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DETERMINISTIC OPTIMAL POLICIES FOR

MARKOV CONTROL PROCESSES

WITH PATHWISE CONSTRAINTS

Abstract. This paper deals with discrete-time Markov control processes
in Borel spaces with unbounded rewards. Under suitable hypotheses, we
show that a randomized stationary policy is optimal for a certain expected
constrained problem (ECP) if and only if it is optimal for the correspond-
ing pathwise constrained problem (pathwise CP). Moreover, we show that a
certain parametric family of unconstrained optimality equations yields con-
vergence properties that lead to an approximation scheme which allows us
to obtain constrained optimal policies as the limit of unconstrained deter-
ministic optimal policies. In addition, we give sufficient conditions for the
existence of deterministic policies that solve these constrained problems.

1. Introduction. This paper is about discrete-time Markov control pro-
cesses (MCPs) in Borel spaces. Our problem is to maximize a pathwise long-
run average reward subject to a constraint on a similar pathwise cost. To
this end, we consider a corresponding expected average reward and average
cost, and show that a stationary policy (either randomized or deterministic)
is optimal for the expected constrained problem (ECP) if and only if it is
optimal for the pathwise constrained problem (pathwise CP). Moreover, we
show that a certain parametric family of unconstrained optimality equations
yields convergence properties that lead to an approximation scheme which
allows us to obtain constrained optimal policies as the limit of unconstrained
deterministic optimal policies. Furthermore, we give sufficient conditions for
the existence of deterministic stationary policies that yield, under suitable
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assumptions, practical ways to solve our constrained problem. These results
are clearly illustrated with a linear system-quadratic reward/cost (or LQ
system).

Constrained MCPs form an important class of stochastic control prob-
lems with applications in many areas, including mathematical economics,
signal processing, queueing systems, epidemic processes, etc.; see, for in-
stance, [2, 3, 5, 7, 8, 9, 10, 13, 14, 20, 21, 26, 28, 29, 30, 31] as well as the
books [1] and [25] for MCPs with expected average rewards/costs and/or
countable (possibly finite) state space. The paper by Dufour and Stock-
bridge [9] considers constrained control problems for a class of continuous-
time Markov control problems with discounted cost criteria. The approach
in that paper is to use an equivalent linear programming formulation. The
linear programming formulation has also been used for discrete-time MCPs;
see for instance [1] and [14]. Moreover, most of the literature on constrained
MCPs focuses on finding conditions for the existence of randomized optimal
policies, as opposed to deterministic optimal policies. From the viewpoint
of applications and for computational purposes, however, it is convenient to
find conditions for the existence of deterministic (rather than randomized)
optimal policies. In this paper we give conditions ensuring the existence
of deterministic optimal policies for a class of constrained MCPs; see, for
instance, Theorem 4.8 below.

We should also mention Chen and Feinberg [6], Chang [4], and Iyer and
Hemachandra [19]. A common feature of those works is that all of them
concern MCPs with discounted criteria and finite state spaces.

Among the few exceptions dealing with pathwise constraints we can men-
tion the papers [28, 29, 13, 30] and our works [23, 24].

In [23], we obtain the existence of optimal policies for a long-run pathwise
(that is, sample-path) average reward subject to constraints on a long-run
pathwise average cost. To do this, we give conditions that guarantee the
existence of randomized stationary optimal policies for an average reward
MCP with expected constraints, and then we show that these policies are
optimal for the problem with pathwise constraints. Moreover, in [23] we
show that the pathwise constrained problem can be solved by a parametric
family of nonconstrained ones depending on a parameter Λ ≤ 0. The present
paper is a sequel to [23].

In [24], we apply the results obtained in the present work. As we re-
marked above, Theorem 4.8 below establishes the existence of deterministic
optimal policies for our pathwise CP. These deterministic policies, however,
may have an arbitrarily bad behavior for large, but finite lengths of times.
To solve this deficiency, in [24] we use the variance minimization problem
as a sensitive criterion for the deterministic optimal policies. Thus, under
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suitable assumptions, we show that within the class of deterministic station-
ary optimal policies for the pathwise CP, there exists one with a minimal
limiting average variance (see, for instance, [24, Theorem 3.13]).

We present here three main results that deepen and extend the results in
[23]. First, Theorem 4.3 proves that the ECP is “essentially” equivalent to
the pathwise CP, in particular, we show that a randomized stationary pol-
icy is optimal for the ECP if and only if it is optimal for the pathwise CP.
Second, we consider the optimal values ρ(Λ) for the parametric family of
unconstrained problems depending on Λ ≤ 0. We show that the existence
of a deterministic stationary optimal policy for the pathwise CP is directly
related by the existence of critical points for the mapping Λ 7→ ρ(Λ). More-
over, Theorem 4.8 gives several characterizations for a deterministic sta-
tionary policy to be optimal for the pathwise CP. Third, both Theorems 4.8
and 4.9 give approximation schemes to obtain randomized constrained opti-
mal policies as the limit of unconstrained deterministic optimal policies. To
obtain these results we essentially follow the outline presented by Beutler
and Ross [2] for finite-state finite-action MCPs, which consists in using con-
vergence properties of the parametric family of the unconstrained optimality
equations. In short, we extend the results in [2] to MCPs with uncountable
Borel spaces.

The remainder of the paper is organized as follows. In Section 2 we recall
the basic components of a Markov control model, and state some of our main
assumptions. Section 3 summarizes some facts on the expected constrained
problem (ECP). In Section 4 we consider the pathwise constrained problem
(pathwise CP) and introduce our main results, Theorems 4.3, 4.8, and 4.9.
The proof of these results is presented in Section 5. Finally, a LQ system in
Section 6 illustrates our results.

2. The control model. Let (X,A, {A(x) : x ∈ X}, Q, r, c) be a discrete
time Markov control model with state space X and control (or action) set A,
both assumed to be separable metric spaces with Borel σ-algebras B(X)
and B(A), respectively. For each x ∈ X there is a nonempty set A(x) in B(A)
which represents the set of feasible actions in the state x. The set

(1) K := {(x, a) : x ∈ X, a ∈ A(x)}
is assumed to be a Borel subset of X×A. The transition law Q is a stochastic
kernel on X given K. The one-stage reward r and the one-stage cost c are
real-valued measurable functions on K. We interpret r as a reward to be
maximized with the restriction that the cost c does not exceed (in a suitably
defined sense) a given value.

The class of measurable functions f : X→ A such that f(x) is in A(x)
for every x ∈ X is denoted by F, and we suppose that it is nonempty. Let
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Φ be the set of stochastic kernels ϕ on A given X for which ϕ(A(x)|x) = 1
for all x ∈ X.

Control policies. For every n = 0, 1, . . . , let Hn be the family of ad-
missible histories up to time n; that is, H0 := X, and Hn := Kn × X
if n ≥ 1. A control policy is a sequence π = {πn} of stochastic kernels
πn on A given Hn such that πn(A(xn)|hn) = 1 for every n-history hn =
(x0, a0, . . . , xn−1, an−1, xn) in Hn. The class of all policies is denoted by Π.
Moreover, a policy π = {πn} is said to be a

(a) randomized stationary policy if there exists a stochastic kernel ϕ ∈ Φ
such that πn(·|hn) = ϕ(·|xn) for all hn ∈ Hn and n = 0, 1, . . . ;

(b) deterministic stationary policy if there exists f ∈F such that πn(·|hn)
is the Dirac measure at f(xn) ∈ A(xn) for all hn ∈ Hn and n =
0, 1, . . . .

