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LONG TIME EXISTENCE OF REGULAR SOLUTIONS TO
3D NAVIER–STOKES EQUATIONS COUPLED WITH

HEAT CONVECTION

Abstract. We prove long time existence of regular solutions to the Navier–
Stokes equations coupled with the heat equation. We consider the system in
a non-axially symmetric cylinder, with the slip boundary conditions for the
Navier–Stokes equations, and the Neumann condition for the heat equation.
The long time existence is possible because the derivatives, with respect
to the variable along the axis of the cylinder, of the initial velocity, initial
temperature and external force are assumed to be sufficiently small in the
L2 norms. We prove the existence of solutions such that the velocity and
temperature belong to W 2,1

σ (Ω × (0, T )), where σ > 5/3. The existence is
proved by using the Leray–Schauder fixed point theorem.

1. Introduction. We consider the following problem:

(1.1)

v,t + v · ∇v − divT(v, p) = α(θ)f in ΩT = Ω × (0, T ),

div v = 0 in ΩT ,

θ,t + v · ∇θ − κ∆θ = 0 in ΩT ,

n̄ · D(v) · τ̄α = 0, α = 1, 2 on ST = S × (0, T ),

n̄ · v̄ = 0 on ST ,

n̄ · ∇θ = 0 on ST ,

v|t=0 = v0, θ|t=0 = θ0 in Ω,
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whereΩ ⊂ R3 is a cylindrical domain, S = ∂Ω, v= (v1(x, t), v2(x, t), v3(x, t))
∈ R3 is the velocity of the fluid motion, p = p(x, t) ∈ R1 the pressure,
θ = θ(x, t) ∈ R+ the temperature, f = (f1(x, t), f2(x, t), f3(x, t)) ∈ R3 the
external force field, n̄ is the unit outward normal vector to the boundary S,
τ̄α, α = 1, 2, are tangent vectors to S and the dot denotes the scalar product
in R3. We define the stress tensor by

T(v, p) = νD(v)− pI,
where ν is the constant viscosity coefficient, I is the unit matrix and D(v) is
the dilatation tensor of the form

D(v) = {vi,xj + vj,xi}i,j=1,2,3.

Finally κ is a positive heat conductivity coefficient.
By x = (x1, x2, x3) we denote the Cartesian coordinates, Ω ⊂ R3 is a

cylindrical type domain parallel to the x3 axis with arbitrary cross section.
We assume that S = S1∪S2, where S1 is the part of the boundary which

is parallel to the x3 axis and S2 is perpendicular to that axis. More precisely,

S1 = {x ∈ R3 : ϕ0(x1, x2) = c∗, −b < x3 < b},
S2 = {x ∈ R3 : ϕ0(x1, x2) < c∗, x3 equals either −b or b},

where b, c∗ are given positive numbers and ϕ0(x1, x2) describes a sufficiently
smooth closed curve in the plane x3 = const. We can assume τ̄1 = (τ11, τ12, 0)
τ2 = (0, 0, 1) and n̄ = (τ12,−τ11, 0) on S1.

We assume α ∈ C2(R+) andΩT satisfies the weak l-horn condition, where
l = (2, 2, 2, 1) (see [2, Ch. 2, Sect. 8]). The horn condition is an important
element of the proofs of the imbedding theorems for anisotropic Sobolev
spaces used in this paper. Moreover we assume Ω is not axially symmetric.

Now we formulate the main result of this paper. Let g = f,x3 , h = v,x3 ,
q = p,x3 , ϑ = θ,x3 , χ = (rot v)3, F = (rot f)3. Assume that ‖θ0‖L∞(Ω) <∞.

