the duality between Y1(Ω) and Wn(Ω, div), we obtain

(5.5) (Bj,fλ )#(σ) ≡ sup{〈σ, (ε(u)|Ω,γ
I
B(u))〉2 − Bj,fλ (ε(u)|Ω) |

u ∈ BD(Ω1), u|Ω ∈ LD(Ω), u|Ω1−Ω = 0}
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for every σ ∈Wn(Ω, div), and

(5.6) (Bj,fλ )##(ε(u)|Ω)

≡ sup
σ

{ �

Ω

σ : ε(u)−
�

FrΩ

βB(σ) · γIB(u) ds− (Bj,fλ )#(σ)
∣∣∣ σ ∈ Wn(Ω, div)

}
for every u ∈ BD(Ω1) such that u|Ω1−Ω = 0.

Similarly, by the duality between Ỹ1(Ω) and Wn(Ω, div) we define func-
tionals (B̃j,fλ )# and (B̃j,fλ )## : Ỹ1(Ω)→ R ∪ {+∞} by

(5.7) (B̃j,fλ )#(σ) ≡ sup
{ �

Ω

σ : z dx−
�

FrΩ

βB(σ) · γB(u) ds

− B̃j,fλ (z,−γB(u)⊗s ν)
∣∣∣ z ∈ L1(Ω,Ens ), u ∈ LD(Ω)

}
for σ ∈Wn(Ω, div), and

(5.8) (B̃j,fλ )##(z,−γIB(u)⊗s ν)

≡ sup
{ �

Ω

σ : z−
�

FrΩ

βB(σ) · γIB(u) ds− (B̃j,fλ )#(σ)
∣∣∣ σ ∈ Wn(Ω, div)

}
.

Proposition 17. The explicit form of (B̃j,fλ )# is

(B̃j,fλ )#(σ) =
�

Ω

j∗(x,σ + λσL) dx(5.9)

+
�

Γ1

I{σ+λσL|βB(σ+λσL) =λg}(σ + λσL) ds

for every σ ∈Wn(Ω, div). If λL satisfies Assumption 5, then (B̃j,fλL)##(ε(u),

−γIB(u) ⊗s ν) = B̃j,fλL(ε(u),−γIB(u) ⊗s ν) for every u ∈ LD(Ω) such that
γIB(u) = 0 on Γ0.

Proof. By [15, Theorem 3A] and formulae (5.4), (5.7), we have

(5.10) (B̃j,fλ )#(σ) = sup
{ �

Ω

(σ + λσL) : z dx

−
�

FrΩ

βB(σ + λσL) · γB(u) ds+
�

Γ1

βB(λσL) · γB(u) ds

−
�

Γ0

I{γB(u)⊗sν = 0}(−γB(u)⊗s ν) ds−
�

Ω

j(x, z) dx
∣∣∣

z = w + ε(u), where w ∈ L1(Ω,Ens ) and u ∈ LD(Ω)
}
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= sup
{ �

Ω

(σ + λσL) : w dx−
�

Ω

j(x,w) dx
∣∣∣ w ∈ L1(Ω,Ens )

}
+ sup

{
−

�

FrΩ

βB(σ + λσL) · γB(u) ds+
�

Γ1

λg · γB(u) ds
∣∣∣

γB(u) ∈ L1(FrΩ)n and γB(u) = 0 on Γ0

}
,

which yields (5.9) for every σ ∈ Wn(Ω, div), because γB is a surjection on
L1(FrΩ)n.

