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SELF-SIMILAR SOLUTIONS FOR THE
TWO-DIMENSIONAL NERNST–PLANCK–DEBYE SYSTEM

Abstract. We investigate the two-component Nernst–Planck–Debye sys-
tem by a numerical study of self-similar solutions using the Runge–Kutta
method of order four and comparing the results obtained with the solutions
of a one-component system. Properties of the solutions indicated by numer-
ical simulations are proved and an existence result is established based on
comparison arguments for singular ordinary differential equations.

1. Introduction. The Nernst–Planck–Debye (NPD) system is a math-
ematical model formulated by W. Nernst and M. Planck at the end of the
19th century as a basic model for electrodiffusion processes in plasmas. Later
on, in the 1920s, it was studied by P. Debye and E. Hückel in the context of
electrolysis.

The model represents transport of charged particles in a continuous en-
vironment such as either ions (in plasmas or electrolytes) or electrons and
holes (in semiconductors) subject to diffusion. Due to the common occur-
rence of electrically charged particles in the nature, NPD equations play
an important role in computer simulations in electrochemistry and biology.
They relate to simulations of ions channels in cell membranes, propagation
of signals in nerves and other phenomena [1, 2, 6, 9, 12].

The NPD system is

ut = ∆u+∇ · (u∇φv−u) in Ω × R+,

vt = ∆v −∇ · (v∇φv−u) in Ω × R+,

φv−u = En ∗ (v − u) in Ω,
(1.1)
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where u = u(x, t), v = v(x, t) : Ω × R+ → R for Ω ⊂ Rn either a bounded
subset or the entire space in the case n ≥ 2, En is the fundamental solution
of the Laplace equation, and ∗ denotes convolution. The initial conditions
for the system are

u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω.(1.2)

Our goal is to study some numerical solutions as well as to prove the existence
of some special solutions of (1.1) in the case when Ω is the entire space R2,
so (1.1) is supplemented with the integrability conditions u(·, t), v(·, t) ∈
L1(R2), instead of no-flux boundary conditions on ∂Ω × (0, T ).

As mentioned above, such a model describes electrodiffusion processes,
where u(x, t) and v(x, t) characterise the densities of negatively and posi-
tively charged particles, respectively. The function φ = φv−u is the electric
potential generated by the particles themselves [9], with ∆φ = v−u. Besides
electrochemistry, similar systems occur in semiconductors theory [7], where
u(x, t) and v(x, t) describe the density of charge carriers, e.g. electrons and
holes.

There is an extensive literature devoted to the existence of solutions
of (1.1) and their asymptotic behaviour for various boundary conditions; see
e.g. [1, 2, 7, 8].

In particular, it was shown in [2] that for solutions of the Cauchy problem
for (1.1) in Ω = Rn, n ≥ 3, the intermediate asymptotics is determined
by the Gauss–Weierstrass kernel, i.e. the diffusion prevails in the long time
behaviour. In the two-dimensional case Ω = R2, the solutions have genuinely
nonlinear asymptotics determined by self-similar solutions. Thus, the study
of self-similar solutions, as performed for the one-component system in [8],
is of importance in that case.

Nevertheless, up to our best knowledge, the problem of characterising
the existence range of total charges (Mξ,Mη) of self-similar solutions has
not been solved yet. A numerical study of self-similar solutions is part of
[10, Master Thesis] written under the supervision of Dr. Michał Olech.

It is worth mentioning that the similar model
ut = ∆u−∇ · (u∇φv+u) in Ω × R+,

vt = ∆v +∇ · (v∇φv+u) in Ω × R+,

φv+u = En ∗ (v + u) in Ω,
describes the phenomena of chemotaxis, that is, evolution of particles sub-
jected to attracting forces [5, 3]. The classical parabolic-elliptic Keller–Segel
model is the above model with v ≡ 0. Here, self-similar solutions exist if and
only if the sum of the masses is less than 8π.

The authors of [3] initiated a study of two-component systems in R2 with
general interactions between the components. In particular, they studied
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conditions for finite time blowup of solutions versus the existence of (global
in time) forward self-similar solutions which, in this case, can have finite
mass/charge.