Following a standard convention, we identify Φ with the class of ran-
domized stationary policies and F with the class of deterministic stationary
policies. Therefore, we have

F ⊂ Φ ⊂ Π.

Given ϕ ∈ Φ, we will use the following notation:

rϕ(x) :=
�

A

r(x, a)ϕ(da|x), cϕ(x) :=
�

A

c(x, a)ϕ(da|x),(2)

Qϕ(·|x) :=
�

A

Q(·|x, a)ϕ(da|x)(3)

for all x ∈ X. Moreover, the n-step transition probabilities are denoted
by Qnϕ, with Q1

ϕ(·|x) := Qϕ(·|x) and Q0
ϕ(·|x) := δx, the Dirac measure

concentrated at the initial state x. We can write Qnϕ recursively as

(4) Qnϕ(·|x) =
�

X

Qϕ(·|y)Qn−1ϕ (dy|x), n ≥ 1.

In particular, for a deterministic policy f ∈ F, formulas (2)–(3) become

rf (x) = r(x, f(x)), cf (x) = c(x, f(x)), Qf (·|x) = Q(·|x, f(x)).

Let (Ω,F) be the (canonical) measurable space consisting of the sample
space Ω := (X × A)∞ and its product σ-algebra F . Then for each policy
π ∈ Π and initial state x ∈ X, a stochastic process {(xn, an)} and a proba-
bility measure P πx are defined on (Ω,F) in a canonical way, where xn and
an represent the state and control at time n, n = 0, 1, . . . . The expectation
operator with respect to P πx is denoted by Eπx .
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Given π ∈ Π, x ∈ X, and n = 1, 2, . . . , we define the n-stage pathwise
reward and the n-stage expected reward as

Sn(π, x) :=
n−1∑
k=0

r(xk, ak) and Jn(π, x) := Eπx [Sn(π, x)],

respectively. Replacing the reward function r with the cost c we obtain the
definition of Sc,n(π, x) and Jc,n(π, x).

Definition 2.1. The (long-run) pathwise average reward and the (long-
run) expected average reward are given by

S(π, x) := lim inf
n→∞

1

n
Sn(π, x) and J(π, x) := lim inf

n→∞

1

n
Jn(π, x),

respectively. Similarly, the pathwise average cost and the expected average
cost are respectively defined as

Sc(π, x) := lim sup
n→∞

1

n
Sc,n(π, x) and Jc(π, x) := lim sup

n→∞

1

n
Jc,n(π, x).

Observe that J(π, x) (and S(π, x)) is defined as a “lim inf”, whereas
Jc(π, x) (and Sc(π, x)) is a “lim sup”. This is because according to standard
conventions, the function r is interpreted as a reward-per-stage function,
whereas the function c is a cost-per-stage.

We will introduce four sets of hypotheses. The first one, Assumption 2.2,
consists of standard continuity-compactness conditions (see, for instance,
[12, 16, 17, 27]), together with a growth condition (b1) on the one-step
reward r and the one-step cost c, and the Lyapunov-like condition (b3).

Assumption 2.2. For every state x ∈ X:

(a) A(x) is a compact subset of A;
(b) there exists a measurable function W ≥ 1 on X, a bounded measur-

able function b ≥ 0, and nonnegative constants r1, c1, and β, with
β < 1, such that

(b1) |r(x, a)| ≤ r1W (x), |c(x, a)| ≤ c1W (x) ∀(x, a) ∈ K;

(b2)
	
XW (y)Q(dy|x, a) is continuous in a ∈ A(x); and

(b3)
	
XW (y)Q(dy|x, a) ≤ βW (x) + b(x) for every x ∈ X.

To state our second set of hypotheses, we will use the following notation,
where W is the function in Assumption 2.2(b): BW (X) denotes the normed
linear space of measurable functions u on X with a finite W -norm ‖u‖W ,
which is defined as

(5) ‖u‖W := sup
x∈X
|u(x)|/W (x).

In this case we say that u is W -bounded . Similarly, we say that a function
v : K → R belongs to BW (K) if x 7→ supa∈A(x) |v(x, a)| is in BW (X). In
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particular, by Assumption 2.2(b1), r(x, a) and c(x, a) are both in BW (K).
We write

µ(u) :=
�

X

u(y)µ(dy),

whenever the integral is well defined.
The next set of hypotheses guarantees that the MCP has a nice “stable”

behavior uniformly in Φ.

Assumption 2.3. For each randomized stationary policy ϕ ∈ Φ:

(a) (W -geometric ergodicity) There exists a (necessarily unique) proba-
bility measure µϕ on X such that (with Qtϕ as in (3)–(4))

(6)
∣∣∣ �
X

u(y)Qtϕ(dy|x)− µϕ(u)
∣∣∣ ≤ ‖u‖WRρtW (x)

for every t = 0, 1, . . . , u ∈ BW (X), and x ∈ X, where R > 0 and
0 < ρ < 1 are constants independent of ϕ.

(b) (Irreducibility) There exists a σ-finite measure ν on B(X) with re-
spect to which Qϕ is ν-irreducible, which means that if B ∈ B(X)
is such that ν(B) > 0, then for every x ∈ X there exists t > 0 for
which Qtϕ(B|x) > 0.

Remark 2.4. For a discussion of Assumption 2.3, see Remark 2.4 in [23].
In particular, by Assumptions 2.3(a) and 2.2(b3), we have

(7) µϕ(W ) ≤ b/(1− β) <∞ ∀ϕ ∈ Φ,
with b = supx∈X b(x). Moreover, by (6), J(ϕ, x) and Jc(ϕ, x) in Definition 2.1
are constant (that is, do not depend on the initial state x), and satisfy

J(ϕ, x) = lim
n→∞

1

n
Eϕx

n−1∑
k=0

r(xk, ak) = µϕ(rϕ) =: g(ϕ)

(where g comes from “gain”, which is another standard name for “average
reward” [26], [27]), and

Jc(ϕ, x) = lim
n→∞

1

n
Eϕx

n−1∑
k=0

c(xk, ak) = µϕ(cϕ) =: gc(ϕ).

In the following assumption we strengthen the growth condition on the
reward function r and the cost function c in Assumption 2.2(b1).

Assumption 2.5. There exist positive constants r2 and c2 such that

r(x, a)2 ≤ r2W (x) and c(x, a)2 ≤ c2W (x) ∀(x, a) ∈ K.

Actually, since W ≥ 1, Assumption 2.5 implies Assumption 2.2(b1).
In the remainder of this paper we consider the function

w(x) :=
√
W (x) ∀x ∈ X.
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We also require the following assumption.

Assumption 2.6.

(a) The transition law Q is strongly continuous on K, that is, the map-
ping

(x, a) 7→
�

X

v(y)Q(dy|x, a)

is continuous on K for every measurable bounded function v on X.
(b) The cost function c is lower semicontinuous (l.s.c.) on K.
(c) The reward function r is upper semicontinuous (u.s.c.) on K.
(d) The function w, seen as a function (x, a) 7→ w(x) on K, is continu-

ous. Moreover, w is a so-called moment function on K, that is, there
exists a nondecreasing sequence of compact sets Kn ↑ K such that

lim
n→∞

inf{w(x) : (x, a) /∈ Kn} =∞.

