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Abstract. A competition model is described by a nonlinear first-order
differential equation (of Riccati type). Its solution is then used to construct
a functional equation in two variables (admitting essentially the same solu-
tion) and several iterative functional equations; their continuous solutions
are presented in various forms (closed form, power series, integral represen-
tation, asymptotic expansion, continued fraction). A constant C = 0.917 . . .
(inherent in the model) is shown to be a transcendental number.

1. Introduction. A motivation for the present investigation is to build
a bulk model for a competition process in cloud physics. Cloud seeding with
AgI (silver iodide) is performed to suppress hail by competition: silver iodide
particles, in their crystalline structure, are very similar to tiny ice crystals;
artificially increasing the number of silver iodide particles causes a larger
number of smaller hailstones (soft hail, less dangerous than fewer but larger
hailstones, cf. [6]). A similar model holds for the number of ions in air as a
result of ionisation and recombination (cf. [3]). Bulk models of competition
processes can give qualitative insight into certain mechanisms. It appears
plausible that competition models are also applicable to some marketing
problems.

We start with a differential equation and solve it; then we turn to func-
tional equations having essentially the same solution, but providing addi-
tional representations and interpretations.
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2. Model equation: a nonlinear differential equation. We use the
following model equation of competition:

df(x)

dx
=

1− bf(x)2

1 + ax2

with domain x ≥ 0, range f(x) ≥ 0, and real constants (model parameters)
a, b ≥ 0. The initial condition is f(x0) = f0 with real constants x0, f0 ≥ 0.
Physical interpretation of (properly scaled) variables: x time, f amount of
soft hail.

This simple model equation is a nonlinear first-order differential equation
of Riccati type. Interpretation of a, b: the campaign parameter a is a mea-
sure of intensity and duration of external activity (cloud seeding), and the
saturation parameter b is a measure for the internal effect of self-limitation
by interactions within the soft hail produced.

The parameters a and b characterize a hierarchy of competition models.
If a, b ∈ {0, 1}, we have four models.

Model 1. a = 0, b = 0:

df(x)

dx
= 1 with solution f(x)− f0 = x− x0,

meaning that the soft hail production is going on unlimited. (Useful as a
crude short-time approximation, but unrealistic for longer times.)

Model 2. a = 1, b = 0:

df(x)

dx
=

1

1 + x2
with solution f(x)− f0 = tan−1

(
x− x0
1 + xx0

)
,

[tan−1 denoting the principal value of the inverse of tan], showing that the
soft hail production is limited by the campaign resources. Here, with fi-
nite campaign resources, but (unrealistically) without saturation, we would
achieve 57% more soft hail than in the next model 3 (the case with satura-
tion): tan−1(∞) = π/2 = 1.57 . . . [using for simplicity x0 = f0 = 0].

Model 3. a = 0, b = 1:

df(x)

dx
= 1− f(x)2 with solution

f(x)− f0
1− f(x)f0

= tanh(x− x0),

describing that the soft hail production is limited by a saturation effect
(more and more soft hail particles get into each other’s way and make the
formation of new ones difficult). Yet the unlimited campaign resources (in-
tensity and duration) provide 100% soft hail in the long run: tanh(∞) = 1
[using for simplicity x0 = f0 = 0].
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Model 4. a = 1, b = 1:

df(x)

dx
=

1− f(x)2

1 + x2
with solution

f(x)− f0
1−f(x)f0

= tanh

(
tan−1

(
x− x0
1 + xx0

))
,

implying that the soft hail production is limited both by the saturation
effect and by the finite campaign resources. Yet in the long run, we obtain
92% of the soft hail of case 3 (where the campaign resources are unlimited):
tanh(tan−1(∞)) = 0.917 . . . [using for simplicity x0 = f0 = 0].

Competition model 4 is treated in the present paper. In the next section,
the (physically motivated) restriction on x and f(x) to be nonnegative will
be dropped: x and f(x) (also x0 and f0) may take arbitrary real values.

3. The competition function g. According to Section 2, competition
model 4 is characterized by the nonlinear differential equation of Riccati
type

(1)
df(x)

dx
=

1− f(x)2

1 + x2

with initial condition

(2) f(x0) = f0.

Proposition 3.1. The analytic solution f of (1) with condition (2) is

(3) f(x) =
f0 + g

(
x−x0
1+xx0

)
1 + f0g

(
x−x0
1+xx0

) ,
where the function g is defined by the composition g = tanh ◦ tan−1, i.e.