Define

a : [0,∞)→ [0,∞), a(x) = sup{|α(y)|+ |α′(y)|+ |α′′(y)| : |y| ≤ x}
and c1 = a(‖θ0‖L∞). Moreover assume that 5/3 < σ < ∞, 5/3 < % < ∞,
5/%− 5/σ < 1 and for t ≤ T :

1. c1‖g‖L2(0,t;L6/5(Ω)) + c1c0‖f‖L∞(0,t;L3(Ω)) + c1‖F‖L2(0,t;L6/5(Ω))

+ c1‖f3‖L2(0,t;L4/3(S2)) + ‖h0‖L2(Ω) + ‖ϑ0‖L2(Ω) + ‖χ0‖L2(Ω)

+ c20(c1‖f‖L2(0,t;L6/5(Ω)) + ‖v0‖L2(Ω)) + ψ(c0) ≤ k1 <∞,
2. ‖f‖L2(0,t;L3(Ω)) ≤ k2 <∞,
3. ‖f‖L2(Ωt) + ‖v0‖H1(Ω) ≤ k3 <∞,
4. c1‖f‖L∞(Ωt)e

cc21k
2
2k1 + c1‖g‖Lσ(Ωt) +‖ϑ0‖W 2−2/σ

σ (Ω)
+‖h0‖W 2−2/σ

σ (Ω)
≤

k4 <∞,
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5. c1‖g‖L2(0,t;L6/5(Ω)) + c1‖f3‖L2(0,t;L4/3(S2)) + ‖h0‖L2(Ω) + ‖ϑ0‖L2(Ω) ≤
d <∞,

6. c1‖f‖Lσ(Ωt) + ‖v0‖W 2−2/%
% (Ω)

+ ‖θ0‖W 2−2/%
% (Ω)

≤ k5 <∞,

where c0 is the constant from Lemma 2.4, ψ(c0) is an increasing function
(see Lemma 3.3 in [8]) and k1, . . . , k5 are given constants. Assume

f ∈ Lσ(ΩT ), g ∈ Lσ(ΩT ), ϑ0 ∈W 2−2/σ
σ (Ω).

Theorem 1.1. Let the above assumptions hold. Assume that d is suffi-
ciently small (see [5, Main Theorem]). Then there exists a strong solution
(v, p, θ) to (1.1) such that v, θ ∈W 2,1

% (ΩT ), ∇p ∈ Lϕ(ΩT ), h, ϑ ∈W 2,1
σ (ΩT ),

∇q ∈ Lσ(ΩT ).

The result follows by applying the methods developed in [6] to the more
complicated system (1.1). However, the proof of existence is now much clearer
than in [6], because the mapping φ is constructed in a simpler way. This,
however, needs more regularity. Therefore in this paper we prove the exis-
tence of much more regular solutions than in [6].

Problem (1.1) in the case of inflow-outflow was generalized in [3, 4].
Papers [3, 4] base on [13], where the inflow-outflow problem was considered
for the Navier–Stokes equations in a cylindrical pipe.

2. Preliminaries. The notation used in this paper is the same as in [8,
Sect. 2.1]. The definition of weak solution is introduced in [8, Sect. 2.2]. Now
we recall some important results employed in this paper.

Lemma 2.1 (see [12], Korn inequality). Assume that

(2.1) EΩ(v) = ‖D(v)‖2L2(Ω) <∞, v · n̄|S = 0, div v = 0.

If Ω is not axially symmetric there exists a constant c1 independent of v such
that

(2.2) ‖v‖2H1(Ω) ≤ cEΩ(v).

If Ω is axially symmetric, η = (−x2, x1, 0), α =
	
Ω v · η dx, then there exists

a constant c independent of v such that

(2.3) ‖v‖2H1(Ω) ≤ c(EΩ(v) + |α|2).
Let us consider the problem

(2.4)

h,t − divT(h, q) = f in ΩT ,

div h = 0 in ΩT ,

n̄ · h = 0, n̄ · D(h) · τ̄α = 0, α = 1, 2, on ST1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on ST2 ,

h|t=0 = h0 in Ω.