Remark 2.7. In Assumption 2.6(b), we omit the restrictive condition
on the cost fuction c imposed in [23, Assumption 3.3(b)], which establishes
that c is nonnegative. Nonnegativity of c was crucial to prove that the set
Γ (θ) in (25) below is compact in the w-weak topology (see, for instance,
[23, Section 5] and [22, Lemma 5.2.2]). Here, if we assume the l.s.c. of c in
addition to Assumptions 2.5 and 2.6(d) above, we can get the same results
obtained in [23].

3. MCPs with expected constraints. In this section we summarize
some facts from [22, 23] on MCPs with expected constraints. These results
are used in Section 4 to state our main results.

By Assumption 2.6(b) and Remark 2.4, we can define

(8) θmin := min
ϕ∈Φ

�

X

cϕ(y)µϕ(dy) and θmax := sup
ϕ∈Φ

�

X

cϕ(y)µϕ(dy),

which are finite numbers. To avoid trivial situations, we will consider a
constraint constant θ such that

(9) θmin < θ < θmax.

Let J(π, x) and Jc(π, x) be the long-run expected averages in Defini-
tion 2.1, and let θ be a constant as in (9). Then the expected constrained
problem (ECP) is:

maximize J(π, x)(10)

subject to: π ∈ Π and Jc(π, x) ≤ θ ∀x ∈ X.(11)

Definition 3.1. A policy π ∈ Π is said to be feasible for the ECP
if it satisfies the constraints in (11), that is, Jc(π, x) ≤ θ for all x in X.
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Moreover, a feasible policy π∗ is called optimal for the ECP (10)–(11) if
J(π, x) ≤ J(π∗, x) for every feasible π.

The following proposition states the existence of an optimal policy for the
ECP (10)–(11). Furthermore, it establishes the existence of a solution to the
average reward optimality equation (AROE) (12) in Proposition 3.2 below.
For a proof of the proposition see [23, Theorem 5.2] or [22, Theorem 5.3.1].

Proposition 3.2. Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 are
satisfied. Then:

(i) There exist Λ0 ≤ 0, a constant V (θ) which depends on θ, and h ∈
Bw(X) such that the AROE

(12) V (θ) +h(x) = max
a∈A(x)

[
r(x, a) + (c(x, a)− θ) ·Λ0 +

�

X

h(y)Q(dy|x, a)
]

holds for every x ∈ X.
(ii) There exists a randomized stationary policy ϕ∗ ∈ Φ that attains the

maximum in the right-side of (12), i.e.,

(13) V (θ) + h(x) = rϕ∗(x) + (cϕ∗(x)− θ) · Λ0 +
�

X

h(y)Qϕ∗(dy|x)

for all x ∈ X, and ϕ∗ is optimal for the ECP (10)–(11). Moreover,
the following “orthogonality” property (using the notation in the Re-
mark 2.4) is satisfied:

(14) (gc(ϕ
∗)− θ) · Λ0 = 0,

which together with (13) gives

(15) V (θ) = µϕ∗(rϕ∗) = g(ϕ∗),

that is, V (θ) is the optimal value for the ECP (10)–(11)).

An optimal policy ϕ∗ ∈ Φ for the ECP satisfying the AROE (13) is called
a canonical policy for the ECP.

Proposition 3.2 shows that the ECP (10)–(11) induces a nonconstrained
problem depending on a real number Λ0 ≤ 0, which is unknown. The next
result shows that the ECP can be solved by means of a parametric family
of AROEs (see, for instance, [23, Theorem 5.3]) or [22, Theorem 5.4.1]).

Proposition 3.3. Suppose that the hypotheses of Proposition 3.2 are
satisfied, and consider the ECP (10)–(11). For each real number Λ ≤ 0, let
(ρ(Λ), hΛ) ∈ R×BW (X) be a solution to the AROE

(16) ρ(Λ)+hΛ(x) = max
a∈A(x)

[
r(x, a)+(c(x, a)−θ) ·Λ+

�

X

hΛ(y)Q(dy|x, a)
]
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for every x ∈ X. Then

(17) V (θ) = min
Λ≤0

ρ(Λ).

4. MCPs with pathwise constraints: main results. Let θ ∈ R be as
in (9). With the notation in Definition 2.1 we want to maximize the pathwise
average reward S(π, x) over the set of all policies π ∈ Π satisfying, for every
initial state x ∈ X, the following constraint on the pathwise average cost:

Sc(π, x) ≤ θ P πx -a.s.

Hence, we can explicitly state our pathwise CP as follows:

maximize S(π, x)(18)

subject to: π ∈ Π and Sc(π, x) ≤ θ P πx -a.s. ∀x ∈ X.(19)

A policy π ∈ Π is said to be feasible for the pathwise CP if it satisfies (19).

Let ϕ ∈ Φ be an arbitrary randomized stationary policy, and let g(ϕ)
and gc(ϕ) be as in Remark 2.4. Using the strong law of large numbers for
Markov chains it can be shown that, for every x ∈ X,

S(ϕ, x) = lim
n→∞

1

n

n−1∑
k=0

rϕ(xk) = g(ϕ), Sc(ϕ, x) = lim
n→∞

1

n

n−1∑
k=0

cϕ(xk) = gc(ϕ)

Pϕx -a.s. This fact is used in the following definition.

Definition 4.1. Let ϕ∗ ∈ Φ be a feasible policy for the pathwise CP,
i.e., gc(ϕ

∗) ≤ θ. Then ϕ∗ is said to be optimal for the pathwise CP (18)–(19)
if for each feasible π ∈ Π we have

S(π, x) ≤ g(ϕ∗) P πx -a.s.

If ϕ∗ is an optimal policy for the problem (18)–(19), then we define the
optimal value of the pathwise CP as V ∗(θ) := g(ϕ∗).

The following result establishes the existence of optimal policies for the
pathwise CP (18)–(19) (see, for instance, [23, Theorem 3.4]) or [22, The-
orem 5.5.2]).

Proposition 4.2. Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 hold.
Then:

(i) There exists an optimal policy ϕ∗ ∈Φ for the pathwise CP (18)–(19).
In particular, gc(ϕ

∗) ≤ θ and g(ϕ∗) = V ∗(θ), with V ∗(θ) as in
Definition 4.1.

(ii) There exist Λ0 ≤ 0 and h ∈ Bw(X) such that the average reward
optimality equation (AROE)
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V ∗(θ)+h(x) = max
a∈A(x)

[
r(x, a)+(c(x, a)−θ) ·Λ0 +

�

X

h(y)Q(dy|x, a)
]

(20)

= rϕ∗(x) + (cϕ∗(x)− θ) · Λ0 +
�

X

h(y)Qϕ∗(dy|x)

holds for every x ∈ X. Furthermore, we have the “orthogonality”
property

(21) (gc(ϕ
∗)− θ) · Λ0 = 0.

