
APPLICATIONES MATHEMATICAE
39,3 (2012), pp. 273–282

Artur Bryk (Warszawa)

USING RANDOMIZATION TO IMPROVE PERFORMANCE
OF A VARIANCE ESTIMATOR OF
STRONGLY DEPENDENT ERRORS

Abstract. We consider a fixed-design regression model with long-range
dependent errors which form a moving average or Gaussian process. We
introduce an artificial randomization of grid points at which observations
are taken in order to diminish the impact of strong dependence. We estimate
the variance of the errors using the Rice estimator. The estimator is shown
to exhibit weak (i.e. in probability) consistency. Simulation results confirm
this property for moderate and large sample sizes when randomization is
employed.

1. Introduction. Consider a fixed-design regression model (FDR)
(1.1) Yi,n = g(i/n) + εi,n, i = 1, . . . , n,

where g : [0, 1] → R is some function with smoothness properties described
later. For each n, we observe the random variables Y1,n, Y2,n, . . . , Yn,n and the
aim is to estimate the variance of the errors based on this information. Here
(εi,n) is a triangular array such that for each n, the finite sequence {εi,n}ni=1

is stationary, Eεi,n = 0, Eε2i,n = σ2ε > 0, Cov(εi,n, εj,n) = r(|i − j|), where
r(·) is a covariance function which does not depend on n. We assume that
r(k) = L(k)k−α, k = 1, . . . , n − 1, where 0 < α < 1 is a fixed constant and
L(·) is a function defined on [0,∞), slowly varying at infinity and positive
in some neighbourhood of infinity. The array (εi,n) is long-range dependent
(LRD) in the sense that

∑∞
k=1 |r(k)| =∞.

In a nonparametric setting the regression function g at a given point
x is usually estimated by one of many methods involving local polynomi-
als, smoothing splines or kernel estimators. Any of these methods weighs
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concomitants of grid points around x in such a way that those closer to
x contribute more to the value of the estimator. As the concomitants cor-
responding to a small neighbourhood of x form a block of consecutive ob-
servations which are strongly dependent, the resulting estimator is more
variable than in a weakly dependent case. In order to alleviate the effect of
dependence on variability of the regression estimator we consider a randomly
chosen permutation σ = σn of {1, . . . , n} and assume that the observations
are taken consecutively at the points σ(1)/n, σ(2)/n, . . . , σ(n)/n instead of
1/n, 2/n, . . . , 1. As dependence of the observations reflects solely the tempo-
ral order in which they are taken, the appropriate model of this observational
scheme is

(1.2) Yi,n = g

(
σn(i)

n

)
+ εi,n, i = 1, . . . , n.

The random permutation σn is chosen independently of (εi,n). We will refer
to (1.2) as the Randomized Fixed-Design Regression model (RFDR). The
idea of considering (1.2) is based on the observation made in [6] that the
regression estimators in a random design regression model with LRD errors
are less variable than in the fixed-design case, and is in line with a general
discussion in [8]. For a thorough discussion of the influence of design type
on regression estimation with LRD errors see [5]. We stress that plausibility
of model (1.2) is based on the assumption that the dependence between the
observations is due to their temporal and not spatial proximity. Thus, for
example, dependence of two consecutive observations (t = i, i+1) will be the
same regardless of grid points at which the observations are taken. Another
insight into advantages of randomization can be found in [2].

In the following we suppress the dependence of Yi,n and εi,n on n in
notation.

In particular, consider the case when (εi) is a one-sided moving average
process given by

(1.3) εi =
∞∑
t=0

ctηi−t, i = 1, . . . , n,

where (ηt)
∞
t=−∞ is a sequence of independent, identically distributed innova-

tions such that Eη = 0, E(η2) = σ2η < ∞ and the ct satisfy
∑∞

t=0 c
2
t < ∞.

Let
(1.4) ct = Lc(t)t

−β (c0 = 1),

where 1/2 < β < 1 and Lc(·) is a function defined on [ 0,+∞), slowly vary-
ing at infinity and positive in some neighbourhood of infinity. A routine
calculation based on the Karamata theorem (see [7, p. 281]) implies that
r(k) ∼ σ2ηC(β)L2

c(k)k−α, where C(β) =
	∞
0 (x + x2)−β dx and α = 2β − 1.