The space Wn(Ω, div) is PCU-stable, so by [5, Theorem 1] we get, for
every u ∈ LD(Ω),

(5.11) (B̃j,fλL)##(ε(u),−γB(u)⊗s ν) = sup
{ �

Ω

(σ + λLσL) : ε(u) dx

−
�

Ω

j∗(x,σ + λLσL) dx−
�

Γ0

βB(σ + λLσL) · γB(u) ds

−
�

Γ1

βB(σ + λLσL) · γB(u) ds−
�

Γ1

I{βB(σ+λLσL) =λLg}(σ + λLσL) ds
∣∣∣

σ ∈Wn(Ω, div), βB(σ + λLσL)(x) ∈ K(x) · ν(x) for ds-a.e. x ∈ FrΩ
}

− λL
( �

Ω

σL : ε(u) dx−
�

FrΩ

βB(σL) · γB(u) ds
)

= −λL
( �

Ω

σL : ε(u) dx−
�

FrΩ

βB(σL) · γIB(u) ds+
�

Γ1

g · γIB(u) ds
)

+
�

Γ0

j∞(x,−γIB(u)⊗s ν) ds+
�

Ω

j(x, ε(u)) dx

(see [4, Proposition 25], [4, (7.60)] and formulae (2.5), (2.6)).

Lemma 18 (see [3, Lemma 6]). For every σ ∈ Wn(Ω, div) we have
(B̃j,fλ )#(σ) ≥ (Bj,fλ )#(σ) and for every M ∈ Y1(Ω) we have (B̃j,fλ )##(M) ≤
(Bj,fλ )##(M), since Y1(Ω) ⊂ Ỹ1(Ω).

Lemma 19 (cf. [3, Lemma 8]). If λL satisfies Assumption 5 then, for
every u ∈ LD(Ω) such that γIB(u)|Γ0

= 0, we have

(B̃j,fλL)##(ε(u),−γB(u)⊗s ν) = (Bj,fλL)##(ε(u),−γB(u)⊗s ν)(5.12)

= (Bj,fλL)(ε(u),−γB(u)⊗s ν).

Lemma 20 (see [3, Lemma 9]). For every σ ∈ Wn(Ω, div) and every
σs∈Wn(Ω, div) such that divσs=0, we have (Bj,fλ )#(σ)=(Bj,fλ )#(σ+σs).

If there exists r2 > 0 (r2 < +∞) such that for every x ∈ Ω, K(x) ⊂
BEns (0, r2), and if 0 ≤ λL < λr < inf (P0,j)AL and Assumption 4 holds, then,
by Proposition 14 and [4, Theorem 14], Assumptions 5 and 6 hold.
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Proposition 21. If Assumptions 5 and 6 hold, then inf{Bj,fλL(M) |M ∈
Y1(Ω)} = inf{B̃j,fλL(M) |M ∈ Ỹ1(Ω)}.

Proof. By formulae (5.7), (5.9), (3.3), [4, (6.7) and (6.8)] and Assump-
tion 5, we get

(5.13) sup{−B̃j,fλL(M)|M ∈ Ỹ1(Ω)} = (B̃j,fλL)#(0)

= −dP ∗λL,je(λLσL) = inf{−dP ∗λL,je(σ) | σ ∈Wn(Ω, div)}.

Moreover, by Assumption 6 and (5.1), we obtain

(5.14) inf{−dP ∗λL,je(σ) | σ ∈Wn(Ω, div)}

= sup{−dPλL, je(u) | u ∈ BD(Ω)} = sup{−Bj,fλL(M)|M ∈ Y1(Ω)}.

Let us recall that the l.s.c. regularization of the functional B in the topol-
ogy τ , denoted by clτ B, is the largest τ -l.s.c. minorant less than B.

Corollary 22. If Assumptions 5 and 6 hold, then, by Proposition 21,

inf{clσ(Y1(Ω),Wn(Ω,div)) Bj,fλL(M) |M ∈ Y1(Ω)}

= inf{cl
σ( eY1(Ω),Wn(Ω,div))

B̃j,fλL(M) |M ∈ Ỹ1(Ω)},

because 0 ∈Wn(Ω, div).

Consider the following problem:

(5.15) (P̃λ,j) find inf{B̃j,fλ (M) |M ∈ Ỹ1(Ω)}.

The limit analysis problem (P̃0,j)AL, defined in (3.7), is connected with
(P̃λ,j).