(iii) For each Λ ≤ 0, let (ρ(Λ), hΛ) ∈ R × BW (X) be a solution to the
AROE

ρ(Λ)+hΛ(x) = max
a∈A(x)

[
r(x, a)+(c(x, a)−θ)·Λ+

�

X

hΛ(y)Q(dy|x, a)
]

for every x ∈ X. Then V ∗(θ) = V (θ) = minΛ≤0 ρ(Λ), with V (θ) as
in Proposition 3.2(i) and Proposition 3.3.

We can now state our first main result, which is proved in Section 5. In
this result we establish that a (randomized) stationary policy is optimal for
the pathwise CP (18)–(19) if and only if it is optimal for the ECP (10)–(11),
i.e., the pathwise CP is, under our assumptions, “essentially” equivalent to
the ECP.

Notation. Let Φecp ⊂ Φ be the class of randomized stationary optimal
policies for the ECP (10)–(11), and Φcecp the subclass of Φecp of canonical
policies for the ECP.

Moreover, let Fecp ⊂ Φecp be the class of deterministic stationary optimal
policies for the ECP, and Fcecp ⊂ F the subclass of Φcecp of deterministic
stationary canonical policies for the ECP.

Theorem 4.3. Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 are sat-
isfied.

(a) Let V (θ) be as in Proposition 3.2. Then, for each feasible policy
π ∈ Π for the pathwise CP (18)–(19), and for each initial state
x ∈ X,

(22) V (θ) ≥ S(π, x) P πx -a.s.

Moreover, V (θ) is the optimal value for the pathwise CP (18)–(19),
i.e., V (θ) = V ∗(θ). Furthermore, if ϕ̂ ∈ Φecp is an optimal policy for
the ECP (10)–(11), then it is an optimal policy for the pathwise CP
(18)–(19).

(b) Conversely, let ϕ̂ ∈ Φ be an optimal policy for the pathwise CP
(18)–(19). Then ϕ̂ is an optimal policy for the ECP (10)–(11) satis-
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fying

(23) [gc(ϕ̂)− θ] · Λ0 = 0.

In addition, there exists an optimal policy ϕ∗ ∈ Φcecp for the ECP
(10)–(11) satisfying Proposition 3.2(ii) and such that

ϕ̂(·|x) = ϕ∗(·|x) µϕ̂-a.s.,

and so µϕ̂ = µϕ∗.

Remark 4.4. (i) Part (b) of Theorem 4.3 includes, of course, the case
in which ϕ̂ is in fact a deterministic policy.

(ii) Denoting by Φscp ⊂ Φ the class of randomized stationary optimal
policies for the pathwise (sample-path) CP (18)–(19), we may rewrite the
statements in Theorem 4.3(a),(b) as

Φecp = Φscp.

Similarly, if we denote by Fscp ⊂ Φscp the subclass of deterministic stationary
optimal policies for the pathwise CP (18)–(19), then

Fecp = Fscp.

Theorems 4.8 and 4.9 below give sufficient conditions to guarantee that
Fecp is a nonempty set.

Finally, thanks to Theorem 4.3, we can identify the ECP and the path-
wise CP. Hence, we will refer to these equivalent problems as the constrained
problem (CP).

To state our second main result, we will use the following notation.

Let W be as in Assumption 2.2, w :=
√
W , and B(K) the Borel σ-algebra

on K; see (1). We denote by Pw(K) the set of probability measures µ̂ on
B(K) such that �

K

w(x) µ̂(d(x, a)) <∞.

This set is supposed to be endowed with the w-weak topology [11, Ap-
pendix A.5], i.e., the smallest topology for which the mapping

µ̂ 7→
�

K

v dµ̂

on Pw(K) is continuous for every v ∈ Cw(K), where Cw(K) is the linear
subspace of Bw(K) that consists of the continuous functions on K. With
this topology Pw(K) is separable and metrizable.

For every ϕ ∈ Φ, let µϕ be as in Assumption 2.3(a), and define µ̂ϕ ∈
Pw(K) as

µ̂ϕ(B × C) :=
�

B

ϕ(C|x)µϕ(dx) ∀B ∈ B(X), C ∈ B(A).



196 A. F. Mendoza-Pérez and O. Hernández-Lerma

The set of all these measures is denoted by Γ , i.e.,

(24) Γ := {µ̂ϕ : ϕ ∈ Φ} ⊂ Pw(K).

Moreover, for each θ ∈ (θmin, θmax), with θmin and θmax as in (9), let

(25) Γ (θ) :=
{
µ̂ ∈ Γ :

�

K

c dµ̂ ≤ θ
}
.

It can be verified that Γ and Γ (θ) both are convex sets. Furthermore, after
some calculations (see [22, Lemma 5.2.2] for details) and using Prokhorov’s
theorem [11, Appendix A.5] it follows that Γ and Γ (θ) are both compact
sets in the w-weak topology.

For each Λ ≤ 0 let rΛ(x, a) := r(x, a) + (c(x, a) − θ) · Λ. Then, given a
stationary policy ϕ ∈ Φ, define

(26) GΛ(ϕ) := µ̂ϕ(rΛ).

On the other hand, by our continuity and compactness conditions in
Assumptions 2.2 and 2.6, well-known measurable selection theorems (see [15,
Appendix D], for instance) give the existence of a stationary deterministic
policy fΛ ∈ F (not necessarily unique) such that, for every x ∈ X, the action
fΛ(x) ∈ A(x) attains the maximum on the right-hand side of (16). By the
Axiom of Choice, for each Λ ≤ 0, we take one of those fΛ.

Remark 4.5. By standard dynamic programming results (see, for in-
stance, [16, Section 10.3]), the function Λ 7→ ρ(Λ) = GΛ(fΛ) is well defined
and does not depend on the particular choice of fΛ. Furthermore, let ϕ ∈ Φ
be arbitrary; then (16) implies

ρ(Λ) + hΛ(x) ≥ rϕ(x) + (cϕ(x)− θ) · Λ+
�

X

hΛ(y)Qϕ(dy|x)

for all x ∈ X. Integrating both sides of this inequality with respect to µϕ,
we have

(27) ρ(Λ) ≥ GΛ(ϕ) ∀ϕ ∈ Φ.
Next, we introduce

(28) γ := sup{Λ ≤ 0 : gc(fΛ) ≤ θ}.
According to Lemma 5.2 below, γ defined in (28) is finite. Notice that
−∞ < γ ≤ 0.

Proposition 3.2 establishes the existence of an optimal policy for our CP.
Our second purpose is to use the parametric family of unconstrained opti-
mization problems (16) to obtain this optimal policy as a function of the
running parameter Λ (see Theorems 4.8 and 4.9 below).

We state the following assumptions.

Assumption 4.6. The cost function c is continuous on K.
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Assumption 4.7. Let γ be defined in (28). Then

−∞ < γ < 0.

Theorem 4.8. Suppose that Assumptions 2.2, 2.3, 2.5, and 2.6 are sat-
isfied.

(a) Suppose that there exists Λ ≤ 0 and ϕ̂ ∈ Φ satisfying

(29) gc(ϕ̂) = θ and GΛ(ϕ̂) = ρ(Λ).

Then ϕ̂ is an optimal policy for the CP. Hence,

(30) ρ(Λ) = min
λ≤0

ρ(λ) = V (θ).

Moreover, if gc(fΛ) = θ (with fΛ as in Remark 4.5), then fΛ solves
the CP.

