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ON DISCRETE FOURIER ANALYSIS OF AMPLITUDE
AND PHASE MODULATED SIGNALS

Abstract. In this work the problem of characterization of the Discrete
Fourier Transform (DFT) spectrum of an original complex-valued signal
ot, t = 0, 1, . . . , n − 1, modulated by random fluctuations of its amplitude
and/or phase is investigated. It is assumed that the amplitude and/or phase
of the signal at discrete times of observation are distorted by realizations of
uncorrelated random variables or randomly permuted sequences of complex
numbers. We derive the expected values and bounds on the variances of such
distorted signal DFT spectra. It is shown that the modulation considered in
general entails changes in the amplitude and/or phase of the DFT spectra
expected values, which together with imposed random deviations with finite
variances can vary the amplitudes of peaks existing in the original signal
spectrum, and consequently similarity to the original signal spectrum can
be significantly blurred.

1. Introduction. The Discrete Fourier Transform (DFT) based peri-
odogram is a widely used tool for analyzing time series that can be de-
composed as a sum of monochromatic oscillations plus noise. Important ap-
plications of the periodogram include detection of hidden periodicities and
estimation of unknown oscillation parameters (amplitude and frequency).
Periodogram analysis often yields satisfactory results [3]. For example, it is
well known that very accurate frequency estimates of the sinusoidal compo-
nents can be obtained from the local maxima of a periodogram [20].

If the time series of complex-valued signal observations at discrete equi-
distant times xt, t = 0, 1, . . . , n − 1, is available, then its Discrete Fourier
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Transform is computed as follows [9]:

(1) x̃ν =
1
n

n−1∑
t=0

xt exp(−i2πνt/n)

for ν = 0, 1, . . . , n−1 and integer n > 0. As mentioned earlier it can be used
to calculate the values of the periodogram

In(λ) =
∣∣∣∣ 1√
n

n−1∑
t=0

xt exp(−iλt)
∣∣∣∣2, λ ∈ [−π, π],

at the discrete frequencies λν = 2πν/n, ν = 0, 1, . . . , n− 1.
Frequently, the well-known Fast Fourier Transform procedures are used

to perform the relevant calculations [6], [15], [16]. Theoretical as well as
numerical properties of the DFT are described in time series analysis text-
books [2], [4], [5], [11]. Certain statistical properties of spectrum estimation
using the DFT are investigated in the works of Foster [7], [8], and some
other aspects like periodogram smoothing are considered in [17].

The present work deals with the problem of applicability of this tech-
nique to spectrum estimation of signals which are subject to random or
pseudo-random amplitude and/or phase modulation. The investigation of
this problem is justified by the fact that all signals that are normally called
“periodic” have some amplitude and phase variation from period to period.
For example an active sonar system transmits a periodic pulse train to de-
tect targets. The received pulses are not perfectly periodic due to random
modulation of the pulses from scattering and attenuation [10]. Also geophys-
ical signals related to El Niño phenomena are recognized as amplitude and
phase modulated [1].

The concept of random and pseudo-random modulation modeling is de-
scribed in Section 2. Theoretical results relating to the modulated signal
DFT spectrum are presented both in the case of a noiseless signal (Sec-
tion 3) and in the case of signal observations corrupted by uncorrelated
random errors (Section 4).

2. Modulation modeling. Let us consider a finite duration time series
of complex-valued signal measurements ot at discrete equidistant times t =
0, 1, . . . , n− 1. We assume that the analyzed signal is of deterministic char-
acter and involves some regular oscillations. Such a signal can be represented
for example by a sum of monochromatic oscillations

∑K
k=1Ak exp(iωkt

+ iΦk), t = 0, 1, . . . , n − 1, with constant frequencies ωk, amplitudes Ak,
and phases Φk, k = 1, . . . ,K.

Now, let us assume that the amplitude and phase of the signal values at
the observation times are distorted by fluctuations at and φt, respectively,
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according to the model

(2) vt = at exp(iφt)ot = utot,

where ut = at exp(iφt), t = 0, 1, . . . , n−1. Hence, we deal with an amplitude
and phase modulated signal.