234 J. Socała and W. M. Zajączkowski

Theorem 2.2. Let f ∈ Lp(ΩT ), h(0) ∈ W 2−2/p
p (Ω), Si ∈ C2, i = 1, 2,

1 < p < ∞. Then there exists a solution to problem (2.4) such that h ∈
W 2,1
p (ΩT ), ∇q ∈ Lp(ΩT ) and there exists a constant c depending on S and

p such that

(2.5) ‖h‖
W 2,1
p (ΩT )

+ ‖∇q‖Lp(ΩT ) ≤ c(‖f‖Lp(ΩT ) + ‖h0‖W 2−2/p
p (Ω)

).

The proof follows from considerations in [5, Ch. 4].
Let us consider the problem

(2.6)

v,t − divT(v, q) = f in ΩT ,

div v = 0 in ΩT ,

n̄ · v = 0, n̄ · D(v) · τ̄α = 0, α = 1, 2, on ST ,

v|t=0 = v0 in Ω.

Theorem 2.3. Let f ∈ Lp(Ω
T ), v0 ∈ W

2−2/p
p (Ω), Si ∈ C2, i = 1, 2,

1 < p < ∞. Then there exists a solution to problem (2.6) such that v ∈
W 2,1
p (ΩT ), ∇p ∈ Lp(ΩT ) and there exists a constant c depending on S and

p such that

(2.7) ‖v‖
W 2,1
p (ΩT )

+ ‖∇q‖Lp(ΩT ) ≤ c(‖f‖Lp(ΩT ) + ‖v0‖W 2−2/p
p (Ω)

).

The proof is similar to the proof from [1].

Lemma 2.4 (see [8, Lemma 2.3]). Assume that v0 ∈ L2(Ω), θ0 ∈ L∞(Ω),
f ∈ L2(0, T ;L6/5(Ω)), T < ∞. Assume that Ω is not axially symmetric.
Assume that there exist constants θ∗, θ∗ such that θ∗ < θ∗ and

θ∗ ≤ θ0(x) ≤ θ∗, x ∈ Ω.

Then there exists a weak solution to problem (1.1) such that (v, θ) ∈ V 0
2 (ΩT )

× V 0
2 (ΩT ), θ ∈ L∞(ΩT ) and

(2.8) θ∗ ≤ θ(x, t) ≤ θ∗, (x, t) ∈ ΩT ,

and there exist positive constants c, c0 independent of v and θ such that

‖v‖V 0
2 (ΩT ) ≤ c(a(‖θ0‖L∞(Ω))‖f‖L2(0,T ;L6/5(Ω)) + ‖v0‖L2(Ω)) ≤ c0,(2.9)

‖θ‖V 0
2 (ΩT ) ≤ c‖θ0‖L2(Ω) ≤ c0.(2.10)

Remark 2.5. If θ(0) ≥ 0, then θ(t) ≥ 0 for t ≥ 0.

3. Existence. For ξ, η, σ, % ≥ 1 define

‖(v, θ)‖M(ΩT ) = ‖v‖L∞(0,T ;W 1
η (Ω)) + ‖θ‖L∞(0,T ;W 1

η (Ω))

+ ‖v,x3‖L∞(0,T ;W 1
ξ (Ω)) + ‖θ,x3‖L∞(0,T ;W 1

ξ (Ω)),
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M(ΩT ) = {(v, θ) : ‖(v, θ)‖M(ΩT ) <∞},
‖(v, θ)‖N (ΩT ) = ‖v‖

W 2,1
% (ΩT )

+ ‖θ‖
W 2,1
% (ΩT )

+ ‖v,x3‖W 2,1
σ (ΩT )

+ ‖θ,x3‖W 2,1
σ (ΩT )

,

N (ΩT ) = {(v, θ) : ‖(v, θ)‖N (ΩT ) <∞}.

Lemma 3.1.

1. (M(ΩT ), ‖ ‖M(ΩT )) is a Banach space.
2. (N (ΩT ), ‖ ‖N (ΩT )) is a Banach space.
3. ‖u‖M(ΩT ) ≤ c‖u‖N (ΩT ) for u ∈ N (ΩT ) and the imbedding N (ΩT ) ⊂
M(ΩT ) is compact for % < η, 5/%− 3/η < 1, σ < ξ, 5/σ − 3/ξ < 1.