(b) Assume that Λ 7→ ρ(Λ) is differentiable at a point Λ < 0. Then

(31)
dρ

dΛ
(Λ) = gc(fΛ)− θ.

In particular, if Λ < 0 is a critical point of ρ(·), then fΛ is an optimal
policy for the CP, and ρ(·) attains a minimum in Λ satisfying (30).
In this case, we can identify Λ0 in Proposition 3.2 with Λ < 0.

(c) Suppose that there exists Λ < 0 such that ρ(·) is differentiable at Λ.
Then the following statements are equivalents:

(1) fΛ solves the CP;
(2) Λ is a critical point of ρ(·);
(3) gc(fΛ) = θ.

(d) In addition, assume that the mapping Λ 7→ gc(fΛ) is continuous on
(−∞, 0). Then the function ρ(·) is differentiable on (−∞, 0).

Recall the definition (28) of γ, which is used again in the following the-
orem.

Theorem 4.9. Suppose that Assumptions 2.2, 2.3, 2.5, 2.6, 4.6, and 4.7
hold. Then there exist two sequences of negative numbers {Λn}, {Λν} such
that Λn ↑ γ and Λν ↓ γ, satisfying:

(i) The corresponding sequences of measures {µ̂fΛn} and {µ̂fΛν } con-
verge on Pw(K), with respect to the w-weak topology, toward mea-
sures µ̂ϕ1 and µ̂ϕ2 in Γ , with ϕ1, ϕ2 ∈ Φ such that

(32) gc(ϕ1) ≤ θ and gc(ϕ2) ≥ θ,
and

(33) Gγ(ϕ1) = Gγ(ϕ2) = ρ(γ).
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(ii) There exist a randomized stationary policy ϕ∗ ∈ Φ and a number
q0 ∈ [0, 1] such that

µ̂ϕ∗ = q0µ̂ϕ1 + (1− q0)µ̂ϕ2 and gc(ϕ
∗) = θ.

Hence, the policy ϕ∗ ∈ Φ is optimal for the CP. Moreover, the func-
tion Λ 7→ ρ(Λ) attains a minimum at γ, i.e.,

ρ(γ) = min
Λ≤0

ρ(Λ) = V (θ).

(iii) In addition, suppose that ρ(·) is differentiable at γ. Then fγ solves
the CP. In particular, γ is a critical point of ρ(·), and gc(fγ) = θ.
In this case, we can identify Λ0 in Proposition 3.2 with γ < 0.

(iv) If Assumption 4.7 fails to hold, then ϕ1 ∈ Φ satisfying (32) and (33)
for γ = 0 is an optimal policy for the CP. In particular, if gc(f0) ≤ θ,
then f0 is an optimal policy for the CP.

5. Proof of Theorems 4.3, 4.8, 4.9. Throughout this section suppose
that Assumptions 2.2, 2.3, 2.5, and 2.6 hold.

Proof of Theorem 4.3. (a) The inequality in (22) follows from the proof
of Theorem 3.4(i) in [23].

Now, suppose that ϕ̂ is an optimal policy for the ECP (10)–(11). By (15)
and Remark 2.4, we have

(34) g(ϕ̂) = V (θ) and gc(ϕ̂) ≤ θ.
From [23, Remark 2.4(iv)], together with (22) and (34), we see that ϕ̂ is
optimal for the pathwise CP (18)–(19), and V (θ) is the optimal value, that
is, V (θ) = V ∗(θ).

(b) Let ϕ̂ be an optimal policy for the pathwise CP (18)–(19). By (a),
V (θ) is the optimal value for the pathwise CP. Thus

(35) g(ϕ̂) = V (θ) and gc(ϕ̂) ≤ θ.
Furthermore, by Remark 2.4 again,

J(ϕ̂, x) = V (θ) and Jc(ϕ̂, x) ≤ θ ∀x ∈ X.

So, ϕ̂ is also an optimal policy for the ECP (10)–(11). Hence, the rest of the
proof of (b) is the same as the proof of Theorem 5.2(ii) in [23].

To prove Theorems 4.8 and 4.9, we need the following lemmas.

Lemma 5.1. For each Λ≤ 0 and every real number η such that Λ+η≤ 0,

η · [gc(fΛ)− θ] = GΛ+η(fΛ)− ρ(Λ) ≤ ρ(Λ+ η)− ρ(Λ)(36)

≤ ρ(Λ+ η)−GΛ(fΛ+η) = η · [gc(fΛ+η)− θ].
As a consequence:

(i) gc(fΛ) and g(fΛ) are nondecreasing functions of the parameter Λ.
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(ii) If gc(fΛ) ≤ θ, then ρ(·) is nonincreasing on (−∞, Λ]. If gc(fΛ) ≥ θ,
then ρ(·) is nondecreasing on [Λ, 0].

(iii) ρ(·) is continuous in Λ ≤ 0.

Proof. Consider Λ ≤ 0 and η a real number such that Λ+ η ≤ 0. From
the AROE (16), with Λ+ η in lieu of Λ, we obtain

ρ(Λ+ η) + hΛ+η(x) ≥ rΛ(x, a) + (c(x, a)− θ) · η +
�

X

hΛ+η(y)Q(dy|x, a)

for all (x, a) ∈ K. Hence,

ρ(Λ+ η) + hΛ+η(x) ≥ rΛ(x, fΛ(x)) + (c(x, fΛ(x))− θ) · η

+
�

X

hΛ+η(y)Q(dy|x, fΛ(x))

for all x ∈ X. Integrating both sides with respect to µfΛ , we obtain

(37) ρ(Λ+ η) ≥ ρ(Λ) + (gc(fΛ)− θ) · η = GΛ+η(fΛ).

Now, from (27) in Remark 4.5,

(38) ρ(Λ) ≥ GΛ(fΛ+η).

Moreover

(39) ρ(Λ+ η)−GΛ(fΛ+η) = GΛ+η(fΛ+η)−GΛ(fΛ+η) = (gc(fΛ+η)− θ) · η.
Combining (37), (38) and (39), we obtain the inequalities in (36).

Now we prove (i)–(iii). From (36), we see that gc(fΛ) is nondecreasing in
the parameter Λ.

On the other hand, from the first inequality in (36), we find that if
gc(fΛ) ≤ θ and η < 0, then 0 ≤ η · [gc(fΛ) − θ] ≤ ρ(Λ + η) − ρ(Λ), which
implies that ρ(·) is nonincreasing on (−∞, Λ). Similarly, if gc(fΛ) ≥ θ and
η > 0, by the same inequality we have ρ(Λ) ≤ ρ(Λ+ η) with η > 0, i.e., ρ(·)
is nondecreasing on [Λ, 0]. Thus, we have proved (ii).

Next, we prove that g(fΛ) is nondecreasing. For a contradiction, suppose
that g(fΛ) is not nondecreasing. Hence, there exist Λ ≤ 0 and η < 0 such
that g(fΛ) < g(fΛ+η). By the first part of (i), gc(fΛ) is nondecreasing. So,
gc(fΛ+η) ≤ gc(fΛ). Thus, we have the contradiction (see (38) above)

ρ(Λ) = g(fΛ) + (gc(fΛ)− θ) · Λ < g(fΛ+η) + (gc(fΛ+η)− θ) · Λ = GΛ(fΛ+η).