Thus, in this case, the sum of the absolute values of the covariances diverges.
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Put ct = 0 for t < 0. Then it is easily seen that

Var
( n∑
i=1

εi

)
= σ2η

n∑
k=−∞

( n∑
t=1

ct−k

)2
∼ σ2ηD(β)n2−αL2

c(n),

where D(β) = [(2− 2β)(3/2− β)]−1C(β).
Another model is a Gaussian LRD sequence with r(i) = L(i)i−α, 0 <

α < 1, and hence Var(ε1 + · · · + εn) ∼ D(α)L(n)n2−α, where D(α) =
2/[(1− α)(2− α)].

Let Yi, i = 1, . . . , n, be the observations in the RFDR model defined in
(1.2). We will use the Rice estimator (see [10]) to estimate the variance of
the errors σ2ε . In the RFDR model it is defined as follows:

(1.5) σ̂2ε =
1

2(n− 1)

n−1∑
i=1

(Ȳi+1 − Ȳi)2,

where Ȳi = Yσ−1
n (i). We investigate conditions under which σ̂2ε is weakly

consistent.
The paper concludes with a simulation example showing the effect of ran-

domization in practice. It indicates that randomization has a non-negligible
impact on the values of the Rice estimator for moderate and large sample
sizes.

2. Results. We consider first how the randomization introduced affects
the properties of long-range dependent errors.

Proposition 1. Let ε̄i,n = εσ−1
n (i), i = 1, . . . , n, n ∈ N. Then for the

RFDR model:

(i) (ε̄i,n), i ≤ n, n ∈ N, is a rowwise exchangeable array of random
variables;

(ii) Cov(ε̄i,n, ε̄j,n) ∼ 2L(n)n−α

(1− α)(2− α)
for i 6= j and Var(ε̄i,n) = Var(εi,n).

Point (ii) shows a fundamental advantage of randomization: large covari-
ances of the initial sequence, r(k) = L(k)k−α for small k, decrease to the
level CL(n)n−α in the randomized sequence.

Property (ii) follows by noting that Cov(ε̄i,n, ε̄j,n) equals, for i 6= j,

1

n(n− 1)

∑
1≤k 6=l≤n

Cov(ε̄i,n, ε̄j,n | σ(k) = i, σ(l) = j)

=
1

n(n− 1)

∑
1≤k 6=l≤n

Cov(εk,n, εl,n),
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where the last equality follows from the independence of σn and (εi,n). A rou-
tine application of the Karamata theorem yields (ii).

Note that the Rice estimator given by (1.5) has the representation

σ̂2ε =
1

2(n− 1)

{ n−1∑
i=1

(
g

(
i+ 1

n

)
− g
(
i

n

))2

+
n−1∑
i=1

(ε̄i+1 − ε̄i)2(2.1)

+ 2

n−1∑
i=1

(
g

(
i+ 1

n

)
− g
(
i

n

))
(ε̄i+1 − ε̄i)

}
=: Θ1 +Θ2 +Θ3.

We will prove below that Θ1 and Θ3 tend to 0 in probability as g(·) is Lip-
schitz, whereas Θ2 → σ2ε = Eε2 in probability. It will follow from the proofs
that Θ1 and Θ3 behave just as the analogously defined Rice estimator in the
FDR model, whereas, in this case, Θ2 is of the form 1

2(n−1)
∑n−1

i=1 (εi+1− εi)2

and, in view of the ergodic theorem, tends a.s. to 2−1E(ε2 − ε1)2 = r(0) −
r(1) = σ2ε − r(1) 6= σ2ε if r(1) 6= 0. Thus, using randomization in the FDR
model, we can construct a weakly consistent estimator of σ̂2ε .

We consider first the case of positively correlated, LRD Gaussian errors,
and then the case of a one-sided moving average process (εi)i∈N.

