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EVOLUTION IN A MIGRATING POPULATION MODEL

Abstract. We consider a model of migrating population occupying a com-
pact domain Ω in the plane. We assume the Malthusian growth of the pop-
ulation at each point x ∈ Ω and that the mobility of individuals depends
on x ∈ Ω. The evolution of the probability density u(x, t) that a randomly
chosen individual occupies x ∈ Ω at time t is described by the nonlocal
linear equation ut =

	
Ω ϕ(y)u(y, t) dy − ϕ(x)u(x, t), where ϕ(x) is a given

function characterizing the mobility of individuals living at x. We show that
the asymptotic behaviour of u(x, t) as t → ∞ depends on the properties of
ϕ in the vicinity of its zeros.

1. Introduction. Evolution problems of the form

∂tu(x, t) = G(u, x, t)− u(x, t)Lu(x, t),(1)

where G is in general a nonlinear operator, which depends on u in nonlocal
way, and L is a linear operator, have been considered in many papers; see
e.g. [1], [2], [3], [5], [6] and the references therein.

For example, the equation

∂tu(x, t) =
�

Rn
J(x− y)u(y, t) dy − u(x, t)

has been applied in [1] to describe the evolution of the density u(x, t) of
a population. Here the function J(x − y) is interpreted as the migration
probability from location y to location x and −u(x, t) is the rate at which
individuals leave x to move to any other site.

The authors of [5] give many other examples of biological phenomena
which can be modelled by equation (1).

In this paper we will consider a particular form of equation (1). A pop-
ulation of density m(x, t) occupies a compact domain Ω ⊂ R2 so that
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ωm(x, t) dx is the mass of the population in a subdomain ω ⊂ Ω at time t.
Assume that the density of newborn individuals is proportional to m(x, t)
(the Malthusian law of growth of population), and moreover, that the in-
dividuals living at x can move to other points in Ω. Let mo(x, t) be the
density of outgoing individuals, and mi(x, t) the density of incoming indi-
viduals. The mobility of individuals living at x is characterized by a non-
negative, continuous function ϕ on Ω, 0 ≤ ϕ(x) ≤ 1, i.e. the density has the
form mo(x, t) = ϕ(x)m(x, t). Assume that mi(x, t) depends only on t, i.e.
individuals can move from a point x in Ω to another one with probability
independent of the destination. This assumption and the fact that the mass
of outgoing individuals equals the mass of incoming individuals lead to�

Ω

mo(x, t) dx =
�

Ω

ϕ(x)m(x, t) dx =
�

Ω

mi(t) dx = mi(t)|Ω|,

where |Ω| denotes the volume of the domain Ω. Below we assume, for sim-
plicity, that |Ω| = 1. Hence mi(t) =

	
Ω ϕ(y)m(y, t) dy.

The change of m(x, t) during the time interval ∆t depends on:

(i) the mass of newborn individuals, which according to the Malthusian
law equals am(x, t)∆t, where a > 0 is a constant;

(ii) the growth of the mass of incoming individuals, which is mi(t)∆t;
(iii) the growth of the mass of outgoing individuals, which is mo(x, t)∆t.

The above assumptions lead to the following continuity equation:

∂tm(x, t) = am(x, t) +
�

Ω

ϕ(y)m(y, t) dy − ϕ(x)m(x, t).(2)

Equation (2) is supplemented with the initial condition

m(x, 0) = m0(x),(3)

where m0(x) ≥ 0 is a given initial density. Integrating (2) over Ω we get an
equation for the total mass M(t) of the population, M ′(t) = aM(t). Hence
M(t) = M0 exp(at), where M0 =

	
Ωm0(x) dx.

The function u(x, t) = m(x, t)/M(t) is the probability density that a
randomly chosen individual at time t lives at a point x ∈ Ω. The evolution
of u(x, t) is described by the linear nonlocal problem

∂tu(x, t) =
�

Ω

ϕ(y)u(y, t) dy − ϕ(x)u(x, t) =: Au(t)− ϕ(x)u(x, t),(4)

u(x, 0) = u0(x),(5)

where u0(x) = m0(x)/M0. Problem (4)–(5) can be considered for Ω ⊂ Rn
with n > 2, but this does not lead to more interesting mathematical phe-
nomena. Indeed, (4) is a family of ordinary differential equations indexed by
the parameter x and the dimension of the space of parameters is not impor-
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tant for our considerations. The choice n = 2 is motivated by a biological
interpretation of the problem.