Definition 2. Suppose that U is a locally convex space, U∗ its topo-
logical dual, 〈·, ·〉U the bilinear pairing over U × U∗ and Φ a mapping of U
into R∪{∞}. If Φ(ψ) <∞ then we denote by ∂Φ(ψ) (where ψ ∈ U) the set

(5.16) {ψ∗ ∈ U∗ | ∀% ∈ U, 〈%− ψ,ψ∗〉U + Φ(ψ) ≤ Φ(%)}.

In the proof below, Assumptions 5, 6 and 7 hold.

Proof of Theorem 1. Step 1. Let ũ be a minimum of dRP ∗∗λL,je. By The-
orem 15 and formulae (2.9), (2.10), (3.4), (3.5), (3.6), (5.1), the functional
dRP ∗∗λL,je is the l.s.c. regularization of Bj,fλL in the weak∗ BD(Ω) topology.
Let ũ1 ∈ BD(Ω1) with ũ1|Ω = ũ and ũ1|Ω1−Ω = 0. Then

(5.17) clσ(Y1(Ω),Wn(Ω,div)) Bj,fλL(ε(ũ1)|Ω)

= inf{cl
σ( eY1(Ω),Wn(Ω,div))

B̃j,fλL(M) |M ∈ Ỹ1(Ω)}
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(cf. Corollary 22). For every M ∈ Y1(Ω) we have Bj,fλL(M) = B̃j,fλL(M), so for
every M ∈ Y1(Ω),

clσ(Y1(Ω),Wn(Ω,div)) Bj,fλL(M) ≥ cl
σ( eY1(Ω),Wn(Ω,div))

B̃j,fλL(M).

The restriction of the measure ε(ũ1)|Ω to the open set Ω is denoted by
ε(ũ1)|Ω. Because of (5.17) and Corollary 22, the point ε(ũ1)|Ω = (ε(ũ1)|Ω,

−γIB(ũ1)⊗sν)∈Ỹ1(Ω) is a minimum of the function cl
σ( eY1(Ω),Wn(Ω,div))

B̃j,fλL
on Ỹ1(Ω). By Definition 2 we get 0 ∈ ∂(cl

σ( eY1(Ω),Wn(Ω,div))
B̃j,fλL)(ε(ũ1)|Ω),

where 0 ∈ Wn(Ω, div). Then (ε(ũ1)|Ω) ∈ ∂(cl
σ( eY1(Ω),Wn(Ω,div))

B̃j,fλL)#(0)
(see [8, Chapter 1, Corollary 5.2]). By (5.7) we have ε(ũ1)|Ω = (ε(ũ1)|Ω,

−γIB(ũ1)⊗s ν) ∈ ∂(B̃j,fλL)#(0). Then by Definition 2 we get

(5.18) 〈(ε(ũ1)|Ω,−γIB(ũ1)⊗s ν),σ − 0〉1 + (B̃j,fλL)#(0) ≤ (B̃j,fλL)#(σ)

for every σ ∈Wn(Ω, div) (cf. (5.3) and (4.3)).

Step 2. If 0 < λ2 < inf (P̃0,j)AL then, by (3.7), (5.4) and Assumption 2,
we have inf{B̃j∞,fλ2

(M) |M ∈ Ỹ1(Ω)} = 0. Moreover, sup{−B̃j∞,fλ2
(M) |M ∈

Ỹ1(Ω)} = (B̃j∞,fλ2
)#(0). Therefore, (B̃j∞,fλ2

)#(0) = 0.

Step 3. There exists λ1 such that λL < λ1 < inf (P̃0,j)AL. By Step 2 we
have (B̃j∞,fλ1

)#(0) = 0. Then by (5.9), λ1σL(x) ∈ K(x) for dx-a.e. x ∈ Ω. By
(2.5) and Assumption 2 we get

(5.19) BEns

(
λLσL(x),

λ1 − λL
λ1

r1

)
⊂ K(x)

for dx-a.e. x ∈ Ω.