Theorem 1. Let (εi)i∈N be a Gaussian stationary sequence such that
r(k) ≥ 0 for k ∈ N and r(k) = L(k)k−α for 0 < α < 1. Assume that g is
Lipschitz continuous supported on [0, 1]. Then σ̂2ε → σ2ε in probability.

Theorem 2. Let (εi)i∈N be a linear process defined in (1.3) with coef-
ficients given in (1.4). Assume that g is Lipschitz continuous supported on
[0, 1]. Then σ̂2ε → σ2ε in probability.

3. Proofs. In all proofs C denotes a generic constant whose value may
change.

Recall that ε̄j = ε̄j,n = εσ−1
n (j). In order to prove Theorem 1 we will need

some properties of the moments of the randomized errors.

Lemma 1. Let (εi) satisfy the assumptions of Theorem 1. Moreover,
i1, . . . , il ∈ N are different indices and k1, . . . , kl ∈ N. Then

(i) E(ε̄k1i1 . . . ε̄
kl
il

) = 0 when k1 + · · ·+ kl = 2k + 1 with k ∈ N;
(ii) E(ε̄k1i1 . . . ε̄

kl
il

) = O(a
2ds/2e
n ) when k1+ · · ·+kl = 2k and s = #{kj , 1 ≤

j ≤ l : kj = 1}, where a2n = Var(n−1
∑n

i=1 εi) = Var(n−1
∑n

i=1 ε̄i) ∼
2((1− α)(2− α))−1L(n)n−α.

The above lemma was proved in [3].

Proof of Theorem 1. We use representation (2.1). It is easy to check
that |Θ1| = O(n−2) as g is Lipschitz. Using the Schwarz inequality, we have
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|Θ3| ≤ 2Θ
1/2
1 Θ

1/2
2 . Thus if Θ2 = OP (1) then Θ3

P→ 0, where P→ denotes
convergence in probability.

Note that a Gaussian stationary process such that r(k) → 0 is mix-
ing (see [4, Theorem 14 § 2.2]), so (ε2i ) is mixing, and thus ergodic. Hence
n−1

∑n
i=1 ε̄

2
i = n−1

∑n
i=1 ε

2
i
P→ σ2ε , which implies that 1

n−1
∑n−1

i=1 ε̄
2
i
P→ σ2ε .

Thus it is enough to prove that

(3.1)
1

n− 1

n−1∑
i=1

ε̄iε̄i+1
P→ 0.

The second moment of the lhs of (3.1) equals

1

(n− 1)2

n−1∑
k,i=1

E(ε̄iε̄i+1ε̄kε̄k+1).

Let m = #{i, i + 1, k, k + 1}. By Lemma 1 the terms of the last sum are
O(L2(n)n−2α) for m = 4 and O(L(n)n−α) for m = 3. By the Schwarz
inequality E(ε̄2i ε̄

2
i+1) is bounded by a constant which does not depend on i.

Hence

E
(

1

n− 1

n−1∑
i=1

ε̄iε̄i+1

)2

= O(n−2(n2L2(n)n−2α + nL(n)n−α + Cn)) = o(1).

Thus (3.1) follows via the Markov inequality.

Proof of Theorem 2. We follow the same argument after noting that, in
view of Theorem 1.3.3 in [11], (ε2i ) is ergodic. Thus, in order to prove (3.1),
it is enough to show that the second moment of the lhs of (3.1) tends to 0.
We will exploit the bound∑

1≤k 6=l≤n

∞∑
i=−∞

c2k−ic
2
l−i = 2

∑
1≤k<l≤n

∞∑
i=0

c2i c
2
i+(l−k)(3.2)

≤ 2

n∑
k=1

∞∑
i=0

c2i

n∑
j=1

c2i+j = O(n).