(4) g(x) = tanh(tan−1(x)),

with tan−1 denoting the principal value of the inverse of tan.

Proof. In Section 2, Model 4, we obtained the solution in implicit form,

f(x)− f0
1− f(x)f0

= g

(
x− x0
1 + xx0

)
,

which implies the explicit version (3).

We note some interesting particular cases of the solution (3).

I. The initial condition x0 = 0 leads to the solution

(5) f(x) =
f0 + g(x)

1 + f0g(x)
.
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Special subcases include:

x0 = 0 and f0 = 0, giving the solution f(x) = g(x),(6)

x0 = 0 and f0 →∞, yielding the solution f(x) = 1/g(x),(7)

x0 = 0 and f0 = 1, giving the solution f(x) = 1,(8)

x0 = 0 and f0 = −1, yielding the solution f(x) = −1.(9)

II. The initial condition f0 = 0 leads to the solution

(10) f(x) = g

(
x− x0
1 + xx0

)
.

Special subcases include:

x0 = 0 and f0 = 0, giving the solution f(x) = g(x),(11)

x0 →∞ and f0 = 0, yielding the solution f(x) = g(−1/x),(12)

x0 = 1 and f0 = 0, giving the solution f(x) = g

(
x− 1

x+ 1

)
,(13)

x0 = − 1 and f0 = 0, yielding the solution f(x) = g

(
1 + x

1− x

)
.(14)

Remark 3.2. We note that the zero function f = 0 is not a solution
of (1).

3.1. A power series expansion for the g function

Proposition 3.3. The g function has the following power series expan-
sion at x = 0:

(15) g(x) = x− 2

3
x3 +

2

3
x5 − 46

63
x7 + · · · , |x| < 1.

Proof. Writing the well-known power series expansion of tanh in this
way:

tanh(x) = T1x+ T3x
3 + T5x

5 + T7x
7 + · · · , |x| < π/2,

(with known coefficients Tn), we see that the function g = tanh ◦ tan−1 can
be represented as an arctan series:

g(x) = T1 tan−1(x)+T3 tan−1(x)3+T5 tan−1(x)5+T7 tan−1(x)7+· · · , |x|<1.

In order to obtain a power series expansion of g,

g(x) = G1x+G3x
3 +G5x

5 +G7x
7 + . . . , |x| < 1,

(with coefficients Gn to be determined), we substitute the well-known power
series for tan−1 into the above arctan expansion of g and compare the coef-
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ficients of equal powers of x. This leads to the following scheme:

G1 = T1,

G3 = T3 − (1/3)T1,

G5 = T5 − (3/3)T3 + (1/5)T1,

G7 = T7 − (5/3)T5 + (14/15)T3 − (1/7)T1, . . .

The coefficients Tn of the tanh power series are well known; they can be
expressed in terms of Bernoulli numbers:

T2n−1 = [22n(22n − 1]/(2n)!]B2n, n = 1, 2, . . . .

With B2 = 1/6, B4 = −1/30, B6 = 1/42, B8 = −1/30, . . . , we finally obtain
the coefficients Gn as linear combinations of Bernoulli numbers:

G1 = 6B2 = 1,

G3 = 10B4 − 1/3 = −2/3,

G5 = (28/5)B6 − 10B4 + 1/5 = 2/3,

G7 = (34/21)B8 − (28/3)B6 + (28/3)B4 − 1/7 = −46/63, . . . .

Proposition 3.4. The g function has an asymptotic value of g(∞) =
C = 0.9171523 . . . . This value is a transcendental number.

Proof. Using the definition g(x) = tanh(tan−1(x)) and letting x grow
indefinitely, the function tan−1(x) (principal value) goes asymptotically to-
wards π/2, so g(x) goes towards C = tanh(π/2) = 0.917 . . .

Since Gelfond’s constant G0 = exp(π) is known to be transcendental
(cf. [2]), it is evident that C = tanh(π/2) = [exp(π) − 1]/[exp(π) + 1] =
(G0 − 1)/(G0 + 1) is transcendental.

Proposition 3.5. The transcendental constant C is algebraically inde-
pendent of π.

Proof. Using Lambert’s well-known continued fraction expansion of
tanh(x) (cf. [5]), we have for C = tanh(π/2) the representation

C =
1

1 2
π + 1

3 2
π
+ 1

5 2
π+ 1

7 2
π+...