Let us consider the problems

(3.1)

vt − divT(v, p) = −λ[ṽ · ∇ṽ + α(θ̃)f ],

div v = 0,

v · n̄|S = 0, n̄ · D(v) · τ̄α|S = 0, α = 1, 2,

v|t=0 = v0

and

(3.2)

θt − κ∆θ = −λṽ · ∇θ̃,
n̄ · ∇θ|S = 0,

θ|t=0 = θ0,

where λ ∈ [0, 1] is a parameter and ṽ, θ̃ are treated as given functions. We
will assume that α ∈ C2(R).

Lemma 3.2. Assume that

(ṽ, θ̃) ∈M(ΩT ), 3 < η <∞,
f ∈ L%(ΩT ), 1 < % <∞,
v0 ∈W 2−2/%

% (Ω),

Si ∈ C2, i = 1, 2, 5/%− 3/η < 1, % < η.

Then there exists a unique solution to problem (3.1) such that

v ∈W 2,1
% (ΩT ) ⊂ L∞(0, T ;W 1

η (Ω))

and

‖v‖L∞(0,T ;W 1
η (Ω)) ≤ c‖v‖W 2,1

% (ΩT )

≤ c(λ‖(ṽ, θ̃)‖2M(ΩT ) + λa(c‖(ṽ, θ̃)‖M(ΩT ))‖f‖L%(ΩT ) + ‖v0‖W 2−2/%
% (Ω)

).
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Proof. We have

‖ṽ · ∇ṽ‖L%(ΩT ) ≤ c‖ṽ‖L∞(ΩT )‖∇ṽ‖Lη(ΩT ) ≤ c‖ṽ‖
2
L∞(0,T ;W 1

η (Ω))

≤ c‖(ṽ, θ̃)‖2M(ΩT )

and
‖α(θ̃)f‖L%(ΩT ) ≤ a(c‖θ̃‖L∞(0,T ;W 1

η (Ω)))‖f‖L%(ΩT )
≤ a(c‖(ṽ, θ̃)‖M(ΩT ))‖f‖L%(ΩT ).

By Theorem 2.2 the proof is complete.

Lemma 3.3. Assume that
3 < η <∞, 1 < % <∞, % < η, 5/%− 3/η < 1,

(ṽ, θ̃) ∈M(ΩT ), θ0 ∈W 2−2/%
% (Ω).

Then there exists a unique solution to problem (3.2) such that

θ ∈W 2,1
% (ΩT ) ⊂ L∞(0, T ;W 1

η (Ω))

and

‖θ‖L∞(0,T ;W 1
η (Ω)) ≤ c‖θ‖W 2,1

% (ΩT )
≤ c(λ‖(ṽ, θ̃)‖2M(ΩT ) + ‖θ0‖W 2−2/%

% (Ω)
).

Proof. We have

‖ṽ · ∇θ̃‖L%(ΩT ) ≤ ‖ṽ‖L∞(ΩT )‖∇θ̃‖Lη(ΩT )
≤ c‖ṽ‖L∞(0,T ;W 1

η (Ω))‖θ̃‖L∞(0,T ;W 1
η (Ω)) ≤ c‖(ṽ, θ̃)‖2M(ΩT ).

Then we argue as for Theorem 9.1 in [5, Ch. 4, Sect. 9] (see also [9, Theorem
17]).

Lemma 3.4. Let
(ṽ, θ̃) ∈M(ΩT ), 3 < ξ <∞, 3 < η <∞,
f ∈ Lσ(ΩT ), g ∈ Lσ(ΩT ), 1 < σ <∞ (where g = f,x3),

σ < η, Si ∈ C2, i = 1, 2, σ < ξ, 5/σ − 3/ξ < 1.