Note that

E
(

1

n− 1

n−1∑
t=1

ε̄tε̄t+1

)2

=
1

(n− 1)2

∑
1≤t,s≤n−1

Wt,s,

where

Wt,s =
∞∑

i1,i2,i3,i4=−∞
E(cσ−1

n (t)−i1cσ−1
n (t+1)−i2cσ−1

n (s)−i3cσ−1
n (s+1)−i4)E(ηi1ηi2ηi3ηi4).
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Let Wt,s = Tl, where l = #{{t, t+ 1} ∩ {s, s+ 1}}. We first consider T2:

T2 =

∞∑
i=−∞

E(c2
σ−1
n (t)−ic

2
σ−1
n (t+1)−i)Eη

4
1 +

∑
i 6=j

E(c2
σ−1
n (t)−ic

2
σ−1
n (t+1)−j)E(η21)2

+ 2
∑
i 6=j

E(cσ−1
n (t)−icσ−1

n (t+1)−icσ−1
n (t)−jcσ−1

n (t+1)−j)E(η21)2

=: Ψ1 + Ψ2 + Ψ3.

Note that using (3.2) we get

Ψ1 =
1

n(n− 1)

∑
i

∑
1≤k 6=l≤n

c2k−ic
2
l−iEη41 = O

(
1

n

)
.

Next, we show that Ψ2 and Ψ3 are bounded by a constant which does not
depend on t. Namely,

Ψ2 =
1

n(n− 1)

∑
i 6=j

∑
1≤k 6=l≤n

c2k−ic
2
l−jE(η21)2 ≤

(∑
i

c2i

)2
E(η21)2 = O(1)

and, by the Schwarz inequality,

|Ψ3| ≤
2E(η21)2

n(n− 1)

∑
i 6=j

∑
1≤k 6=l≤n

|ck−icl−ick−jcl−j |

≤ 2E(η21)2

n(n− 1)

∑
k 6=l

(∑
i

|ck−icl−i|
)2

≤ 2E(η21)2

n(n− 1)

∑
k 6=l

(∑
i

c2k−i

)(∑
i

c2l−i

)
= O(1).

Thus we have T2 = O(1). Next, we show that T1 is also O(1). Note that

T1 =

∞∑
i=−∞

E(cσ−1
n (t)−ic

2
σ−1
n (t+1)−icσ−1

n (t+2)−i)Eη
4
1

+ 2
∑
i 6=j

E(cσ−1
n (t)−icσ−1

n (t+1)−icσ−1
n (t+1)−jcσ−1

n (t+2)−j)E(η21)2

+
∑
i 6=j

E(cσ−1
n (t)−ic

2
σ−1
n (t+1)−jcσ−1

n (t+2)−i)E(η21)2 =: Ψ1 + Ψ2 + Ψ3.

Using the fact that ab ≤ 1
2(a2 + b2) and (3.2), we have

|Ψ1| ≤
1

n(n− 1)(n− 2)

∑
i

∑
1≤k 6=l 6=p≤n

|ck−ic2l−icp−i|Eη41

≤ 1

n(n− 1)(n− 2)

∑
k 6=l 6=p

1

2

(∑
i

c2k−ic
2
l−i +

∑
i

c2l−ic
2
p−i

)
Eη41 = O

(
1

n

)
.
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Moreover

|Ψ2| =
2

n(n− 1)(n− 2)

∑
i 6=j

∑
1≤k 6=l 6=p≤n

|ck−icl−icl−jcp−j |E(η21)2

≤ 2

n(n− 1)(n− 2)

∑
k 6=l 6=p

1

2

∑
i,j

(c2k−ic
2
l−j + c2l−ic

2
p−j)E(η21)2 = O(1),

since
∑

i c
2
i <∞. Using a similar reasoning we get |Ψ3| = O(1).

Consider now the case of different indices t, t+ 1, s, s+ 1. We have

T0 =

∞∑
i=−∞

E(cσ−1
n (t)−icσ−1

n (t+1)−icσ−1
n (s)−icσ−1

n (s+1)−i)Eη
4
1

+ 3
∑
i 6=j

E(cσ−1
n (t)−icσ−1

n (t+1)−icσ−1
n (s)−jcσ−1

n (s+1)−j)E(η21)2 =: Ψ̃1 + Ψ̃2.

A reasoning analogous to that for Ψ1 yields |Ψ̃1| = O(n−1). Moreover

(3.3) Ψ̃2 =
3E(η21)2

n(n− 1)(n− 2)(n− 3)

∑
1≤k 6=l 6=p 6=q≤n

∑
i 6=j

ck−icl−icp−jcq−j .