≡ 1

1 2
π+

1

3 2
π+

1

5 2
π+

1

7 2
π+

. . .

(where the continued fraction involves all positive odd numbers, each mul-
tiplied by the transcendental number 2/π). This is not a rational or alge-
braically irrational function of π, therefore C is algebraically independent
of π.
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Remark 3.6. The g function has the following integral representation
(well suited for numerical evaluation):

g(x) =

2 tan−1(x)�

0

1

1 + cosh(t)
dt, x ∈ R.

For x→∞, this yields the representation C =
	π
0 [1/(1 + cosh(t))] dt.

Remark 3.7. The proximity of C = 0.917 . . . to Catalan’s constant
G = 0.915 . . . is coincidental.

3.2. A functional equation for the g function

Proposition 3.8. Employing the constant C = g(∞) = tanh(π/2), the
g function satisfies the following (iterative) functional equation:

(16) g(x) =
C signum(x)− g(1/x)

1− C signum(x)g(1/x)
, x ∈ R.

Proof. Using the identity tan−1(x) = cot−1(1/x) = π/2−tan−1(1/x) for
x ≥ 0, we have

g(x) = tanh(tan−1(x)) = tanh(π/2− tan−1(1/x))

(for x ≥ 0), which is

g(x) =
tanh(π/2)− tanh(tan−1(1/x))

1− tanh(π/2) tanh(tan−1(1/x))
=

C − g(1/x)

1− Cg(1/x)
, x ≥ 0.

The case x < 0 is taken into account by the factor signum(x) (for the sign
of C), where signum(x) = −1 for x < 0, and +1 for x ≥ 0.

Remark 3.9. The functional equation (16) may be applied for analytic
continuation of g. Using for instance the power series (15) with its rather
limited interval of convergence (|x| < 1), we get g(x) for x ∈ R [namely g(x)
for |x| < 1 by (15) itself, and g(x) for |x| > 1 by (16) with g(1/x) via (15)].

3.3. An asymptotic expansion for the g function

Proposition 3.10. Introducing coefficients Kn (n = 0, 1, 2, . . .) as poly-
nomial functions (of degree n+ 1) of C = g(∞) = 0.917 . . . ,

K0 = C, K4 =
4

3
C − 7

3
C3 + C5,

K1 = −1 + C2, K5 = −2

3
+

8

3
C2 − 3C4 + C6,

K2 = −C + C3, K6 = −16

9
C +

40

9
C3 − 11

3
C5 + C7,

K3 =
2

3
− 5

3
C2 + C4, K7 =

46

63
− 256

63
C2 +

20

3
C4 − 13

3
C6 + C8, . . . ,
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the g function admits the following asymptotic expansion, valid for x→∞
(numerically useful already for x > 0):

(17) g(x) =

∞∑
n=0

Knx
−n ≡ K0 +K1x

−1 +K2x
−2 +K3x

−3 + · · · .

Proof. Utilizing the functional equation (16) in its simpler form for x>0,

g(x) =
C − g(1/x)

1− Cg(1/x)
, x > 0,

and expanding g(1/x) into a power series of 1/x, we obtain the Kn.

3.4. A continued fraction expansion for the g function

Proposition 3.11. The g function admits the following continued frac-
tion expansion (valid for |x| < π/2):

(18) g(x) =
1

1
x + 2

3
x
+ 5

5
x+ 10

7
x+ 17

9
x+...

≡ 1 + 02

1
x+

1 + 12

3
x+

1 + 22

5
x+

1 + 32

7
x+

1 + 42

9
x+

. . .

The formation law for the coefficients is interesting: the top numerator
is unity, the numerators to the left comprise all positive odd numbers, and
the numerators to the right are each the sum of the preceding two numbers.

Proof. Developing the continued fraction (18) into a power series, we get
full agreement with the former power series expansion (15) up to any order.
For instance, up to O(x9): g(x) = x−(2/3)x3+(2/3)x5−(46/63)x7+O(x9).

Remark 3.12. By an obvious equivalence transformation, the continued
fraction (18) takes the following form (valid for |x| < π/2):

(19) g(x)=
x

1 + 2x2

3+ 5x2

5+ 10x2
7+...

≡ (1 + 02)x

1+

(1 + 12)x2

3+

(1 + 22)x2

5+

(1 + 32)x2

7+
. . .