Let v, p be a unique solution to problem (3.1). Let h = v,x3, q = p,x3. Assume
h0 ∈W 2−2/σ

σ (Ω). Then

h ∈W 2,1
σ (ΩT ) ⊂ L∞(0, T ;W 1

ξ (Ω))

and

‖h‖L∞(0,T ;W 1
ξ (Ω)) ≤ c‖h‖W 2,1

σ (ΩT )

≤ c(λ‖(ṽ, θ̃)‖2M(ΩT ) + λa(c‖(ṽ, θ̃)‖M(ΩT ))‖(ṽ, θ̃)‖M(ΩT )‖f‖Lσ(ΩT )
+ λa(c‖(ṽ, θ̃)‖M(ΩT ))‖g‖Lσ(ΩT ) + ‖h0‖W 2−2/σ

σ (Ω)
).
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Proof. The function h is a solution of the following problem:

h,t − divT(h, q) = λ[−ṽ · ∇h̃− h̃ · ∇ṽ + αθ(θ̃)ṽf + α(θ̃)g] in ΩT ,

div h = 0 in ΩT ,

n̄ · h = 0, n̄ · D(h) · τ̄α = 0, α = 1, 2, on ST1 ,

hi = 0, i = 1, 2, h3,x3 = 0 on ST2 ,

h|t=0 = h0 in Ω,

where h̃ = ṽ,x3 , ϑ̃ = θ̃,x3 . We have

‖ṽ · ∇h̃‖Lσ(ΩT ) ≤ c‖ṽ‖L∞(ΩT )‖∇h̃‖Lξ(ΩT )
≤ c‖ṽ‖L∞(0,T ;W 1

η (Ω))‖h̃‖L∞(0,T ;W 1
ξ (Ω)) ≤ c‖(ṽ, θ̃)‖2M(ΩT )

and

‖h̃ · ∇ṽ‖Lσ(ΩT ) ≤ c‖h̃‖L∞(ΩT )‖∇ṽ‖Lη(ΩT )
≤ c‖h̃‖L∞(0,T ;W 1

ξ (Ω))‖ṽ‖L∞(0,T ;W 1
η (Ω)) ≤ c‖(ṽ, θ̃)‖2M(ΩT ).

Next

‖αθ(θ̃)ϑ̃f‖Lσ(ΩT ) ≤ ca(c‖θ̃‖L∞(0,T ;W 1
η (Ω)))‖ϑ̃‖L∞(0,T ;W 1

ξ (Ω))‖f‖Lσ(ΩT )
≤ ca(c‖(ṽ, θ̃)‖M(ΩT ))‖(ṽ, θ̃)‖M(Ω)‖f‖Lσ(ΩT )

and
‖α(θ̃)g‖Lσ(ΩT ) ≤ a(c‖θ̃‖L∞(0,T ;W 1

η (Ω)))‖g‖Lσ(ΩT )
≤ a(c‖(ṽ, θ̃)‖M(ΩT ))‖g‖Lσ(ΩT ).

By Theorem 2.1 the proof is complete.

Lemma 3.5. Assume that 3 < η <∞, 1 < σ <∞, σ < η, 5/σ−3/ξ < 1,
3 < ξ < ∞, σ < ξ, (ṽ, θ̃) ∈ M(ΩT ). Let θ be a unique solution to problem
(3.2). Let ϑ = θ,x3. Assume that ϑ(0) ∈W 2−2/σ

σ (Ω). Then

ϑ ∈W 2,1
σ (ΩT ) ⊂ L∞(0, T ;W 1

ξ (Ω))

and

‖ϑ‖L∞(0,T ;W 1
ξ (Ω)) ≤ c‖ϑ‖W 2,1

σ (ΩT )
≤ c(λ‖(ṽ, θ̃)‖2M(ΩT ) + ‖ϑ(0)‖

W
2−2/σ
σ (Ω)

).