The rhs of (3.3) can be written as∑
k 6=l 6=p 6=q

=
∑
k,l,p,q

−
∑

k=l=p=q

−4
∑

k 6=l=p=q
−3

∑
k=l 6=p=q

−6
∑

k 6=l 6=p=q
(3.4)

=: Υ1 − Υ2 − Υ3 − Υ4 − Υ5.
Note that

Υ1 =
3E(η21)2

n(n− 1)(n− 2)(n− 3)

{(∑
k,l

∑
i

ck−icl−i

)2
−
∑
k,l,p,q

∑
i

ck−icl−icp−icq−i

}
= O

(
1

n4
{(Lc(n)n2−α)2 + n3}

)
= O(L2

c(n)n−2α + n−1).

Moreover

|Υ2| ≤
3E(η21)2

n(n− 1)(n− 2)(n− 3)

n∑
k=1

(∑
i

c2k−i

)(∑
j

c2k−j

)
= O

(
1

n3

)
.

A similar reasoning to the case of Ψ2 and Ψ3 implies |Υ4| = O(n−2). The other
terms of (3.4) are estimated analogously to Ψ2. We find that |Υ3| = O(n−2)
and |Υ5| = O(n−1). Thus T0 = O(L2

c(n)n−2α + n−1). Hence

E
(

1

n− 1

n−1∑
i=1

ε̄iε̄i+1

)2

= O
(

1

n2
(n2(L2

c(n)n−2α + n−1) + Cn)

)
= o(1)

and (3.1) follows via the Markov inequality.
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4. Simulation results. We conducted a simulation study to investi-
gate the effect of randomization of a fixed design regression in practice. We
generated series (Yi) of length n = 500, 1000 and 10000 with trend functions

(i) g1(x) = 2 sin(4πx);
(ii) g2(x) = 2− 5x+ 5 exp{−100(x− 0.5)2}.

These regression functions were also used in [9]. Moreover, we present an
estimation for non-Lipschitz trend functions to check the importance of the
Lipschitz assumption.

The errors considered follow a fractional autoregressive integrated moving
average process FARIMA(0, d, 0) with d = 0, 0.1, 0.2, 0.3, 0.4. It is known
that L(n) ∼ C and a one-sided moving average representation exists in
this case. For a FARIMA(0, d, 0) process εt = (1 − B)−dηt, where (ηt) is a
Gaussian white noise with marginal variance σ2η and Bηt = ηt−1, we have
C = σ2ηΓ (1− 2d)/Γ (d)Γ (1− d). We refer to [1] for more information on this
process.

The number of replications of each experiment was 1000.
Table 1 indicates that, in the RFDR model, the average values of the

Rice estimator correspond to theoretical values for d ≤ 0.3 even if n = 500.
However, in the FDR model, where the Rice estimator estimates σ2ε − r(1),
we observe a decrease in the mean value of the estimator with increasing d
which is caused by an increase of the covariance r(1). Moreover, the accuracy
of estimation of both g1 and g2 is the same in both models.

Table 1. Means and standard deviations of Rice estimator in FDR and RFDR models

n = 500 n = 1000 n = 10000

g1 g2 g1 g2 g1 g2

d FDR RFDR FDR RFDR FDR RFDR FDR RFDR FDR RFDR FDR RFDR

0 mean 0.9986 0.9976 1.0027 1.0008 1.0003 1.0014 0.9985 1.0000 1.0003 1.0003 0.9990 0.9994
SE 0.0781 0.0767 0.0779 0.0752 0.0560 0.0535 0.0537 0.0548 0.0174 0.0178 0.0172 0.0171

0.1 mean 0.9085 1.0135 0.9078 1.0144 0.9041 1.0148 0.9057 1.0162 0.9074 1.0193 0.9053 1.0178
SE 0.0702 0.0800 0.0672 0.0816 0.0486 0.0565 0.0485 0.0568 0.0157 0.0185 0.0151 0.0182