For example, let us assume that φt and at, t = 0, 1, . . . , n−1, are realiza-
tions of independent identically distributed random variables, and amplitude
distortions are independent of phase distortions. Let the distribution of φt
be uniform on the interval (−Φ,Φ), i.e. φt ∼ U(−Φ,Φ), where 0 < Φ ≤ π,
which gives immediately

mφ = Eφ exp(iφt) =
1

2Φ

Φ�

−Φ
exp(ix) dx =

sin(Φ)
Φ

,

σ2
φ = Eφ|exp(iφt)−mφ|2 = Eφ|exp(iφt)|2 − |mφ|2 = 1−m2

φ.

Clearly, 0 ≤ mφ < 1, and mφ = 0 only for Φ = π, so we also have 0 < σ2
φ ≤ 1.

About the distribution of the real-valued random variables at we assume
that Eaat = 1 and Ea|at − Eaat|2 = σ2

a ≥ 0 (if σa = 0 there is only phase
modulation of the signal), which further implies, for ut = at exp(iφt),

mu = EaEφat exp(iφt) = EaatEφ exp(iφ) = mφ,

σ2
u = EaEφ|at exp(iφt)−mu|2

= Ea|at|2Eφ|exp(iφt)|2 − |mu|2 = 1 + σ2
a −m2

φ,

and obviously σ2
a < σ2

u ≤ 1+σ2
a. For instance, at can be uniformly distributed

on the interval (1−A, 1 +A), where A > 0, and then σ2
a = A2/3.

Next, we will consider the case of pseudo-random modulation, where
ut = zσ(t), t = 0, 1, . . . , n − 1, represent some permutation σ of the finite
sequence of complex numbers zj = %j exp(iϕj), where %j ≥ 0, ϕj ∈ [0, 2π),
j = 0, 1, . . . , n− 1. This case corresponds to the situation when the possible
modulation series values are known but we do not know the order of their
occurrence in time. It is assumed here that the permutation σ is drawn by
simple random sampling with equal selection probabilities 1/n! from the set
of all permutations of {0, 1, . . . , n− 1}.

According to our modulation model (2) we have to analyze the DFT
spectrum of the signals of the form vt = utot, t = 0, 1, . . . , n − 1, modu-
lated by a time series of complex numbers ut which represent realizations
of complex-valued random variables. Indeed, the case of ut = exp(iφt) cor-
responds to phase modulation, the case of ut = at exp(iφt) to phase and
amplitude modulation, and the case of real-valued modulation series ut = at
to amplitude modulation.
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In order to compute the DFT of the modulated signals of the form
vt = utot, t = 0, 1, . . . , n − 1, we apply the well-known circular convolu-
tion formula [9]:

ṽν =
∑

j+k=νmodn

ũj õk =
∑

j+k=ν or
j+k=n+ν

ũj õk(3)

=
ν∑
j=0

ũj õν−j +
n−1∑
j=ν+1

ũj õn+ν−j

for ν = 0, 1, . . . , n−1. Hence, if we want to analyze the DFT of the modulated
signal ṽν , it is necessary to characterize the statistical properties of the
modulating series DFT ũν , ν = 0, 1, . . . , n − 1. Such a characterization is
given in the following two lemmas.

In Lemma 2.1 the DFT spectrum of a finite sample od uncorrelated
random variables with identical first and second moments is characterized.

Lemma 2.1. If complex-valued random variables Zt, t = 0, 1, . . . , n− 1,
are uncorrelated, and their mean values and variances satisfy the conditions
EzZt = mz and Ez|Zt −mz|2 = σ2

z <∞, then for ν, µ = 0, 1, . . . , n− 1,

EzZ̃ν = mzδ0ν and Ez(Z̃ν − EzZ̃ν)(Z̃µ − EzZ̃µ) =
1
n
σ2
zδνµ,

where δνµ denotes the Kronecker delta.