Finally, (iii) is a direct consequence of (36).

The following lemma proves that γ defined in (28) is a finite number.

Lemma 5.2. There exists Λ ≤ 0 such that gc(fΛ) ≤ θ. Moreover:

(a) γ is a finite number such that −∞ < γ ≤ 0.
(b) Assume Λ< 0. If Λ<γ, then gc(fΛ)≤ θ. If Λ>γ, then gc(fΛ)>θ.
(c) ρ(γ) = minΛ≤0 ρ(Λ) = V (θ).
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Proof. By contradiction, assume that gc(fΛ) > θ for all Λ ≤ 0. From
Lemma 5.1(i), g(fΛ) is nondecreasing. Thus

(40) ρ(Λ) = g(fΛ) + (gc(fΛ)− θ) · Λ ≤ ρ(0) ∀Λ ≤ 0.

On the other hand, from the definition of θmin = minϕ∈Φ gc(ϕ), and θ in (9),
there exists ϕ ∈ Φ such that gc(ϕ) < θ. Defining δ := θ− gc(ϕ) > 0, we have

GΛ(ϕ) = g(ϕ) + (gc(ϕ)− θ) · Λ = g(ϕ)− δ · Λ ∀Λ ≤ 0.

Hence, limΛ→−∞GΛ(ϕ) =∞. This limit and (27) in Remark 4.5 imply the
existence of Λ < 0 such that

ρ(0) < GΛ(ϕ) ≤ ρ(Λ),

which contradicts (40). Now we prove the “moreover” part:

(a) From the first part of this proof and the definition of γ in (28), we
find that −∞ < γ ≤ 0.

(b) This part follows from the definition of γ in (28), and the fact that
gc(fΛ) is nondecreasing in the parameter Λ ≤ 0 (see Lemma 5.1(i)).

(c) From (b), and Lemma 5.1(ii)–(iii), we have

ρ(Λ) ≥ ρ(γ) ∀Λ < γ and ρ(Λ) ≥ ρ(γ) ∀Λ > γ.

These inequalities imply that ρ(γ) = minΛ≤0 ρ(Λ). Furthermore, from Propo-
sition 3.3, V (θ) = ρ(γ).

Proof of Theorem 4.8. (a) Let Λ ≤ 0 and ϕ̂ ∈ Φ satisfy (29). In par-
ticular, ϕ̂ is a feasible policy for the ECP (10)–(11), and by (27) it follows
that

g(ϕ̂) = GΛ(ϕ̂) = ρ(Λ) ≥ GΛ(ϕ) ∀ϕ ∈ Φ.
Since GΛ(ϕ) ≥ g(ϕ) for each feasible policy ϕ ∈ Φ for the CP (10)–(11),
Proposition 3.2 and the latter inequality imply that ϕ̂ is an optimal policy
for the CP. Now, from (17) in Proposition 3.3, V (θ) = ρ(Λ) = minλ≤0 ρ(λ).

In particular, if gc(fΛ) = θ, then since ρ(Λ) = GΛ(fΛ), we see that fΛ is
an optimal policy for the CP.

(b) Assuming that ρ(·) is differentiable at Λ < 0, from the first inequality
in (36) we obtain, for each η > 0,

gc(fΛ)− θ ≤ ρ(Λ+ η)− ρ(Λ)

η
and gc(fΛ)− θ ≥ ρ(Λ− η)− ρ(Λ)

−η
.

Taking the limit as η → 0, we obtain (31).

On the other hand, if Λ < 0 is a critical point of ρ(·), then from (31) we
have gc(fΛ) = θ. Hence, from (a), fΛ solves the CP.

(c) This is a direct consequence of (a) and (b).

(d) Suppose that the function Λ 7→ gc(fΛ) is continuous on the interval
(−∞, 0). From (36) in Lemma 5.1, we deduce that the continuous function
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Λ 7→ ρ(Λ) is differentiable with continuous derivative

dρ

dΛ
(Λ) = gc(fΛ)− θ, ∀Λ < 0.

Proof of Theorem 4.9. (i) From Assumption 4.7, we can consider two
sequences {Λn} and {Λν} of negative numbers satisfying Λn ↑ γ and Λν ↓ γ.
Now, since Γ is a compact (separable) metric space with respect to the
w-weak topology [11, Appendix 5], each sequence in Γ has a subsequence
which converges in Γ . Thus, we can assume that the sequences {µ̂fΛn} and
{µ̂fΛν } converge in Pw(K) with respect to the w-weak topology, to some
measures µ̂ϕ1 and µ̂ϕ2 in Γ , with ϕ1, ϕ2 ∈ Φ.

From Lemma 5.2(b), we have gc(fΛn) ≤ θ for all n, and gc(fΛν ) > θ
for all ν. By Assumption 4.6, the cost function c is continuous on K, and
so gc(ϕ1) = limn→∞ gc(fΛn) ≤ θ and gc(ϕ2) = limν→∞ gc(fΛν ) ≥ θ, yield-
ing (32).

Next we prove (33). From the upper semicontinuity of r (see Assump-
tion 2.6(c)), and the continuity of c, we find that rγ := r+(c−θ) ·γ is upper
semicontinuous on K. Thus, the mapping µ̂ 7→

	
K rγ dµ̂ ∈ R on Pw(K)

is u.s.c. on Pw(K) with respect to the w-weak topology (see, for instance,
[22, Lemma 5.2.5]). Now, since {µ̂fΛn} converges to the measure µ̂ϕ1 ,

(41) lim sup
n→∞

Gγ(fΛn) = lim sup
n→∞

µ̂fΛn (rγ) ≤ µ̂ϕ1(rγ) = Gγ(ϕ1).

By Assumption 2.2(b1), combined with (7) of Remark 2.4, the definition
of θmin and θmax in (8), and (36) in Lemma 5.1, we see that

(Λn − γ) · [gc(fγ)− θ] ≤ ρ(Λn)−Gγ(fΛn) ≤ (Λn − γ) · [θmin − θ].
Thus,

(42) lim
n→∞

[ρ(Λn)−Gγ(fΛn)] = 0.

Since ρ(·) is continuous, (42) implies ρ(γ) = limn→∞Gγ(fΛn). Hence, (41)
yields ρ(γ) ≤ Gγ(ϕ1). On the other hand, (27) gives Gγ(ϕ1) ≤ ρ(γ). There-
fore ρ(γ) = Gγ(ϕ1). In a similar way we can prove that ρ(γ) = Gγ(ϕ2).

(ii) The function

q 7→ qgc(ϕ1) + (1− q)gc(ϕ2) = (qµ̂ϕ1 + (1− q)µ̂ϕ2)(c) ∀q ∈ R

is continuous on R. By (32), there exists q0 ∈ [0, 1] such that q0gc(ϕ1) +
(1 − q0)gc(ϕ2) = θ. On the other hand, since Γ is a convex set we have
q0µ̂ϕ1 + (1− q0)µ̂ϕ2 ∈ Γ . Hence, there exists ϕ∗ such that

(43) µ̂ϕ∗ = q0µ̂ϕ1 + (1− q0)µ̂ϕ2 .