Step 4. Due to Assumption 3, Γ1 = FrΩ ∩ C, where C = cl int C ⊂ Ω1

is a closed Caccioppoli set and ds(FrΩ ∩ Fr C) = 0. Let OΓ0 = Ω1 − C.
Then ds(Γ0 − (FrΩ ∩ OΓ0)) = 0 and ds((FrΩ ∩ OΓ0) − Γ0) = 0. We define
Γ ′0 = FrΩ ∩OΓ0 . Then for every t ∈ N there exists an open set Ω′t such that
Ω′t ⊂ OΓ0 , Ω′t ⊂⊂ Ω1, dx(Ω′t) < 1/2t and {x ∈ Γ ′0 | γIB(ũ1)(x) 6= 0} ⊂ Ω′t
for ds-a.e. x ∈ FrΩ.

Step 5. Suppose the singular part (ε(ũ1)|Ω)s of the measure ε(ũ1)|Ω is
not 0 or ds({x ∈ Γ ′0 | γIB(ũ1)(x) 6= 0}) > 0. Then there exists ζ > 0 such
that ‖(ε(ũ1)|Ω)s‖Mb

+
	
Γ ′0
‖(γIB(ũ1)⊗s ν)(x)‖Ens ds > ζ. Therefore, for every

t ∈ N there exist open sets Ω′′t ⊂⊂ Ω and Ω0
t ≡ Ω′′t ∪ Ω′t ⊂⊂ Ω1 such

that the Lebesgue measure of Ω0
t (equal to dx(Ω0

t )) is less than 1/t and
‖(ε(ũ1)|Ω′′t )s‖Mb

+
	
Γ ′0
‖(γIB(ũ1) ⊗s ν)(x)‖Ens ds >

1
2ζ. The existence of the

sequence {Ω′′t }t∈N satisfying the above conditions follows from the regularity
of the measure ε(ũ1)|Ω.
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Then for every t ∈ N there exists ϕt ∈ C1
0 (Ω1,Ens ) such that ϕt|Ω1−Ω0

t

= 0,

(5.20) ‖ϕt(x)‖Ens <
λ1 − λL

2λ1
r1 ∀x ∈ Ω0

t ,

and

(5.21) 〈(ε(ũ1)|Ω,−γIB(ũ1)⊗s ν),ϕt|Ω〉1 >
1
4
ζ
λ1 − λL
2λ1n2

r1 ,

since ‖(ε(ũ1)|Ω′′t )s‖Mb
+
	
Γ ′0
‖(γIB(ũ1)⊗s ν)(x)‖Ens ds >

1
2ζ, and

(5.22) ‖ε(ũ1)|Ω0
t
‖Mb

= sup{〈ε(ũ1)|Ω0
t
, ϕ̃〉Mb × C(Ω0

t ,Ens )|

ϕ̃ ∈ C1
0 (Ω0

t ,Ens ) and ∀x ∈ Ω0
t , ∀i, j ∈ {1, . . . , n}, |ϕ̃ij(x)| ≤ 1}

(cf. definition of ‖ · ‖Ens in Section 2 and [4, (3.18)]).

Step 6. By Assumption 7 there exists δ > 0 such that

|(B̃j,fλL)#(ϕt|Ω)− (B̃j,fλL)#(0)| < δ
λ1 − λL

2λ1
r1dx(Ω0

t ∩Ω)(5.23)

< δ
λ1 − λL

2λ1
r1

1
t

for every t ∈ N, since ϕt(x) + λLσL(x) ∈ K(x) for dx-a.e. x ∈ Ω and
ϕt|Ω + λLσL ∈ L∞(Ω,Ens ) (cf. (5.20), (5.19)). By (5.18) we get

(5.24) 〈(ε(ũ1)|Ω,−γIB(ũ1)⊗s ν),ϕt|Ω〉1 ≤ |(B̃
j,f
λL

)#(ϕt|Ω)− (B̃j,fλL)#(0)|

for every t ∈ N. Then, due to (5.21) and (5.23), we have a contradiction,
because δ λ1−λL

2λ1
r1

1
t → 0 as t→∞.

Due to (3.7), we have proved the regularity result if the stress solution
belongs to the interior of the set of admissible stresses, dx-almost everywhere
on Ω.
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