Proof. Since for any integer k 6= 0,±n,±2n, . . . , we have

(4)
n−1∑
t=0

exp(i2πkt/n) =
1− exp(i2πk)

1− exp(i2πk/n)
= 0,

the assumptions of the lemma yield for ν = 0, 1, . . . , n− 1,

EzZ̃ν =
mz

n

n−1∑
t=0

exp(−i2πνt/n) = mzδ0ν .

The assumed zero correlation of the random variables Zt, t = 0, 1, . . . , n−1,
together with equality (4) imply, for ν, µ = 0, 1, . . . , n− 1,

Ez(Z̃ν − EzZ̃ν)(Z̃µ − EzZ̃µ)

=
1
n2
Ez

n−1∑
t=0

(Zt − EzZt) exp(−i2πνt/n)
n−1∑
s=0

(Zs − EzZs) exp(i2πµs/n)
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=
1
n2

n−1∑
t=0

n−1∑
s=0

Ez(Zt − EzZt)(Zs − EzZs) exp(−i2π(νt− µs)/n)

=
1
n2

n−1∑
t=0

σ2
z exp(−i2π(ν − µ)t/n) =

1
n
σ2
zδνµ.

The assertion on the covariance structure of Z̃ν , ν = 0, 1, . . . , n − 1,
becomes more understandable if we notice that for λν = 2πν/n, ν =
0, 1, . . . , n − 1, the vectors eν = n−1/2(1, exp(iλν), . . . , exp(iλν(n − 1)))T

form an orthonormal basis in Cn.
In order to analyze the case of modulation by a permuted finite sequence

of complex numbers we need the following lemma.

Lemma 2.2. Let zj, j = 0, 1, . . . , n − 1, be complex numbers and let
σ be a randomly selected permutation of {0, 1, . . . , n − 1}, with selection
probability 1/n!. If ct = zσ(t), t = 0, 1, . . . , n−1, then for ν = 0, 1, . . . , n−1,

Eσ c̃ν = mnδν0, where mn =
1
n

n−1∑
j=0

zj ,

Varσ(c̃ν) =
Vn
n− 1

(1− δν0), where Vn =
1
n

n−1∑
j=0

|zj −mn|2,

Covσ(c̃ν , c̃µ) = 0 for ν 6= µ, ν, µ = 0, 1, . . . , n− 1.

Proof. First, let us note that according to the well-known formula for
the expectation of a random variable,

Eσct =
n−1∑
j=0

P (σ(t) = j)E(zσ(t) |σ(t) = j) =
1
n

n−1∑
j=0

zj = mn

for t = 0, 1, . . . , n− 1, and consequently by definition (1) and (4) we have

Eσ c̃ν =
mn

n

n−1∑
t=0

exp(−i2πνt/n) = mnδν0

for ν = 0, 1, . . . , n− 1. Further, since

Eσ|ct|2 =
n−1∑
j=0

P (σ(t) = j)E(|zσ(t)|2 |σ(t) = j) =
1
n

n−1∑
j=0

|zj |2

we have

(5) Varσ(ct) = Eσ|ct|2 − |Eσct|2 =
1
n

n−1∑
j=0

|zj |2 − |mn|2 = Vn

for t = 0, 1, . . . , n− 1. Furthermore,
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Eσctcs =
n−1∑
j,k=0
j 6=k

P (σ(t) = j, σ(s) = k)E(zσ(t)zσ(s) |σ(t) = j, σ(s) = k)

=
1

n(n− 1)

n−1∑
j,k=0
j 6=k

zjzk =
1

n(n− 1)

n−1∑
j=0

zj(nmn − zj)

=
1

n(n− 1)

[
n2|mn|2 −

n−1∑
j=0

|zj |2
]
,

which gives

Covσ(ct, cs) = Eσ(ct − Eσct)(cs − Eσcs) = Eσctcs − EσctEσcs

=
1

n(n− 1)

[
n2|mn|2 −

n−1∑
j=0

|zj |2
]
− |mn|2 =

1
(n− 1)

[
|mn|2 −

1
n

n−1∑
j=0

|zj |2
]
,

and finally

(6) Covσ(ct, cs) = −Vn/(n− 1) for s 6= t, s, t = 0, 1, . . . , n− 1.

