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STOCHASTIC COMPARISONS OF MOMENT ESTIMATORS
OF GAMMA DISTRIBUTION PARAMETERS

Abstract. Recently the order preserving property of estimators has been
intensively studied, e.g. by Gan and Balakrishnan and collaborators. In this
paper we prove the stochastic monotonicity of moment estimators of gamma
distribution parameters using the standard coupling method and majoriza-
tion theory. We also give some properties of the moment estimator of the
shape parameter and derive an approximate confidence interval for this pa-
rameter.

1. Introduction and preliminaries. Suppose that X = (X1, . . . , Xn)
is a sample from the gamma distribution with density

f(x;α, λ) =
1

Γ (α)λα
xα−1 exp(−x/λ), x > 0, λ > 0, α > 0.

The gamma distribution is one of the most popular distributions that
arise in reliability and statistics and the problem of estimating its param-
eters is important. In this case the likelihood equation does not have an
explicit solution and numerical methods have to be used to compute maxi-
mum likelihood estimators. On the other hand the method of moments gives
very simple estimators.

It is well known that E(X1) = αλ and Var(X1) = αλ2. Moment estima-
tors of the parameters α and λ are

(1.1) α̂ =
X̄2

S2
and λ̂ =

S2

X̄
,

where X̄ and S2 are the sample mean and the sample biased variance re-
spectively.
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For completeness we recall some definitions of stochastic orders (see
Shaked and Shanthikumar [10]).

Let X and Y be two random variables, and F and G their respective
probability distribution functions. We say that X is stochastically smaller
than Y (X ≤st Y ) if F (x) ≥ G(x) for every x. We say that the family
{X(θ) : θ ∈ Θ ⊂ R} of random variables is stochastically increasing in θ if
X(θ1) ≤st X(θ2) whenever θ1 < θ2. The estimator γ̂ of the function γ(θ),
θ ∈ Θ, is said to be stochastically increasing in θ if the family of distributions
of γ̂ is stochastically increasing in θ. Let F−1 and G−1 be quantile functions
of F and G respectively. We say that X is less dispersed than Y (denoted
X ≤disp Y ) if G−1(α) − F−1(α) is an increasing function of α ∈ (0, 1).
It is well known that if X ≤disp Y then Var(X) ≤ Var(Y ) provided that the
variances exist. Also if X and Y are such that their supports have a common
finite left endpoint, then X ≤disp Y implies X ≤st Y .

Analogously, we say that the family {X(θ) : θ ∈ Θ ⊂ R} of random vari-
ables is dispersively increasing in θ if X(θ1) ≤disp X(θ2) whenever θ1 < θ2,
and the estimator γ̂ is dispersively increasing in θ if the family of distribu-
tions of this estimator is dispersively increasing in θ.

Now suppose that X and Y are nonnegative random variables. We say
that X is smaller than Y in the convex transform order (denoted X ≤c Y )
if G−1F is convex on the support of F .

It is easy to prove that the family of gamma distributions is stochastically
increasing with respect to both parameters, α and λ. If X and Y have the
gamma distributions G(1, α1) and G(1, α2) respectively, where α1 < α2, then
X ≥c Y (see van Zwet [11]) and also X ≤disp Y (see Shaked [9]).

A vector x = (x1, . . . , xn) is said to be smaller in the majorization order
than the vector y = (y1, . . . , yn), or x is majorized by y (denoted x ≺ y) if∑n

i=1 xi =
∑n

i=1 yi and if
∑j

i=1 x(i) ≥
∑j

i=1 y(i) for j = 1, . . . , n − 1, where
x(i) (resp. y(i)) is the ith smallest element of x (resp. y), i = 1, . . . , n.

We recall a classical result of mathematical analysis.

Theorem 1.1. x is majorized by y if and only if
n∑
i=1

φ(xi) ≤
n∑
i=1

φ(yi)

for all convex functions φ : R→ R.

We refer to Marshall and Olkin [7] for comprehensive details on the theory
of majorization.

One of the most useful and simplest methods of proving stochastic mono-
tonicity is the coupling method (see Lindvall [6]), described in the following
lemma.
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Lemma 1.2.