4. Functional equations with solutions expressible by g

4.1. A functional equation in two variables

Proposition 4.1. The functional equation in two real variables x, y

(20) f

(
x+ y

1− xy

)
=

f(x) + f(y)

1 + f(x)f(y)
for xy < 1

with side condition (involving two real constants x0, f0)

(21) f(x0) = f0
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has the following continuous solution:

(22) f(x) = tanh

(
tanh−1(f0)

tan−1(x0)
tan−1(x)

)
, x ∈ R.

Equivalently, with a real constant c defined by

c := tanh−1(f0)/tan−1(x0) for x0 6= 0, c := 1 for x0 = f0 = 0,

the latter solution reads

(22′) f(x) = tanh(c tan−1(x)), x ∈ R.
It is convenient to distinguish as standard solution g(x) the case c = 1
[corresponding to f(0) = 0, i.e. x0 = f0 = 0]:

(23a) (c = 1:) f(x) = g(x) := tanh(tan−1(x)), x ∈ R.
Other particular cases include:

(c = −1:) f(x) = −g(x), x ∈ R (negative standard solution),(23b)

(c = 0:) f(x) = 0, x ∈ R (trivial solution),(23c)

(c→ ±∞:) f(x) = ±1, x ∈ R (non-trivial constant solutions).(23d)

Proof. Let c be a real constant. Using the addition theorem for tanh,

tanh(x+ y) = [tanh(x) + tanh(y)]/[1 + tanh(x) tanh(y)],

and substituting c tan−1(x) for x and c tan−1(y) for y, we obtain

tanh(c tan−1(x) + c tan−1(y)) =
tanh(c tan−1(x)) + tanh(c tan−1(y))

1 + tanh(c tan−1(x)) tanh(c tan−1(y))
.

Since tan−1(x) + tan−1(y) = tan−1[(x + y)/(1 − xy)] for xy < 1, we get
functional equation (20) with continuous solution f(x) = tanh(c tan−1(x)),
x ∈ R.

Remark 4.2. Equation (20), with the condition “xy < 1”, is an example
of a conditional functional equation (functional equation on a restricted
domain) (cf. [1]).

Remark 4.3. Unlike the differential equation (1), the functional equa-
tion (20) admits a trivial solution (23c). In search for constant solutions,
putting in (20) f = k (where k is a real constant) produces a cubic equation
for k, namely (k2−1)k = 0, with roots k = 1,−1, 0 [results (23d) and (23c)].
Moreover, if f(x) is a solution of (20), then −f(x) is also a solution of (20)
[cf. e.g. (23a) and (23b), but also (23d)].

4.2. An iterative functional equation

Proposition 4.4. The iterative functional equation

(24) f

(
2x

1− x2

)
=

2f(x)

1 + f(x)2
for |x| < 1
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with side condition (involving two real constants x0, f0)

(25) f(x0) = f0

has the following analytic solution:

(26) f(x) = tanh

(
tanh−1(f0)

tan−1(x0)
tan−1(x)

)
, x ∈ R.

Equivalently, with a real constant c (defined as in Subsection 4.1), the latter
solution reads

(26′) f(x) = tanh(c tan−1(x)), x ∈ R.
As before in Subsection 4.1, it is convenient to distinguish as standard so-
lution g(x) the case c = 1 [corresponding to f(0) = 0]:

(27) (c = 1:) f(x) = g(x) := tanh(tan−1(x)), x ∈ R.
(Other particular cases are as in Subsection 4.1.)

Proof. Putting y = x in equation (20) and applying Proposition 4.1, we
get the result.

Remark 4.5. Unlike the differential equation (1), the functional equa-
tion (24) admits a trivial solution.

Remark 4.6. Choosing as side condition (25) in particular f(0) = 0, we
get a functional equation for g itself:

(28) g

(
2x

1− x2

)
=

2g(x)

1 + g(x)2
for |x| < 1.

4.3. Generation of g by iteration

Lemma 4.7. If f : R → R satisfies equation (24), is analytic at 0, and
f(t0) = 0 for some t0 6= 0, then f(x) = 0 for all x ∈ R.