Moreover, for any permutation σ,

c̃0 =
1
n

n−1∑
t=0

ct =
1
n

n−1∑
t=0

zσ(t) =
1
n

n−1∑
j=0

zj = mn,

which immediately yields c̃0 = Eσ c̃0, Varσ(c̃0) = 0, and Covσ(c̃ν , c̃0) = 0 for
ν = 1, . . . , n− 1. In view of the equalities (5), (6) and (4) we easily obtain,
for ν, µ = 1, . . . , n− 1,

Covσ(c̃ν , c̃µ)

=
1
n2
Eσ

n−1∑
t=0

(ct − Eσct) exp(−i2πνt/n)
n−1∑
s=0

(cs − Eσcs) exp(i2πµs/n)

=
1
n2

n−1∑
t=0

n−1∑
s=0

Eσ(ct − Eσct)(cs − Eσcs) exp(−i2πνt/n) exp(i2πµs/n)

=
Vn
n2

n−1∑
t=0

exp(−i2π(ν − µ)t/n) +
Vn

n2(n− 1)

n−1∑
t=0

exp(−i2π(ν − µ)t/n)

− Vn
n2(n− 1)

n−1∑
t=0

n−1∑
s=0

exp(−i2πνt/n) exp(i2πµs/n)

=
Vn
n

(
1 +

1
n− 1

)
δνµ −

Vn
n2(n− 1)

n−1∑
t=0

exp(−i2πνt/n)
n−1∑
s=0

exp(i2πµs/n)

=
Vn
n− 1

δνµ.
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It follows from the proof of the above lemma that this time the modu-
lating random variables ct = zσ(t), t = 0, 1, . . . , n − 1, have identical mean
values and variances but are correlated.

3. Modulated signal spectra. Formula (3) together with Lemmas
2.1 or 2.2 allow us to characterize the DFT spectra corresponding to the
modulation models considered. Namely, in the lemmas and corollaries be-
low we derive formulae for the mean values and variances of the random
variables ṽν , ν = 0, 1, . . . , n− 1. In the proofs we use the equality (see [9])

(7)
n−1∑
ν=0

|õν |2 =
1
n

n−1∑
t=0

|ot|2.

The corollaries concern the case of bounded signals ot, t = 0, 1, . . . , n − 1,
and bounded modulation sequences zj , j = 0, 1, . . . , n− 1.

Lemma 3.1. Under the assumptions of Lemma 2.1 the DFT of the finite
time series rt = Ztot, t = 0, 1, . . . , n− 1, satisfies, for ν = 0, 1, . . . , n− 1,

Ez r̃ν = mz õν and Ez|r̃ν − Ez r̃ν |2 =
σ2
z

n2

n−1∑
t=0

|ot|2.

Proof. By (3) the first assertion of Lemma 2.1 yields Ez r̃ν = mz õν for
ν = 0, 1, . . . , n− 1. By the same formula

r̃ν − Ez r̃ν =
ν∑
j=0

(Z̃j − EzZ̃j)õν−j +
n−1∑
j=ν+1

(Z̃j − EzZ̃j)õn+ν−j

and the second assertion of Lemma 2.1 implies

Ez|r̃ν − Ez r̃ν |2 =
σ2
z

n

[ ν∑
j=0

|õν−j |2 +
n−1∑
j=ν+1

|õn+ν−j |2
]

=
σ2
z

n

n−1∑
µ=0

|õµ|2

for ν = 0, 1, . . . , n− 1, which together with (7) completes the proof.

Corollary 3.1. If |ot| ≤ B < ∞, t = 0, 1, . . . , n − 1, and the assump-
tions of Lemma 2.1 hold, then the DFT of the finite time series rt = Ztot,
t = 0, 1, . . . , n− 1, satisfies, for ν = 0, 1, . . . , n− 1,

Ez|r̃ν − Ez r̃ν |2 ≤
σ2
zB

2

n
.