(a) If X ≤st Y then there exists a random variable Z =st X such that
Z ≤ Y pointwise.

(b) If X =st Z and Z ≤ Y pointwise, then X ≤st Y .

The following lemma may be easily proved using the coupling method.

Lemma 1.3. Let X, Y , Z be nonnegative random variables such that
X ≤st Y and Z is independent of X and Y . Then X · Z ≤st Y · Z.

2. Results. In this section we prove the stochastic monotonicity of mo-
ment estimators given by (1.1). We also discuss the problem of dispersive
ordering of the estimator 1/α̂.

Theorem 2.1. The estimator λ̂ is stochastically increasing in λ.

Proof. Let X = (X1, . . . , Xn) be a sample from the gamma distribution
G(λ1, α) and similarly Y = (Y1, . . . , Yn) be a sample from the gamma distri-
bution G(λ2, α), where λ1 < λ2. Assume that the random vectors X and Y

are independent. We show that λ̂1 ≤st λ̂2, where

λ̂1 =
S2
X

X̄
and λ̂2 =

S2
Y

Ȳ
.

For fixed α the sample mean X̄ is a complete sufficient statistic for λ and
S2
X/X̄

2 is an ancillary statistic for λ, hence by the Basu theorem (see e.g.
Lehmann and Casella [5, p. 42]) they are independent random variables.
From the assumptions it also follows that X̄ ≤st Ȳ . Using Lemma 1.3 we
have

λ̂1 =
S2
X

X̄
=
S2
X

X̄2
· X̄ ≤st

S2
X

X̄2
· Ȳ =st

S2
Y

Ȳ 2
· Ȳ =

S2
Y

Ȳ
= λ̂2.

The above stochastic equivalence holds since S2
X/X̄

2 is an ancillary statistic
for λ, and S2

Y /Ȳ
2 and Ȳ are independent.

Similarly we can formulate the next theorem about the moment estimator
for α.

Theorem 2.2. The estimator α̂ is stochastically increasing in α.

Proof. We use the coupling method. Assume that X = (X1, . . . , Xn) is a
sample from the gamma distribution G(λ, α1) and similarly Y = (Y1, . . . , Yn)
is a sample from the gamma distribution G(λ, α2), where α1 < α2. Without
loss of generality we can assume that λ = 1. Let F and G denote the distri-
bution functions of G(1, α1) and G(1, α2) respectively. Equivalently we prove
that ∑n

i=1X
2
i

(
∑n

i=1Xi)2
≥st

∑n
i=1 Y

2
i

(
∑n

i=1 Yi)
2
.
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Observe that ∑n
i=1X

2
i

(
∑n

i=1Xi)2
=

n∑
i=1

[
X(i)

X(1) + · · ·+X(n)

]2
,

where X(1) ≤ · · · ≤ X(n) are the order statistics of X. It is well known that

Y∗ = (Y(1), . . . , Y(n)) =st (G−1F (X(1)), . . . , G
−1F (X(n))),

whereY∗ is the vector of the order statistics ofY. Since the family of gamma
distributions is stochastically increasing in α, i.e. F ≤st G, the following
inequalities hold pointwise:

X(1) ≤ G−1F (X(1)), . . . , X(n) ≤ G−1F (X(n))

and ∑n
i=1 Y

2
i

(
∑n

i=1 Yi)
2

=st

n∑
i=1

[
Z(i)∑n
j=1 Z(j)

]2
,

where Z(i) = G−1F (X(i)), i = 1, . . . , n.
As F >c G, we know that G−1F (x)/x is decreasing in x > 0. Hence

X(j)

X(i)
≥
Z(j)

Z(i)
, 1 ≤ i < j ≤ n.

Using the last inequalities it is easy to see that∑k
i=1X(i)∑n
i=1X(i)

≤
∑k

i=1 Z(i)∑n
i=1 Z(i)

, k = 1, . . . , n− 1.

So we have proved that(
X(1)∑n
i=1X(i)

, . . . ,
X(n)∑n
i=1X(i)

)
�
(

Z(1)∑n
i=1 Z(i)

, . . . ,
Z(n)∑n
i=1 Z(i)

)
.

Applying Theorem 1.1 with φ(x) = x2 to the above majorization ends the
proof.