By a solution of problem (4)–(5) we mean a continuous function of x and
t on Ω × [0, T ], differentiable with respect to t, which satisfies (4) pointwise
on Ω × [0, T ] and satisfies the initial condition (5).

For a fixed x, u(x, t) as a function of t satisfies a linear differential equa-
tion with the initial data u0(x), hence by the variation of parameters formula

u(x, t) = u0(x)e−ϕ(x)t + e−ϕ(x)t
t�

0

eϕ(x)sAu(s) ds.(6)

Equation (6) is the integral form of the differential problem (4)–(5), which
is quite convenient to prove the existence of solution of (4)–(5) as well as to
study its properties.

Lemma 1.1. If limt→∞Au(t) = 0 and ϕ(x) ≥ a > 0 on B ⊂ Ω, then
u(x, t)→ 0 as t→∞ uniformly on B.

Proof. We rewrite (6) in the form

u(x, t) = u0(x)e−ϕ(x)t + e−ϕ(x)t
T�

0

eϕ(x)sAu(s) ds+ e−ϕ(x)t
t�

T

eϕ(x)sAu(s) ds.

For a given ε > 0 we choose T such that Au(t) < ε for t > T . Then for
x ∈ B, we obtain

u(x, t) ≤ u0(x)e−at + e−at
T�

0

eϕ(x)sAu(s) ds+ ε
1− eT−t

a
.

Letting t → ∞, we see that the solution u(x, t) converges to 0 uniformly
on B.

2. Existence of solution and its properties. Problem (4)–(5) fea-
tures properties characteristic for diffusion problems. The reason is that
equation (4), after some transformation of time, becomes the nonlocal diffu-
sion equation related to the functional (see [4] for the definition of nonlocal
diffusion)

F(v) =
�

Ω

�

Ω

(ϕ(x)v(x)− ϕ(y)v(y))2 dx dy.

One of the characteristic properties of diffusion problems is the existence
of an entropy or, in other words, of a Lyapunov functional.

Property 1. The square of the L2-norm of the solution of (4)–(5) with
respect to the measure ϕ(x) dx, Lu(t) =

	
Ω u

2(x, t)ϕ(x) dx, is a Lyapunov
functional for that problem.
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Proof. Multiplying (4) by ϕu we get
1

2

d

dt
ϕ(u2) = ϕuAu− ϕ2u2.(7)

Integrating (7) over Ω, and using the Jensen inequality, we obtain
1

2
(Lu)′(t) =

1

2

d

dt

( �

Ω

ϕ(x)u2(x, t) dx

)
(8)

= (Au(t))2 −
�

Ω

ϕ2(x)u2(x, t) dx ≤ 0.

Property 2. The unique solution with homogeneous initial data is
u(x, t) ≡ 0.

Proof. We have Lu(t) ≡ 0, so the Lebesgue measure of the intersection
of the supports of u(·, t) and ϕ is zero. Hence (4) takes the form ∂tu(x, t) =
−ϕ(x)u(x, t), which implies that u(x, t) = u0(x)e−ϕ(x)t ≡ 0.

The next property says that, under some assumption, the solution u
becomes instantaneously positive, so u diffuses at infinite speed.

Property 3. If the intersection of the supports of u0 and ϕ has a posi-
tive Lebesgue measure, then u(x, t) > 0 for all t > 0.

Proof. Our asumption implies that Au(t) > 0 for small t. Now the pos-
itivity of the solution is a consequence of the integral equation (6) satisfied
by any solution of (4)–(5).

If the assumption of Property 3 is not satisfied, we can write the solution
of our problem in an explicit form.

Property 4. If the supports of u0 and ϕ do not meet in a set of positive
Lebesgue measure, then u(x, t) = u0(x) is the unique solution of our problem.

Proof. It is easy to check that u(x, t) = u0(x) is a solution. Assume that
there exists another solution v. Because our problem is linear, w = u− v is
a solution of (4) with homogeneous initial data. Using Property 2 we have
w ≡ 0, and so u(x, t) = v(x, t).

The problem (4)–(5) describes the evolution of density, hence its solution
must satisfy

Property 5. The solution u(x, t) is nonnegative and
	
Ω u(x, t) dx = 1.

Proof. The conservation of the L1-norm is obvious, it is enough to inte-
grate (4) over Ω. The nonnegativity of u is a consequence of Properties 3
and 4.