0.2 mean 0.8253 1.0804 0.8207 1.0743 0.8234 1.0808 0.8260 1.0855 0.8236 1.0940 0.8242 1.0947
SE 0.0625 0.0954 0.0583 0.0908 0.0445 0.0646 0.0441 0.0653 0.0137 0.0205 0.0138 0.0221

0.3 mean 0.7523 1.2213 0.7518 1.2181 0.7533 1.2446 0.7503 1.2434 0.7522 1.2876 0.7525 1.2878
SE 0.0557 0.1357 0.0546 0.1244 0.0392 0.0990 0.0379 0.0980 0.0123 0.0396 0.0122 0.0397

0.4 mean 0.6895 1.5090 0.6912 1.5268 0.6902 1.5840 0.6887 1.5720 0.6902 1.7678 0.6900 1.7686
SE 0.0486 0.2235 0.0488 0.2387 0.0352 0.2057 0.0353 0.1921 0.0106 0.1208 0.0111 0.1240

Table 2 indicates that, in both models, the accuracy of estimation does
not change for all non-Lipschitz regression functions. The estimation results
are similar for g3, g4, g5 and g6. The accuracy gets worse when the trend
function is not continuous, but is still quite good for g7 and g8. However,
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when we use g9 and g10 then the average values of the Rice estimator are
very high and do not correspond to the theoretical values at all.

Table 2. Mean values of Rice estimator in FDR and RFDR models for non-Lipschitz
trend functions supported on [0, 1] (n = 1000)

g3 g4 g5 g6

d FDR RFDR FDR RFDR FDR RFDR FDR RFDR

0 0.9993 1.0008 0.9988 1.0025 0.9972 0.9975 1.0003 0.9988
0.1 0.9078 1.0172 0.9067 1.0164 0.9048 1.0179 0.9055 1.0183
0.2 0.8247 1.0851 0.8227 1.0829 0.8234 1.0849 0.8242 1.0846
0.3 0.7514 1.2427 0.7504 1.2451 0.7510 1.2424 0.7512 1.2436
0.4 0.6884 1.5936 0.6885 1.5902 0.6895 1.5970 0.6907 1.5743

g7 g8 g9 g10

d FDR RFDR FDR RFDR FDR RFDR FDR RFDR

0 1.0035 1.0045 1.0496 1.0520 5.7048 5.6985 936.7202 936.6520
0.1 0.9116 1.0242 0.9604 1.0710 5.6136 5.7233 936.6218 936.8044
0.2 0.8303 1.0903 0.8794 1.1380 5.5259 5.7816 936.5948 936.8704
0.3 0.7585 1.2536 0.8072 1.2950 5.4562 5.9519 936.5458 936.9214
0.4 0.6942 1.5933 0.7447 1.6439 5.3922 6.2967 936.4752 937.2900

Here
g3(x) = −2

√
1− x, g4(x) = 4

√
(x− 0.5)2,

g5(x) = x log x, x 6= 0, g5(0) = 0,

g6(x) = x3/2 sin 1/x, x 6= 0, g6(0) = 0,

g7(x) =


0, x = 0,
1/ log x, x ∈ (0, 0.5],
1/x, x ∈ (0.5, 1],

g8(x) =


0, x = 0,
1/ log x, x ∈ (0, 0.1],
1/x, x ∈ (0.1, 1],

g9(x) =


0, x = 0,
1/ log x, x ∈ (0, 0.01],
1/x, x ∈ (0.01, 1],

g10(x) = 1/x, x 6= 0, g10(0) = 0.

The theoretical marginal variance for a FARIMA(0, d, 0) process with σ2η = 1
is

σ2f :=
Γ (1− 2d)

Γ 2(1− d)
=



1 if d = 0,
1.0195 if d = 0.1,
1.0987 if d = 0.2,
1.3165 if d = 0.3,
2.0701 if d = 0.4.
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The theoretical values of σ2f − r(1) for a FARIMA(0, d, 0) process are

σ2f − r(1) =
Γ (1− 2d)Γ (1 + d)

Γ (1− d)Γ (2− d)Γ (d)
=



1 if d = 0,
0.9062 if d = 0.1,
0.8240 if d = 0.2,
0.7523 if d = 0.3,
0.6900 if d = 0.4.
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