Remark 2.3. Deriving exact distributions of the moment estimators α̂
and λ̂ is tedious for n > 2. One may prove that for n = 2 the statistic 1/α̂
has beta distribution B(1/2, α) and so α̂ is stochastically increasing in α.

Now we examine the dispersive ordering of the estimator 1/α̂.

Theorem 2.4. The estimator 1/α̂ is not dispersively monotone in α.

Proof. Suppose for contradiction that 1/α̂ is dispersively monotone. Then
Var(1/α̂) should be a monotone function in α. We show that is not true.

It is easy to calculate the moments of the sample mean:

E(X̄k) = α

(
α+

1

n

)(
α+

2

n

)
· · ·
(
α+

k − 1

n

)
λk, k = 1, 2, . . . .
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By the Basu theorem the statistics S4/X̄4 and X̄4 are independent, as also
are S2/X̄2 and X̄2. Hence we obtain

ψ(α) := Var
(
S2

X̄2

)
=
E(S4)

E(X̄4)
− E2(S2)

E2(X̄2)

=
2α(α+ 1)

(n− 1)(α+ 1/n)2(α+ 2/n)(α+ 3/n)
.

Since limα→0 ψ(α) = limα→∞ ψ(α) = 0, the function ψ is not monotone and
therefore 1/α̂ cannot be dispersively monotone.

3. Applications of stochastic comparison to confidence intervals.
In this section we derive an asymptotic distribution of the estimator α̂ and
give an application of Theorem 2.2 to comparison of approximate confidence
intervals for α. This concept was considered by Balakrishnan et al. [2].

Using the delta method (see e.g. Serfling [8, p. 122]) we prove the follow-
ing lemma.

Lemma 3.1. The estimator α̂ is asymptotically normally distributed:
√
n(α̂− α)

L→ N(0, 2α(1 + α)).

Proof. By the multivariate CLT it follows that

√
n

(
X̄ − αλ
S2 − αλ2

)
L→ N(0, Σ),

where

Σ =

(
Var(X1) E(X1 − E(X1))

3

E(X1 − E(X1))
3 E(X1 − E(X1))

4 −Var2(X1)

)

=

(
αλ2 2αλ3

2αλ3 2α(3 + α)λ4

)
.

Thus by the delta method with g(u, v) = u2/v, so that
ġ(u, v) = (2u/v,−u2/v2) and ġ(αλ, αλ2) = (2/λ,−1/λ2),

we have
√
n(α̂− α) =

√
n(g(X̄, S2)− g(αλ, αλ2))

L→ N(0, ġ(αλ, αλ2)Σġ(αλ, αλ2)T ) = N(0, 2α(1 + α)).

Similarly, applying the delta method to the function g(v, u) = v/u we
obtain the asymptotic distribution of the estimator λ̂.

Lemma 3.2. The estimator λ̂ is asymptotically normally distributed:
√
n(λ̂− λ)

L→ N

(
0,

3 + 2α

α
λ2
)
.
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Now we derive an approximate confidence interval for α. From asymptotic
normality of α̂ it follows that for any α > 0,

P

(∣∣∣∣ α̂− α√
2α(1 + α)/n

∣∣∣∣ ≤ zγ/2) = 1− γ as n→∞,

where zγ/2 denotes the (1−γ/2)-quantile of the standard normal distribution.
Solving the above inequality with respect to α we obtain an interval of the
form

(3.1) I = (L,U),

where

L =
nα̂+ z2γ/2 − zγ/2

√
2nα̂2 + 2nα̂+ z2γ/2

n− 2z2γ/2
,

U =
nα̂+ z2γ/2 + zγ/2

√
2nα̂2 + 2nα̂+ z2γ/2

n− 2z2γ/2
,

provided n > 2z2γ/2.
Theorem 2.2 immediately yields the following theorem.

Theorem 3.3. Let I1 = (L1, U1) and I2 = (L2, U2) be two random in-
tervals of the form (3.1) for α1 and α2 respectively, where α1 < α2. Then
U1 − L1 ≤st U2 − L2, and I1 is to the left of I2 in probability, i.e. L1 ≤st L2

and U1 ≤st U2.
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