Thus,

(44) gc(ϕ
∗) = µ̂ϕ∗(c) = θ.
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From (33) we have

(45) Gγ(ϕ∗) = µ̂ϕ∗(rγ) = q0Gγ(ϕ1) + (1− q0)Gγ(ϕ2) = ρ(γ).

Hence, by (44) and (45), it follows that ϕ∗ satisfies (29) in Theorem 4.8.
Therefore, ϕ∗ is an optimal policy for the CP. Furthermore, from Lem-
ma 5.2(c) or by Theorem 4.8, we obtain V (θ) = ρ(γ) = minΛ≤0 ρ(Λ).

(iii) Assume that ρ(·) is differentiable at γ. From (ii), ρ(·) attains a
minimum in γ < 0. Hence, γ is a critical point of ρ(·). From Theorem 4.8(b),
gc(fγ) = θ and fγ solves the CP.

(iv) If Assumption 4.7 fails to hold then from Lemma 5.2(a) we obtain
γ = 0. By Lemma 5.1(ii), ρ(·) is nonincreasing on (−∞, 0], thus

(46) ρ(0) = min
Λ≤0

ρ(Λ) = V (θ).

As in the proof of (i), there exists ϕ1 ∈ Φ such that

(47) gc(ϕ1) ≤ θ and G0(ϕ1) = ρ(0).

Hence, noting that g(ϕ1) = G0(ϕ1), from (46) and (47), we have

gc(ϕ1) ≤ θ and g(ϕ1) = V (θ).

Thus, ϕ1 is an optimal policy for the CP.
Finally, if gc(f0) ≤ θ, then f0 is an admissible policy for the ECP

(10)–(11). From (46), g(f0) = ρ(0) = minΛ≤0 ρ(Λ) = V (θ), and so f0 is
an optimal policy for the CP.

6. A LQ system. In this section we present a linear-quadratic system
that satisfies all the hypotheses of Theorems 4.8 and 4.9.

Consider the linear system

(48) xt+1 = k1xt + k2at + zt, t = 0, 1, . . . ,

with state space X := R and positive coefficients k1, k2. The control set is
A := R, and the set of admissible controls in each state x is the interval

(49) A(x) := [−k1|x|/k2, k1|x|/k2].
The disturbances zt in (48) are i.i.d. random variables with values in Z := R,
and have zero mean and finite variance, that is,

(50) E(zt) = 0 and σ2 := E(z2t ) <∞.
To complete the description of our constrained control model we introduce
the quadratic reward-per-stage function

(51) r(x, a) := e− (r1x
2 + r2a

2) ∀(x, a) ∈ K,

with positive coefficients e, r1, and r2, and the cost-per-stage function

(52) c(x, a) := c1x
2 + c2a

2 ∀(x, a) ∈ K,
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with positive coefficients c1, c2. We also define

(53) W (x) := exp[ζ|x|] ∀x ∈ X,

with ζ ≥ 2. Moreover, let ŝ > 0 be such that

ζŝ < log(ζ/2 + 1),

which implies

β :=
2

ζ
(exp[ζŝ]− 1) < 1.

With this β, Assumption 2.2(b3) holds. On the other hand, observe that
r2, c2 are functions in BW (K), and W ≥ 1. Moreover, w :=

√
W is contin-

uous on K and it is a moment function on K. Hence, Assumptions 2.2, 2.5
and 2.6 hold.

As in [18, Section 5], we will suppose the following.

Assumption 6.1. 0 < k1 < 1/2.

Assumption 6.2. The i.i.d. disturbances zt have a common density d,
which is a continuous bounded function supported on S := [−ŝ, ŝ]. Moreover,
there exists a positive number ε such that d(s) ≥ ε for all s ∈ S.

Let S0 := [0, ŝ], and let Υ be the Lebesgue measure on X = R. We define

(54) l(x, a) := 1S0(x) ∀(x, a)∈K and ν(B) := εΥ(B ∩ S0) ∀B ∈B(X).

Then the LQ system (48)–(52) satisfies Lemmas 4.4–4.9 in [23]. Hence, we
obtain the following.

Proposition 6.3. Under Assumptions 6.1 and 6.2, the LQ system
(48)–(52) satisfies Assumptions 2.2, 2.3, 2.5, and 2.6.

Proposition 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Then:

(i) The LQ system (48)–(52) has a constrained optimal policy. More-
over, for each Λ ≤ 0 let (ρ(Λ), hΛ) ∈ R × BW (X) be a solution to
the AROE

(55) hΛ(x) + ρ(Λ) = sup
a∈A(x)

[
rΛ(x, a) +

�

X

hΛ(y)Q(dy|x, a)
]
,

with rΛ(x, a) := r1(Λ)x2+r2(Λ)a2+b, where ri(Λ) := Λ ·ci−ri < 0,
i = 1, 2, and b := e−Λ ·θ. Then the constrained optimal value V (θ)
satisfies

(56) V (θ) = min
Λ≤0

ρ(Λ).

(ii) The function Λ 7→ ρ(Λ) is differentiable on (−∞, 0) with

dρ

dΛ
(Λ) = gc(fΛ)− θ ∀Λ < 0.

Furthermore, if Λ < 0, the following conditions are equivalent:
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(1) fΛ solves the CP;
(2) Λ is a critical point of ρ(·);
(3) gc(fΛ) = θ.

Thus, if Λ < 0 satisfies some of the conditions (1), (2) or (3), then
ρ(·) attains a minimum in Λ such that ρ(Λ) = V (θ) = minλ≤0 ρ(λ).

(iii) Assume that γ := sup{Λ ≤ 0 : gc(fΛ) ≤ θ} < 0. Then ρ(·) attains
a minimum at γ, and so γ is a critical point of ρ(·). In this case,
fγ satisfies gc(fγ) = θ and solves the CP.

(iv) If gc(f0) ≤ θ, then f0 is an optimal policy for the CP.

To prove Proposition 6.4 we need the following result which is a slight
variation of Lemma 6.5 in [14].

Lemma 6.5. Let f̂ be a constant, and let f ∈ F be a deterministic policy
given by f(x) := −f̂x for all x ∈ X. Furthermore, let k̂ := k1 − k2f̂ , where

k1, k2 are the coefficients in (48). Suppose that |k̂| < 1. Then, for all x ∈ X,

g(f) = lim inf
n→∞

1

n
Efx

n−1∑
k=0

rf (xk) = e− (r1 + r2f̂
2)σ2/(1− k̂2),(57)

gc(f) = lim sup
n→∞

1

n
Efx

n−1∑
k=0

cf (xk) = (c1 + c2f̂
2)σ2/(1− k̂2),(58)

with r and c as defined in (51) and (52), respectively.

Proof. Replacing at in (48) with at := f(xt) = −f̂xt, we obtain

xt = (k1 − k2f̂)xt−1 + zt−1 = k̂xt−1 + zt−1 ∀t = 1, 2, . . . .

By an induction procedure, for all t = 1, 2, . . . ,

xt = k̂tx0 +

t−1∑
j=0

k̂jzt−1−j .

From this relation, we obtain

Efx (x2t ) = k̂2tx2 + σ2(1− k̂2t)/(1− k̂2).
This yields

(59) lim sup
n→∞

1

n

n−1∑
t=0

Efx (x2t ) = lim inf
n→∞

1

n

n−1∑
t=0

Efx (x2t ) = σ2/(1− k̂2).