For the proof of existence of such a solution we use the Banach contraction
principle.
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Theorem 2.1. There exists a unique solution of problem (4)–(5).

Proof. It follows from Property 5 that it is enough to look for nonnegative
solutions. For fixed T > 0 and λ > 0 we define

X = {u : [0, T ]→ C0(Ω) : u ≥ 0, u(0) = u0}.
The set X equipped with the distance function

dλ(u, v) = sup
t∈[0,T ]

e−λt‖u(t)− v(t)‖C0(Ω)

is a complete metric space. The operator W defined on (X, dλ) by

Wv(t)(x) = u0(x)e−ϕ(x)t + e−ϕ(x)t
t�

0

eϕ(x)s
�

Ω

ϕ(x)v(s)(y) dy ds

is a contraction on X for λ > 1. In fact, we have

dλ(Wu,Wv) = sup
t∈[0,T ]

e−λt‖Wu(t)(x)−Wv(t)(x)‖C0(Ω)

≤ sup
t∈[0,T ]

∥∥∥e−(λ+ϕ(x))t t�
0

eϕ(x)s
�

Ω

eλse−λs|u(s)(y)− v(s)(y)| dy ds
∥∥∥
C0(Ω)

≤ sup
t∈[0,T ]

∥∥∥e−(λ+ϕ(x))t t�
0

eϕ(x)s
�

Ω

eλsdλ(u, v) dy ds
∥∥∥
C0(Ω)

= dλ(u, v) sup
t∈[0,T ]

∥∥∥e−(λ+ϕ(x))t t�
0

e(λ+ϕ(x))s ds
∥∥∥
C0(Ω)

= dλ(u, v) sup
t∈[0,T ]

∥∥∥∥1− e−(λ+ϕ(x))t

λ+ ϕ(x)

∥∥∥∥
C0(Ω)

≤ 1

λ
dλ(u, v).

3. Asymptotic behaviour of solutions. The asymptotic properties
of solutions of (4)–(5) depend on the behaviour of the function ϕ in the
vicinity of the set of its zeros, B = {x ∈ Ω : ϕ(x) = 0}. If ϕ > 0, the
solution tends as t → ∞ uniformly to the unique stationary solution, thus
we may say that the steady state coincides with this stationary solution. If
B 6= ∅, the situation is more complicated. The steady state is a measure with
a density or a singular measure, depending on the properties of 1/ϕ.

This kind of asymptotic behaviour is characteristic for semigroups of
Markov operators for which the Foguel alternative is satisfied, i.e. sweeping
occurs or the semigroup is asymptotically stable (for a detailed presentation
see [7] and the references therein).

First, we consider the case B = ∅, i.e. ϕ > 0 onΩ. The stationary solution
U satisfies AU(x) = ϕ(x)U(x), hence U(x) = A(U)/ϕ(x). Here A(U) is a
constant, which depends on the unknown density U . We have

	
Ω U(x) dx = 1,
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so A(U) = (
	
Ω(ϕ(x))−1 dx)−1. This implies that the stationary solution is

of the form

U(x) =

( �

Ω

1

ϕ(y)
dy

)−1 1

ϕ(x)
.(9)

Theorem 3.1. If ϕ(x) > 0 on Ω, then the solution of (4)–(5) tends
uniformly to the stationary solution U defined in (9).

Proof. The function v(x, t) = u(x, t) − U(x) satisfies equation (4) and	
Ω v(x, t) dx = 0. Using the Cauchy inequality we get

Av(t) ≤
( �
Ω

ϕ(x) dx
)1/2

(Lv(t))1/2.(10)

The L2-norm of v satisfies

(‖v‖22)t =
d

dt

( �
Ω

v2 dx
)

= 2
�

Ω

v(x, t) dxAv(t)− 2
�

Ω

v2(x, t)ϕ(x) dx(11)

= −2Lv(t).

Now, it follows from (11) that Lv tends to 0 as t → ∞. Hence (10) implies
that Av(t)→ 0 as t→∞. Using Lemma 1.1, we get the uniform convergence
of solutions to the steady state U .

If B 6= ∅ and
	
Ω 1/ϕ(x) dx < ∞, we define U(x) by (9) for x /∈ B and

U(x) =∞ on B, and we call such a function the steady state.

Theorem 3.2. If
	
Ω 1/ϕ(x) dx < ∞, then the solution of (4)–(5) con-

verges to the steady state as t → ∞ uniformly on each compact subset of
Ω \B.