Proof. The function ϑ is a solution of the problem

ϑ,t − κ∆ϑ = −λ[h̃ · ∇θ̃ + ṽ · ∇ϑ̃] in ΩT ,

n̄ · ∇ϑ = 0 on ST1 ,

ϑ = 0 on ST2 ,

ϑ|t=0 = ϑ0 in Ω,
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where ϑ̃ = θ̃,x3 . We have

‖h̃·∇θ̃‖Lσ(ΩT )≤‖h̃‖L∞(ΩT )‖∇θ̃‖Lη(ΩT )≤c‖h̃‖L∞(0,T ;W 1
ξ (Ω))‖θ̃‖L∞(0,T ;W 1

η (Ω))

≤c‖(ṽ, θ̃)‖2M(ΩT )

and

‖ṽ ·∇ϑ̃‖Lσ(ΩT )≤‖ṽ‖L∞(ΩT )‖∇ϑ̃‖Lξ(ΩT )≤c‖ṽ‖L∞(0,T ;W 1
η (Ω))‖ϑ̃‖L∞(0,T ;W 1

ξ (Ω))

≤c‖(ṽ, θ̃)‖2M(ΩT ).

Then we argue as for Theorem 9.1 in [5, Ch. 4, Sect. 9] (see also [9, Theorem
17]).

From Lemmas 3.1–3.5 it follows that if (ṽ, θ̃) ∈M(ΩT ), then there exists
a unique solution (v, θ) to problems (3.1)–(3.2) such that (v, θ) ∈M(ΩT ).

To prove the existence of solutions to problem (1.1) we apply the Leray–
Schauder fixed point theorem (see [7, 10, 11]). Therefore we introduce the
mapping φ : [0, 1]×M(ΩT )→M(ΩT ), (λ, ṽ, θ̃) 7→ φ(λ, ṽ, θ̃) = (v, θ), where
(v, θ) is a solution to problems (3.1)–(3.2).

For λ = 0 we have the existence of a unique solution. For λ = 1 every
fixed point is a solution to problem (1.1).

Lemma 3.6. Let the assumptions of Lemmas 3.2–3.5 be satisfied. Then
the mappings φ(λ, ·) :M(ΩT ) →M(ΩT ), λ ∈ [0, 1], are completely contin-
uous.

Proof. By Lemmas 3.1–3.5 the mappings φ(λ, ·), λ ∈ [0, 1], are compact.
It follows that bounded sets inM(ΩT ) are transformed into bounded sets in
M(ΩT ). Let (ṽi, θ̃i) ∈M(ΩT ), i = 1, 2, be two given elements. Then (vi, θi),
i = 1, 2, are solutions to the problems

(3.3)

vit − divT(vi, pi) = −λ(ṽi · ∇ṽi + α(θ̃i)f),

div vi = 0,

n̄ · D(vi) · τ̄ |S = 0, n̄ · vi|S = 0,

vi|t=0 = v0, i = 1, 2,

and

(3.4)

θit − κ∆θi = −λṽi · ∇θ̃i,
n̄ · ∇θi|S = 0,

θi|t=0 = θ0, i = 1, 2.

To show continuity we introduce the differences

(3.5) V = v1 − v2, P = p1 − p2, T = θ1 − θ2,
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which are solutions to the problems

(3.6)

Vt − divT(V, P ) = −λ[Ṽ · ∇ṽ1 + ṽ2 · ∇Ṽ + (α(θ̃1)− α(θ̃2))f ]

div V = 0,

V · n̄|S = 0, n̄ · D(V ) · τ̄ |S = 0,

V |t=0 = 0,

and

(3.7)

Tt − κ∆T = −λ[Ṽ · ∇θ̃1 + ṽ2 · ∇T̃ ],

n̄ · ∇T |S = 0,

T |t=0 = 0,

where Ṽ = ṽ1 − ṽ2, T̃ = θ̃1 − θ̃2. In view of [6] and [10, 11] we have

(3.8) ‖V ‖
W 2,1
% (ΩT )

+ ‖T ‖
W 2,1
% (ΩT )