Proof. The function x 7→ 2x/(1 − x2) for x ∈ (−1, 1) is continuous,
strictly increasing, and maps the interval (−1, 1) onto R. Let α be its inverse.
Then

α(t) = t/[1 + (t2 + 1)1/2], t ∈ R,
is continuous, strictly increasing, mapping R onto the interval (−1, 1) and

0 < α(t) < t for t > 0; −t < α(t) < 0 for t < 0.

It follows that
lim
n→∞

αn(t) = 0, t ∈ R, t 6= 0,

where αn(t) denotes the nth iterate of α. Setting x = α(t) in (24) we get

f(t) = 2f(α(t))/[1 + f(α(t))2], t ∈ R.
By assumption, f(t0) = 0. It follows that f(α(t0)) = 0 and α(t0) 6= 0. Hence,
by induction, f(αn(t0)) = 0 and αn(t0) 6= 0 for all n ∈ N, which proves that
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0 is an accumulation point of zeros of f . Now the analyticity of f implies
that f is the zero function.

In view of Lemma 4.7, we will now deal with solutions f of equation (24)
such that f(x) 6= 0 for x 6= 0. The main result reads as follows.

Theorem 4.8. Suppose that a function f : R→ R is such that f ′(0) = 1
and the function

(R\{0}) 3 x 7→ f(x)− f ′(0)x

x2

is bounded in the vicinity of 0. If f satisfies the functional equation

(24′) f

(
2x

1− x2

)
=

2f(x)

1 + f(x)2
for |x| < 1,

then f = g := tanh ◦ tan−1.

Proof. Of course, the function g = tanh ◦ tan−1 satisfies the functional
equation (24′), g(0) = 0, g′(0) = 1, and the function

(R\{0}) 3 x 7→ g(x)− g′(0)x

x2

is bounded in the vicinity of 0.

Suppose that f : R→ R fulfills the stated conditions and satisfies equa-
tion (24′). Then, of course, f(0) = 0. The function α : R→ (−1, 1) defined by

α(t) = t/[1 + (t2 + 1)1/2], t ∈ R,

is the inverse of (−1, 1) 3 x 7→ 2x/(1 − x2). Therefore, setting x = α(t) in
(24′) we obtain

f(t) =
2f(α(t))

1 + f(α(t))2
, t ∈ R,

whence, putting

P (y) :=
2y

1 + y2
, y ∈ R,

we see that f satisfies the iterative functional equation

(29) f(t) = P [f(α(t))], t ∈ R.

Since |α(t)|< |t| for t 6= 0, α′(0) = 1/2, and P is differentiable with P ′(0) = 2,
we have

[α′(0)]2P ′(0) = 1/2 < 1.

It follows that there exist numbers δ > 0, c > 0, and s[1/2, 1), l ≥ 2, such
that s2l < 1 and

|α(t)| ≤ s|t| when t ∈ (−δ, δ), |P (y)− P (y)| ≤ l|y− y| when y, y ∈ [−c, c].
Since f(0) = g(0) = 0 and f ′(0) = g′(0) = 1, by a uniqueness theorem of
J. Matkowski ([4, Theorem 1]) we conclude that f = g.
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As an immediate consequence of this result, we obtain the following
characterization of the function g = tanh ◦ tan−1.

Theorem 4.9. Suppose that a function f : R→ R is twice differentiable
at the point 0 and f ′(0) = 1. If

(20′) f

(
x+ y

1− xy

)
=

f(x) + f(y)

1 + f(x)f(y)
for xy < 1,

then f = g := tanh ◦ tan−1.

Remark 4.10. The functional equation (29) may serve to generate the
function g(x), x ∈ R, by iteration analytically and/or numerically. Sketch
of algorithm: with two auxiliary functions P : R → (−1, 1) and α : R →
(−1, 1),

P (t) =
2t

1 + t2
, t ∈ R, and α(x) =

x

1 + (1 + x2)1/2
, x ∈ R,

and with identity as an iteration start, the first iteration steps (indexed by
n = 0, 1, . . .) are

g0(x) = x, g1(x) = P (g0(α(x))) = P (α(x)),

g2(x) = P (g1(α(x))) = P 2(α2(x)), g3(x) = P (g2(α(x))) = P 3(α3(x)), . . .

Iterating without limit (n→∞) would lead to gn(x)→ g(x) exactly. Stop-
ping at a finite n (e.g. n = 4) yields a useful approximation of g(x).

Acknowledgements. Thanks go to Prof. Ludwig Reich for fruitful dis-
cussions. The referee’s critical comments are highly appreciated.
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