Lemma 3.2. Under the assumptions of Lemma 2.2 the DFT of the finite
time series st = zσ(t)ot, t = 0, 1, . . . , n− 1, satisfies, for ν = 0, 1, . . . , n− 1,
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Eσ s̃ν = mnõν , where mn =
1
n

n−1∑
j=0

zj ,

Eσ|s̃ν − Eσ s̃ν |2 ≤
Vn
n− 1

1
n

n−1∑
t=0

|ot|2, where Vn =
1
n

n−1∑
j=0

|zj −mn|2.

Proof. As in the proof of the previous lemma, equality (3) and the as-
sertions of Lemma 2.2 ensure that Eσ s̃ν = mnõν and

Eσ|s̃ν − Eσ s̃ν |2 =
Vn
n− 1

n−1∑
µ=0
µ6=ν

|õµ|2

for ν = 0, 1, . . . , n− 1, and the proof is complete in view of (7).

Corollary 3.2. If |ot| ≤ B < ∞, t = 0, 1, . . . , n − 1, and the assump-
tions of Lemma 2.2 hold, then the DFT of the finite time series st = zσ(t)ot,
t = 0, 1, . . . , n− 1, satisfies, for ν = 0, 1, . . . , n− 1,

Eσ|s̃ν − Eσ s̃ν |2 ≤
VnB

2

n− 1
, where Vn =

1
n

n−1∑
j=0

|zj −mn|2.

Bounded signals |ot| ≤ B < ∞, t = 0, 1, . . . , n − 1, are of course of
primary interest in this work since we intend to investigate spectra of regular
oscillations of stationary character, modulated by random amplitude and
phase fluctuations. Moreover, boundedness of the modulating sequence zj ,
j = 0, 1, . . . , n − 1, ensures that Vn/(n − 1) → 0 as n → ∞. This will
hold for the phase modulating sequences zj = exp(iϕj), j = 0, 1, . . . , n− 1.
However, the simple example of the amplitude modulating sequence zj = 2j ,
j = 0, 1, . . . , n − 1, for which Vn ∼ 3−14n/n, shows that for unbounded
modulating sequences we may have Vn/(n − 1) → ∞, and then our bound
on spectrum variances in Corollary 3.2 is not useful. Hence, we formulate
the relevant corollary.

Corollary 3.3. If |ot| ≤ B < ∞, t = 0, 1, . . . , n − 1, and |zj | ≤ C
<∞, j = 0, 1, . . . , n− 1, and the assumptions of Lemma 2.2 hold, then the
DFT of the finite time series st = zσ(t)ot, t = 0, 1, . . . , n − 1, satisfies, for
ν = 0, 1, . . . , n− 1,

Eσ|s̃ν − Eσ s̃ν |2 ≤
C2B2

n− 1
.

Lemmas 3.1 and 3.2 show that modulation according to our models can
make both the amplitudes and phases of the modulated signal spectrum
mean values Ez r̃ν or Eσ s̃ν , ν = 0, 1, . . . , n − 1, differ from the amplitudes
and phases of the original signal spectrum õν , ν = 0, 1, . . . , n−1. The ampli-
tudes of all spectrum mean values are multiplied by the constant factor |mz|
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or |mn|, and their phases are changed by the constant additive distortion
φz or Φn, where mz = |mz| exp(iφz) or mn = |mn| exp(iΦn), respectively.
Phase distortion does not occur if mz or mn are real-valued as in the exam-
ple described in the introduction or if zj = %j ≥ 0, j = 0, 1, . . . , n− 1. Such
changes of the amplitudes and phases of the spectrum values are clearly
of non-random character. However, there are also random effects of mod-
ulation which are characterized by variances of the random variables r̃ν ,
ν = 0, 1, . . . , n − 1. If the modulating series Zt, t = 0, 1, . . . , n − 1, in-
volves realizations of uncorrelated random variables with identical mean
values and variances, then according to Corollary 3.1 the variances Varz(r̃ν),
ν = 0, 1, . . . , n−1, decrease uniformly to zero as n→∞, whenever the orig-
inal signal ot, t = 0, 1, . . . , n − 1, is bounded. According to Corollary 3.3
the same property holds also in the case of a bounded modulating sequence
zj , j = 0, 1, . . . , n − 1, and bounded signals ot, t = 0, 1, . . . , n − 1. Conse-
quently in the two cases considered, the influence of the random distortions
r̃ν − Ez r̃ν or s̃ν − Eσ s̃ν , ν = 0, 1, . . . , n − 1, on the modulated signal spec-
trum diminishes asymptotically as n → ∞. This means that they will not
blur completely the discrete spectrum mean values on which they are super-
imposed. Some small peaks present in the original signal spectrum can be
smoothed due to amplitude and phase modulation but possibly larger ones
will be still distinguishable.