Proof. Again we consider the difference v(x, t) := u(x, t) − U(x). Evi-
dently v satisfies (4) on Ω \ B and

	
Ω v(x, t) dx = 0. We cannot, as before,

differentiate the L2-norm of v (it is not even clear if v is in L2(Ω) or not).
However, we can still use the Lyapunov functional which is well defined

for v, and inequality (10) holds. We show that Av(t)→ 0 as t→∞. First, we
prove that there exists a sequence tn → ∞ such that Av(tn) → 0. Suppose
that Av(t) > a > 0 for all t > 0. Then

∂tv(x, t) ≥ a− ϕ(x)v(x, t)(12)

and therefore

v(x, t) ≥ a

ϕ(x)
−
(

a

ϕ(x)
− v0(x)

)
e−ϕ(x)t.(13)

For each neighbourhood Kr = {x ∈ Ω : dist(x,B) < r} of B, and for suf-
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ficiently large t, we have
�

Ω\Kr

v(x, t) dx ≥ 1

2

�

Ω\Kr

a

ϕ(x)
dx.(14)

Thus, for sufficiently small r we get
�

Kr

v(x, t) dx =
�

Kr

u(x, t) dx−
�

Kr

U(x) dx ≥ −
�

Kr

U(x) dx(15)

> −1

4

�

Ω\Kr

a

ϕ(x)
dx.

Inequalities (14)–(15) imply
	
Ω v(x, t) dx > 0 for sufficiently large t, which

leads to a contradiction.
Suppose that there exists a sequence t̄n → ∞ such that Av(t̄n) > ā for

some ā > 0. Note that

(Av)′(t) =
�

Ω

ϕ(x) dxAv(t)−
�

Ω

v(x, t)ϕ2(x) dx.(16)

It follows from (10) that Av(t) is bounded. Moreover we have∣∣∣ �
Ω

v(x, t)ϕ(x) dx
∣∣∣ ≤ maxϕ2(x)

�

Ω

|u(x, t)− U(x)| dx ≤ 2 maxϕ2(x)

and hence (Av)′ (t) is bounded on R+.
To show that Av(t) → 0, it is enough to prove that Lv(t) → 0. Assume

to the contrary that Lv(t) > b > 0 for all t > 0 and some b.
Note that

d

dt

( �
Ω

u2(x, t) dx
)

= Av(t)− Lv(t).(17)

As shown above, there exists tn → ∞ such that Av(tn) → 0, and the
derivative of Av(t) is bounded. Hence for some δ > 0 the intervals ∆n :=
(tn − δ, tn + δ) are such that on ∆n,

d

dt

( �
Ω

u2(x, t) dx
)
< −1

2
b.(18)

This implies that
	
Ω u

2(x, t) dx becomes negative in finite time, which is
absurd. In this way we proved that Lv(t)→ 0, so Av(t)→ 0.

If 1/ϕ is not integrable, we have only partial results about the asymptotic
behaviour of solutions. If B is a single point, B = {x0}, and 1/ϕ is not
integrable, we call the measure δx0 the stationary state. This is justified by
the next theorem.



312 W. Bąk and T. Nadzieja

Theorem 3.3. If B = {x0} and 1/ϕ is not integrable, then the solution
of problem (4)–(5) tends to δx0 as t → ∞ in the sense of weak convergence
of measures.

Proof. We show that Au(t) → 0 as t → ∞. First, we prove that there
exists a sequence tn tending to ∞ such that Au(tn) → 0. Assume that
Au(t) ≥ a > 0, hence

u(x, t) ≥ a

ϕ(x)
−
(

a

ϕ(x)
− u0(x)

)
e−ϕ(x)t.(19)

For δ > 0 we define Eδ = {x ∈ Ω : ‖x − x0‖ > δ}. Now we choose δ > 0
such that 1

2a
	
Eδ

1/ϕ(x) dx > 2. For each sufficiently large t,(
a

ϕ(x)
− u0(x)

)
e−ϕ(x)t < 1,(20)

so we get
	
Eδ
u(x, t) dx > 1, a contradiction. Note that

(Au)′(t) = Au(t)
�

Ω

ϕ(x) dx− Lu(t),

and the derivative (Au)′(t) is bounded. To prove that Lu(t) tends to 0, we
proceed as in the preceding proof. Having this convergence and using (10)
(with u instead of v), we know that Au(t)→ 0 and Lemma 1.1 implies that
u(·, t) goes to 0 uniformly on each compact subset of Ω \ {x0}.
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