The main result in this note is Theorem 3.1 on the existence of self-similar
solutions of (1.1) for arbitrary total charges Mξ, Mη ≥ 0. Apart from the
proof of that statement based on comparison arguments for singular ordinary
differential equations (in fact, for the system (2.4) below), we present some
numerical results showing some properties of self-similar solutions which have
not been rigorously treated yet.

The system (1.1) poses certain difficulties in finding numerical solutions
due to the nonlinear and nonlocal character of the equations coupled through
the potential function φ. One can approximate solutions of such a problem
using e.g. the finite element or the finite volume method. However, these
methods are useful over a bounded domain, which is not the case in this
study. In our case we propose to make some preliminary reductions, namely,
we consider solutions which are radially symmetric and scale-invariant. De-
spite the simplifications, numerically solving the system (1.1) will not be
a trivial task because of singular coefficients of order 1/y in an ordinary
differential equation for y ∈ (0,∞) (cf. (2.4) below).

In numerical experiments we used the Runge–Kutta method of the fourth
order, standard for finding solutions of ordinary differential equations. In the
next section we shall deal with numerical investigation of solutions of (2.4).
Moreover, we shall try to discover conditions for initial parameters when the
solutions are bounded, and we shall check their concavity. Our main point of
reference for all numerical simulations is the one-component model described
in [8] where the authors proved the existence of solutions and their proper-
ties. We shall check whether analogous properties hold in the two-component
case, and then we shall prove Theorem 3.1.

2. Radially symmetric and self-similar solutions

Definition 2.1. Let u(x, t) and v(x, t) be solutions of the system (1.1)
in Ω = R2. They are called

• radially symmetric if

u(x, t) = u(|x|, t), v(x, t) = v(|x|, t),

• self-similar (invariant under a scaling) if for each λ > 0, the rescaled
functions λ2u(λx, λ2t), λ2v(λx, λ2t) are also solutions of (1.1).

Using the so-called integrated density method (see e.g. [5]) we are able
to convert (1.1) into a system of two ordinary differential equations with
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certain boundary conditions. To do so, we first define

(2.1) Q(r, t) =
�

Br

u(x, t) dx, P (r, t) =
�

Br

v(x, t) dx,

where Br is the ball of radius r > 0 centered at the origin.
Integrating both equations of (1.1) over Br, and changing variables, we

obtain a new system (no longer nonlocal)

Qt = Qrr −
1

r
Qr +

1

2πr
Qr(P −Q),

Pt = Prr −
1

r
Pr −

1

2πr
Pr(P −Q).

(2.2)

In the new variables the initial conditions (1.2) imply

Q(0, t) = 0, P (0, t) = 0,

lim
r→∞

Q(r, t) =Mu ≡
�
u0(x) dx, lim

r→∞
P (r, t) =Mv ≡

�
v0(x) dx.

(2.3)

Further we suppose thatMu,Mv are finite, i.e. u and v are integrable over R2.
So far we have been using only the assumption that the solutions of (1.1)

are radially symmetric. Now, we use their self-similarity. Applying the sub-
stitutions Q(r, t) = 2πξ(r2/t) and P (r, t) = 2πη(r2/t), where ξ, η : R→ R
and y = r2/t, we rewrite (2.2) in the form

ξ′′(y) +
1

4
ξ′(y) +

1

2y
ξ′(y)(η(y)− ξ(y)) = 0,

η′′(y) +
1

4
η′(y)− 1

2y
η′(y)(η(y)− ξ(y)) = 0,

(2.4)

with the boundary conditions at the origin

(2.5) ξ(0) = 0, η(0) = 0,

and the asymptotic conditions at infinity

(2.6) lim
y→∞

ξ(y) =Mξ

(
=

1

2π
Mu

)
, lim

y→∞
η(y) =Mη

(
=

1

2π
Mv

)
.

In solving the system (2.4) numerically such boundary conditions are hardly
applicable. Therefore, using the shooting method, we change these boundary
conditions into the following initial conditions:

(2.7)
ξ(0) = 0, η(0) = 0,

ξ′(0) = a, η′(0) = b,

where a and b are nonnegative real numbers.
Now, we can numerically solve the system (2.4) with the initial condi-

tions (2.7) using the Runge–Kutta method. Because of singularities, we use
the diagonally implicit scheme of the method with variable y-step (which
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preserves stability properties of solutions and features reasonable compu-
tational cost) instead of the classical well-known procedure (see e.g. [11]).
Such a scheme together with variable time step has been implemented using
Matlab software. The time step changes dynamically according to the rate
of change of the solution. We present below some solutions determined for
selected values of a and b.