Hence, any peaks present in the amplitude spectrum of the original
bounded signal |õν |, ν = 0, 1, . . . , n − 1, may be less distinguishable in the
modulated signal amplitude spectrum |r̃ν | or |s̃ν |, ν = 0, 1, . . . , n − 1, es-
pecially when |mz| < 1 or |mn| < 1, respectively. In the extreme case of
mz = 0 or mn = 0 we have Ez r̃ν = 0 or Eσ s̃ν = 0, ν = 0, 1, . . . , n − 1,
and then the modulated signal spectrum will have purely stochastic charac-
ter without any frequencies distinguished, so that any peaks present in the
original signal spectrum will be completely blurred. For a bounded modu-
lation sequence zj , j = 0, 1, . . . , n− 1, and bounded signals ot, t = 0, 1, . . . ,
n − 1, this extreme effect can be asymptotically approached if mn → 0
as n → ∞. This can occur if zj = exp(iϕj), j = 0, 1, . . . , n − 1, and the
infinite sequence ϕj , j = 0, 1, . . . , is uniformly distributed in the interval
[0, 2π] [18].

4. Spectra of modulated noisy signal. Assume now that the time
series of the original signal values ot, t = 0, 1, . . . , n − 1, is corrupted by
random observation errors, according to the model

(8) yt = ot + ηt, t = 0, 1, . . . , n− 1,

where ηt are realizations of uncorrelated complex-valued random variables
having zero mean Eηηt = 0 and finite second moment σ2

η = Eη|ηt|2 <∞.
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Let us see what happens if the corrupted signal values are submitted
to random or pseudo-random modulation of the same kind as above, i.e.
vt = utyt, t = 0, 1, . . . , n−1. In what follows we assume that the observation
errors ηt, t = 0, 1, . . . , n−1, are independent of the random variables forming
the modulation series ut, t = 0, 1, . . . , n − 1. We can prove the following
lemmas and corollaries.

Lemma 4.1. Under the assumptions of Lemma 2.1 the DFT of the finite
time series rt = Ztyt, t = 0, 1, . . . , n− 1, satisfies, for ν = 0, 1, . . . , n− 1,

EηEz r̃ν = mz õν , EηEz|r̃ν − EηEz r̃ν |2 =
σ2
z

n2

n−1∑
t=0

|ot|2 +
(σ2
z + |mz|2)σ2

η

n
.

Proof. Since the assertions of Lemmas 2.1 hold, Lemma 3.1 ensures that
Ez r̃ν = mz ỹν and by (8) and Lemma 2.1 applied to the observation errors
ηt, t = 0, 1, . . . , n − 1, we have EηEz r̃ν = mzEη(õν + η̃ν) = mz õν for ν =
0, 1, . . . , n− 1. Furthermore,

Ez|r̃ν − Ez r̃ν |2 =
σ2
z

n2

n−1∑
t=0

|yt|2

for ν = 0, 1, . . . , n− 1, and simple calculation shows that

Ez|r̃ν − EηEz r̃ν |2 = Ez|r̃ν − Ez r̃ν + Ez r̃ν − EηEz r̃ν |2

= Ez|r̃ν − Ez r̃ν |2 + |Ez r̃ν − EηEz r̃ν |2

= Ez|r̃ν − Ez r̃ν |2 + |mz(ỹν − õν)|2.