≤ c[‖Ṽ ‖L∞(ΩT )‖∇ṽ1‖L%(ΩT ) + ‖ṽ2‖L∞(ΩT )‖∇Ṽ ‖L%(ΩT )
+ ca(max{‖θ̃1‖L∞(ΩT ), ‖θ̃2‖L∞(ΩT )})‖T̃ ‖L∞(ΩT )‖f‖L%(ΩT )
+ ‖ṽ2‖L∞(ΩT )‖∇T̃ ‖L%(ΩT ) + ‖Ṽ ‖L∞(ΩT )‖∇θ̃1‖L%(ΩT )]

≤ c(‖Ṽ ‖M(ΩT ) + ‖T̃ ‖M(ΩT )).

Let hi = vi,x3 , qi = pi,x3 , ϑi = θi,x3 , h̃i = ṽi,x3 , ϑ̃i = θ̃i,x3 . The functions
hi, ϑi, i = 1, 2, are solutions to the following problems:

hi,t − divT(hi, qi) = −λ[h̃i · ∇ṽi + ṽi · ∇h̃i + αθ(θ̃i)ϑ̃if + α(θ̃i)g] in ΩT ,

div hi = 0 in ΩT ,

n̄ · hi = 0, n̄ · D(h) · τ̄α, α = 1, 2, i = 1, 2, on ST1 ,

hij = 0, i = 1, 2, j = 1, 2, on ST2 ,

hi3,x3 = 0, i = 1, 2, on ST2 ,

hi|t=0 = h0 in Ω

and
ϑi,t − κ∆ϑi = −λ[h̃i · ∇θ̃i + ṽi · ∇ϑ̃i] in ΩT ,

n̄ · ∇ϑi = 0 on ST1 ,

ϑi = 0 on ST2 ,

ϑi|t=0 = ϑ0 in Ω.

We introduce the differences

H = h1 − h2, Q = q1 − q2, R = ϑ1 − ϑ2
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which are solutions to the problems

H,t − divT(H,Q) = −λ[H̃ · ∇ṽ1 + h̃2 · ∇Ṽ + Ṽ · ∇h̃1 + ṽ2 · ∇H̃
+ (αθ(θ̃1)− αθ(θ̃2))ϑ̃1f + αθ(θ̃2)R̃f

+ (α(θ̃1)− α(θ̃2))g in ΩT ,

divH = 0 in ΩT ,

n̄ ·H = 0, n̄ · D(H) · τ̄α = 0, α = 1, 2, on ST1 ,

Hj = 0, j = 1, 2, H3,x3 = 0 on ST2 ,

H|t=0 = 0 in Ω,

and
R,t − κ∆R = −λ[H̃ · ∇θ̃1 + h̃2 · ∇T̃ + Ṽ · ∇ϑ̃1 + ṽ2 · ∇R̃] in ΩT ,

n̄ · ∇R = 0 on ST1 ,

R = 0 on ST2 ,

R|t=0 = 0 in Ω,

where H̃ = h̃1 − h̃2, R̃ = ϑ̃1 − ϑ̃2. In view of [6] and [10, 11] we have

‖H‖
W 2,1
σ (ΩT )

+ ‖R‖
W 2,1
σ (ΩT )

≤ c[‖H̃‖L∞(ΩT )‖∇ṽ1‖Lη(ΩT ) + ‖h̃2‖L∞(ΩT )‖∇Ṽ ‖Lη(ΩT )
+ ‖Ṽ ‖L∞(ΩT )‖∇h̃1‖Lξ(ΩT ) + ‖ṽ2‖L∞(ΩT )‖∇H̃‖Lξ(ΩT )]