Fig. 1. Bounded solutions of (2.4)–(2.7) for a = 0.2, b = 0.4 (left) and a = 2.0, b = 2.0
(right). Notice that the functions with smaller initial data stabilise faster than those with
greater initial slopes.

Fig. 2. Unbounded solutions of (2.4)–(2.7) for a = 0.6, b = 0.1 (left) and a = 1.1, b = 0.3
(right). Notice that the functions increase much faster for greater initial data.

Looking at these plots, the first conclusion is that solutions of (2.4)–(2.7)
satisfy the boundary conditions (2.6) not for all parameters a, b. Therefore,
we are interested in finding pairs of parameters for which the solutions are
simultaneously bounded, otherwise they could not satisfy the boundary con-
ditions (2.6).

The second observation is that the solutions are bounded if and only
if they are concave, as was the case in the one-component model in [8].
To determine such values of parameters, we again use the Runge–Kutta
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method but this time we focus on the stopping conditions. As we have already
mentioned, the change of the time step depends on the changes of the solution
in the following way:

actual time step× accuracy
distance between subsequent values of solution

.

As long as the solution changes rapidly, the time step becomes smaller and
smaller. Conversely, if the solution stabilises then the time step becomes
greater. When the time step is of order 10 we assume that a bounded solution
is found.

The black region represents the pairs of parameters (a, b) for which so-
lutions of (2.4) satisfy the boundary conditions (2.7) and (2.6). It is thus
reasonable to conjecture that |a− b| is small compared to max(a, b).

3. Existence of solutions. In this section we prove the following the-
orem using a series of simple a priori properties of solutions of the problem
(2.4)–(2.6)

Theorem 3.1. For allMξ,Mη > 0 there exists a unique solution of (2.4)
satisfying the conditions (2.5) and (2.6).

Lemma 3.2. Whenever solutions exist for finite positive constantsMξ,Mη,
the functions ξ and η are positive, strictly increasing and concave.

Proof. Fix Mξ,Mη ∈ (0,∞) and consider a solution (ξ, η) of (2.4). First
we note that ξ, η ∈ C∞(0,∞) by (2.4). Since Mξ > 0 there exists a point
y1 > 0 such that ξ′(y1) > 0. Now assume for a contradiction that the function
ξ is not strictly increasing. Then there exists y0 > 0 such that ξ′(y0) = 0.
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The Cauchy–Lipschitz theorem, applied to the first order equation in ξ′

ξ′′(y) +
1

4
ξ′(y)− 1

2y
w(y)ξ′(y) = 0

with w(y) = ξ(y) − η(y) ∼ (a − b)y as y → 0, implies that ξ′(y) = 0
for y > 0. Hence ξ(y) = ξ(y0) > 0 for each y > 0, which contradicts the
boundary conditions (2.5). Since ξ is increasing and satisfies the boundary
conditions, it is positive and concave. Similarly, the same holds for η.

Lemma 3.3. Whenever solutions exist for finite positive constantsMξ,Mη

such that Mξ > Mη, then ξ(y) > η(y) and ξ′(y) > η′(y) for all y > 0.

Proof. It is obvious that for a = b the unique solution of (2.4)–(2.7)
is ξ(y) = η(y) = 4a(1 − e−y/4) with Mξ = Mη = 4a, which represents
the electroneutrality case of charged particles that do not interact on the
average (in the mean field approximation). Concerning uniqueness, observe
that the system (2.4)–(2.7) (of the first order in ξ′ and η′, with 1

yw(y) =
1
y (ξ(y) − η(y)) ∼ (a − b) as y → 0) is, in fact, not singular and enjoys the
property of uniqueness of solutions to the Cauchy problem.

Let us define a new function w(y) = ξ(y)− η(y). Then w satisfies

(3.1) w′′(y) +
1

4
w′(y)− 1

2y
(ξ′(y) + η′(y))w(y) = 0

with the boundary conditions

(3.2) w(0) = 0, w(∞) =Mξ −Mη > 0.