Since a = f(x) = −f̂x, we

(60) rf (x) = e− (r1 + r2f̂
2)x2 and cf (x) = (c1 + c2f̂

2)x2

for all x ∈ X. Finally, inserting (59) in (60) we obtain (57) and (58).
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Proof of Proposition 6.4. (i) From Proposition 6.3, the assumptions in
Propositions 3.2, 3.3, and Theorem 4.3 are satisfied. Hence, (i) follows from
these results.

(ii) In [18, Section 5] it is proved, under Assumptions 6.1 and 6.2, that
ρ(Λ) in the AROE (55) has the form

(61) ρ(Λ) = b− v0(Λ)σ2,

with σ as in (50), and v0(Λ) is the unique positive solution to the quadratic
(Riccati) equation

(62) k22v0(Λ)2 + [k22r1(Λ) + k21r2(Λ)− r2(Λ)]v0(Λ)− r1(Λ)r2(Λ) = 0.

Hence, from the fact that ri(Λ) < 0, for i = 1, 2, we deduce that v0(Λ) is
strictly positive, and depends continuously on Λ. Moreover, for all x ∈ X
we define

(63) fΛ(x) := −f̂0(Λ)x with f̂0(Λ) := (k22v0(Λ)− r2(Λ))−1k1k2v0(Λ),

and

(64) hΛ(x) := −v0(Λ)x2.

Notice that f̂0(Λ) depends continuously on the parameter Λ. Since r2(Λ)< 0,
we have |fΛ(x)| ≤ k1/k2|x|, and so fΛ(x) ∈ A(x) for all x ∈ X, that is, fΛ
is in F. Then, by a direct calculation we can show that (hΛ, fΛ, ρ(Λ)) is a
canonical triplet that satisfies the AROE (55).

On the other hand, by (58) in Lemma 6.5, we obtain

gc(fΛ) = (c1 + c2f̂0(Λ)2)σ2/(1− k̂(Λ)2)

with k̂(Λ) := k1 − k2f̂0(Λ). From Assumption 6.1 it follows that |k̂(Λ)| < 1.
Thus, gc(fΛ) is continuous in the parameter Λ on the interval (−∞, 0).
By Theorem 4.8(b),(d), ρ(·) is differentiable on (−∞, 0) with continuous
derivative

dρ

dΛ
(Λ) = gc(fΛ)− θ ∀Λ < 0.

The rest of the statements in (ii) are direct consequences of The-
orem 4.8(a),(c).

(iii) This follows from Theorem 4.9(iii).
(iv) This follows from Theorem 4.9(iv).

Case 1. Now we analyze a particular case in which the reward-per-
stage function (51) and the cost-per-stage function (52) satisfy r1 = r2 and
c1 = c2, respectively, and moreover k2 = 1 in (48). For this case, we will
find the optimal value and the optimal policy for the LQ model above, with
expected and pathwise constraints.

Note that

(65) r1(Λ) = r2(Λ) ∀Λ ≤ 0.
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By (65), the positive solution of (62) is

(66) v0(Λ) = −kr1(Λ) with k =
k21 +

√
k41 + 4

2
.

Inserting these values in (61) and using the definition of the constant b, we
obtain the explicit form of ρ(Λ):

(67) ρ(Λ) = e− (σ2k) · r1 + [(σ2k) · c1 − θ]Λ,

which is the equation of a straight line with slope (σ2k) · c1− θ. Because we
need to choose θ satisfying the relation (56), we will impose the following
assumption:

(68) (σ2k) · c1 < θ.

Under this condition, we have

V (θ) = min
Λ≤0

ρ(Λ) = min
Λ≤0

(e− (σ2k) · r1 + [(σ2k) · c1 − θ]Λ)(69)

= e− (σ2k) · r1 = ρ(0).

Thus, the minimum is attained at Λ = 0, and V (θ) = ρ(0). Furthermore,
inserting Λ = 0 in (63) and (64), we obtain

(70) f0(x) = −f̂0x with f̂0 :=
kk1

1 + k
,

for all x ∈ X.

Recalling that r1 = r2, c1 = c2, and k2 = 1, we have |k̂| = k1/(1+k) < 1,

with k̂ := k1−f̂0 and k as in (66). By (58) in Lemma 6.5, a direct calculation
yields gc(f0) = (σ2k)c1. Hence, from (68) and Proposition 6.4(iv), f0 is
an optimal policy for the CP. Finally, by (57) in Lemma 6.5, we obtain
g(f0) = e− (σ2k)r1, which coincides with the value of V (θ) in (69).

Case 2. Consider the LQ system (48)–(52) with the following numerical
special case. Suppose that the reward-per-stage function (51) and the cost-
per-stage function (52) satisfy r1 = 1, r2 = 2, e = 10, and c1 = c2 = 1,
respectively. Moreover, assume that k1 = 1/3, k2 = 1 in (48), θ := 191/180
and σ2 = 1 in (50).

In this particular case, solving the Riccati equation (62), and inserting
the corresponding value in (61), we obtain

(71) ρ(Λ) = (187− 18.1Λ−
√

325Λ2 − 958Λ+ 697)/18 ∀Λ ≤ 0.

We consider the critical points of ρ(·). The unique negative critical point is

Λ0 = −0.38767819 . . . .
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By Proposition 6.4(ii), fΛ0 solves the CP. Moreover, ρ(·) attains at Λ0 its
minimum value, which is also the optimal value for the constrained problem,
that is,

V (θ) = ρ(Λ0) = 8.921767464 . . . with θ = 191/180.

In addition

v0 ≡ v0(Λ0) = 1.48960217 . . . .

By (63) and (64), we have

fΛ0(x) = −f̂0x ∀x ∈ R, with f̂0 = 0.12806246 . . . ,

and

h(x) ≡ hΛ0(x) = −v0x2.
By a straigthforward calculation, we can check that (V (θ), fΛ0 , h) is a canon-
ical triplet that satisfies the AROE (12) in Proposition 3.2. On the other
hand, Proposition 6.4(ii) establishes that g(fΛ0) = V (θ) and gc(fΛ0) = θ.
We can also verify the latter equalities from Lemma 6.5. Indeed, by a direct
calculation, we obtain

g(fΛ0) = 8.9217674 . . . and gc(fΛ0) = 1.061111 . . . = 191/180.

So, the constrained problem is solved.

Remark 6.6. Proposition 6.4(ii)–(iii) gives us different methods to ob-
tain fΛ which solves the constrained problem. For example, we can find Λ0

in Case 2 above as the root of the equation

gc(fΛ) = θ,

which can be easily verified.
Another way is calculating the constant γ = sup{Λ ≤ 0 : gc(fΛ) ≤ θ}

≤ 0. If γ < 0, then fγ solves the CP.
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E-mail: ohernand@math.cinvestav.mx

Received on 11.3.2011;
revised version on 25.8.2011 (2078)

http://dx.doi.org/10.1287/opre.37.5.780
http://dx.doi.org/10.1287/moor.16.1.195
http://dx.doi.org/10.1109/TAC.2006.872754



	Introduction
	The control model
	MCPs with expected constraints
	MCPs with pathwise constraints: main results
	Proof of Theorems 4.3, 4.8, 4.9
	A LQ system