Hence, the above equalities together with (8) and Lemma 2.1 imply

EηEz|r̃ν − EηEz r̃ν |2 =
σ2
z

n2

n−1∑
t=0

Eη|ot + ηt|2 + Eη|mz η̃ν |2

=
σ2
z

n2

n−1∑
t=0

[|ot|2 + Eη|ηt|2] +
|mz|2σ2

η

n

for ν = 0, 1, . . . , n− 1, which completes the proof.

Lemma 4.2. Under the assumptions of Lemma 2.2 the DFT of the finite
time series st = zσ(t)yt, t = 0, 1, . . . , n− 1, satisfies, for ν = 0, 1, . . . , n− 1,

EηEσ s̃ν = mnõν , where mn =
1
n

n−1∑
j=0

zj ,

EηEσ|s̃ν − EηEσ s̃ν |2 ≤
Vn
n− 1

1
n

n−1∑
t=0

|ot|2 + σ2
η

(
Vn
n− 1

+
|mn|2

n

)
,
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where

Vn =
1
n

n−1∑
j=0

|zj −mn|2.

Proof. The proof is analogous to the proof of Lemma 4.1 except that it
is now based on Lemmas 2.2 and 3.2.

From Lemmas 4.1 and 4.2 we can easily deduce corollaries analogous to
3.1–3.3 for the case of bounded signals ot, t = 0, 1, . . . , n− 1, and bounded
modulation sequences zj , j = 0, 1, . . . , n− 1, respectively. Thus, we see that
the presence of zero-mean uncorrelated errors corrupting the original signal
values does not change the character of the DFT spectrum of the modulated
series. Indeed, the formulae for the spectrum mean values remain the same
as in the case of errorless signal modulation, and the spectrum variances
in Lemmas 4.1 and 4.2 differ from those of Lemmas 3.1 and 3.2 by the
relevant additive terms which occur because of non-zero second moment of
the observation errors. This means that our earlier assertions concerning
the behaviour of the modulated signal spectrum hold also in the case of a
bounded signal corrupted by uncorrelated random errors which have zero
mean and identical finite second moment.

5. Conclusions. The properties of the DFT spectrum examined in this
work are helpful in understanding the possible changes such a spectrum
undergoes in the case of random amplitude and/or phase modulation of
the original signal. Our modulation model includes distortions of stochas-
tic nature in the amplitudes and/or phases of the original signal values at
observation times. For bounded signals of deterministic character (like a
sum of monochromatic oscillations with constant amplitudes and phases) it
is proved that occurrence of random or pseudo-random amplitude and/or
phase modulation of the signal can completely change the character of its
DFT spectrum. Namely, the amplitude and/or phase modulated signal spec-
trum may have a purely stochastic character. On the other hand it is also
shown that in certain cases the modulated bounded signal spectrum can
still resemble the spectrum of the original signal, although small peaks can
be significantly smoothed. Similar conclusions are deduced also in the case
of a deterministic signal which is corrupted at the times of observation by
uncorrelated random errors with zero mean and finite second moment. Since
the DFT is linear, the results obtained also help to understand the influence
of modulating a particular component on the spectrum of a signal which
is a sum of several modulated components (e.g. modulated monochromatic
oscillations).

It is worth remarking that our conclusions complete the observations of
Ni and Huo [13], concerning importance of phase and amplitude information
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in signal and image reconstruction. The concept of phase randomization used
to obtain multivariate surrogate time series [12] with distribution similar to
the series being observed is also related to the subject considered here.

Hinich [10] used a similar approach to amplitude modulation modeling to
derive statistics for detecting randomly modulated pulses in noise. Detection
of random amplitude modulation is also the subject of [14]. The Singular
Spectrum Analysis (SSA) method has an important property, first noted
by Vautard and Ghil [19], that it may be used directly to identify modu-
lated oscillations in the presence of noise. Allen and Robertson [1] proposed
a generalization of the “Monte Carlo SSA” algorithm which allows for objec-
tive testing for the presence of modulated oscillations at low signal-to-noise
ratios in multivariate data.
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