By the previous uniqueness property, a 6= b, i.e. w′(0) 6= 0. Therefore, either
w = ξ − η or w = η − ξ is strictly positive for y > 0 in a neighbourhood
of the origin. Now assume for a contradiction that there exists y0 such that
w(y0) = 0, and take the minimal y0 > 0 with this property. Multiplying
(3.1) by y and integrating it from 0 to y we obtain

y�

0

(
zw′′(z) +

1

4
zw′(z)− 1

2
(ξ′(z) + η′(z))w(z)

)
dz = 0.

After simple calculations we have

yw′(y)− w(y) + 1

4
yw(y) =

1

4

y�

0

w(z) dz +
1

2

y�

0

(ξ′(z) + η′(z))w(z) dz.

Now letting y = y0, as the integrands are positive, we obtain

0 ≥ y0w′(y0) =
1

4

y0�

0

w(z) dz +
1

2

y0�

0

(ξ′(z) + η′(z))w(z) dz > 0,

which is a contradiction. Therefore, w > 0 over the positive half-line. Since
ξ(y) > η(y) for large y, it follows that ξ(y) > η(y) for all y > 0.
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To prove the second part of the lemma, multiply (3.1) by ey/4 to get

(w′(y)ey/4)′ = ey/4
1

2
(ξ′(y) + η′(y))w(y).

Integrating the above equation over the interval (0, y) we obtain

w′(y) = e−y/4w′(0) +
1

2
e−y/4

y�

0

ez/4(ξ′(z) + η′(z))w(z) dz > 0,

which ends the proof.

Before proving Theorem 3.1 let us recall the main statements related to
self-similar solutions for the one-component Debye system

ψ′′(y) +
1

4
ψ′(y)− 1

2y
ψ(y)ψ′(y) = 0,(3.3)

ψ(0) = 0, lim
y→∞

ψ(y) =M.(3.4)

As in the two-component problem, it is more convenient to consider the
equation with the initial conditions

ψ(0) = 0, ψ′(0) = a,

for some positive real constant a. Herczak and Olech [8, Theorem 4.1] proved
the existence of solutions for (3.3) as well as the following properties:

• if ψ′(0) > 1
2 then ψ′(y) > 1

2 for all y > 0,
• ψ′(0) = a < 1

2 implies 0 < ψ′(y) < a and ψ′′(y) < 0 for all y > 0,
• if ψ′(0) < 1

2 then limy→∞ ψ(y) exists, and the values of that limit fill
up the half-line [0,∞).

A similar analysis of the equation

φ′′ +
1

4
φ′ +

1

2y
φφ′ = 0

arising in chemotaxis and gravitationally attracting particles theory is in [4].
Here, the solutions with φ(0) = 0, φ′(0) = a exist for each a ≥ 0 but the
limiting values limy→∞ φ(y) fill up the finite interval [0, 4).

Now, knowing the main result for (3.3)–(3.4), namely the existence of
solutions with a given M > 0, we are able to prove Theorem 3.1.

Proof of Theorem 3.1. Fix Mξ,Mη > 0. We can assume that Mξ > Mη,
and as previously we define w(y) = ξ(y) − η(y). Then w satisfies (3.1)
and (3.2). We have proved in previous lemmas (which are in fact a priori
estimates for any possible solution of (2.4)) that w(y) > 0 and w′(0) > 0 for
all y > 0. Therefore, we can apply the comparison principle for second order
ordinary differential equations to prove the existence of w with a given value
of limy→∞w(y) ∈ (0,∞). Keeping in mind Lemma 3.2 it is easy to check
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that w is a subsolution of (3.3),

w′′(y) +
1

4
w′(y)− 1

2y
w′(y)w(y) ≥ 0.

Thanks to the existence result in [8] for the above equation, we have the
existence of a solution w to (3.1) with any given limy→∞w(y) ∈ (0,∞).
Now the function ξ satisfies the linear equation

ξ′′(y) +
1

4
ξ′(y)− 1

2y
ξ′(y)w(y) = 0

with a given function w and boundary conditions ξ(0) and ξ(∞) > w(∞).
So this equation can be solved explicitly:

ξ(y) = C

y�

0

exp

(t�

0

(
w(s)

2s
− 1

4

)
ds

)
dt

with the constant

C =Mξ

(∞�
0

exp

(t�

0

(
w(s)

2s
− 1

4

)
ds

)
dt

)−1
.

Then we calculate η(y) = ξ(y) − w(y) and check its properties, which ends
the proof. �
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