+ c(max{‖θ̃1‖L∞(ΩT ), ‖θ̃2‖L∞(ΩT )})‖T ‖L∞(ΩT )‖ϑ̃1‖L∞(ΩT )‖f‖Lσ(ΩT )
+ c(‖θ̃2‖L∞(ΩT )‖R̃‖L∞(ΩT )‖f‖Lσ(ΩT )
+ a(max{‖θ̃1‖L∞(ΩT ), ‖θ̃2‖L∞(ΩT )})‖T̃ ‖L∞(ΩT )‖g‖Lσ(ΩT )
+ ‖H̃‖L∞(ΩT )‖∇θ̃1‖Lη(ΩT ) + ‖h̃2‖L∞(ΩT )‖∇T̃ ‖Lη(ΩT )
+ ‖Ṽ ‖L∞(ΩT )‖∇ϑ̃1‖Lξ(ΩT ) + ‖ṽ2‖L∞(ΩT )‖∇R̃‖Lξ(ΩT ))

≤ c(‖Ṽ , T̃ ‖M(ΩT ))

and from (3.8) and Lemma 3.1 we obtain ‖(V, T )‖M(ΩT ) ≤ c‖(Ṽ , T̃ )‖M(ΩT ).
Hence continuity of φ follows. This concludes the proof.

Lemma 3.7. Let the assumptions of Lemmas 3.2–3.5 be satisfied. Then
for every bounded subsetM0 ofM(ΩT ), the family of maps

φ(·, ṽ, θ̃) : [0, 1]→M(ΩT ), (ṽ, θ̃) ∈M0,

is uniformly equicontinuous.

Proof. Let (ṽ, θ̃) ∈ M0, λi ∈ [0, 1], i = 1, 2, λ1 ≥ λ2 and let vi, θi be
solutions to the problems
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vit − divT(vi, pi) = −λi(ṽ · ∇ṽ + α(θ̃)f),

div vi = 0,

n̄ · D(vi) · τ̄ |S = 0, n̄ · vi|S = 0,

vi|t=0 = v0, i = 1, 2,

and
θit − κ∆θi = −λiṽ · ∇θ̃,
n̄ · ∇θi|S = 0,

θi|t=0 = θ0, i = 1, 2.

To show uniform equicontinuity we introduce the differences

V = v1 − v2, P = p1 − p2, T = θ1 − θ2
which are solutions to the problems

Vt − divT(V, P ) = −(λ1 − λ2)(ṽ · ∇ṽ + α(θ̃)f),

div V = 0,

n̄ · D(V ) · τ̄ |S = 0, n̄ · V |S = 0,

V |t=0 = 0

and
T,t − κ∆T = −(λ1 − λ2)ṽ · ∇θ̃,
n̄ · ∇T |S = 0,

T |t=0 = 0.

In view of Lemmas 3.2–3.3,

(3.9) ‖V ‖L∞(0,T ;W 1
η (Ω)) + ‖T ‖L∞(0,T ;W 1

η (Ω)) ≤ c((λ1 − λ2)‖(ṽ, θ̃)‖2M(Ω)

+ (λ1 − λ2)a(c‖(ṽ, θ̃)‖M(ΩT ))‖f‖Lσ(ΩT )).
Let hi = vi,x3 , ϑi = θi,x3 . We introduce the differences

H = h1 − h2, R = ϑ1 − ϑ2,
which satisfy H = V,x3 , R = T,x3 . In view of Lemmas 3.4 and 3.5,

(3.10) ‖H‖L∞(0,T ;W 1
ξ (Ω)) + ‖R‖L∞(0,T ;W 1

ξ (Ω)) ≤ c((λ1 − λ2)‖(ṽ, θ̃)‖M(ΩT )

+ (λ1 − λ2)a(c‖(ṽ, θ̃)‖M(ΩT ))‖(ṽ, θ̃)‖M(ΩT )‖f‖Lσ(ΩT )
+ (λ1 − λ2)a(c‖(ṽ, θ)‖M(ΩT ))‖g‖Lσ(ΩT )).

From (3.9) and (3.10) the uniform equicontinuity of φ(·, ṽ, θ̃) follows.

Proof of Theorem 1.1. In view of the above considerations and [8, Main
Theorem] the assumptions of the Leray–Schauder fixed point theorem are
satisfied. Hence Theorem 1.1 is proved.
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