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A FRICTIONLESS CONTACT PROBLEM FOR

ELASTIC-VISCOPLASTIC MATERIALS WITH INTERNAL

STATE VARIABLE

Abstract. We study a mathematical model for frictionless contact be-
tween an elastic-viscoplastic body and a foundation. We model the mate-
rial with a general elastic-viscoplastic constitutive law with internal state
variable and the contact with a normal compliance condition. We derive a
variational formulation of the model. We establish existence and uniqueness
of a weak solution, using general results on first order nonlinear evolution
equations with monotone operators and fixed point arguments. Finally, we
study the dependence of the solution on perturbations of contact conditions
and prove a convergence result.

1. Introduction. In this paper we study a mathematical model de-
scribing contact between deformable bodies. We model the material behav-
ior with a general elastic-viscoplastic constitutive law with internal state
variable of the form

σ(t) = Aε(u̇(t)) + Eε(u(t))(1.1)

+

t�

0

G
(
σ(s)−Aε(u̇(s)), ε(u(s)),k(s)

)
ds,

k̇(t) = φ
(
σ(t)−Aε(u̇(t)), ε(u(t)),k(t)

)
,(1.2)

where u denotes the displacement field, and σ and ε(u) represent the stress
tensor and the linearized strain tensor, respectively. HereA and E are nonlin-
ear operators describing the purely viscous and the elastic properties of the
material, respectively; G is a nonlinear constitutive function which describes
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the viscoplastic behavior of the material and depends on the internal state
variable k; and φ is also a nonlinear constitutive function which depends
on k.

We suppose that k is a vector-valued function whose evolution is gov-
erned by the differential equation (1.2); the set of admissible internal state
variables is given by

Y = {α = (αi) | αi ∈ L2(Ω), 1 ≤ i ≤ m}.
In (1.1) and throughout, the dot above a variable represents the derivative
with respect to the time variable t.

It follows from (1.1) that, at each time moment t, the stress tensor σ(t)
is split into two parts: σ(t) = σV (t) + σR(t), where σV (t) = Aε(u̇(t))
represents the purely viscous part of the stress whereas σR(t) satisfies a
rate-type elastic-viscoplastic relation with internal state variable

σR(t) = Eε(u(t)) +

t�

0

G
(
σR(s), ε(u(s)),k(s)

)
ds,(1.3)

k̇(t) = φ
(
σR(t), ε(u(t)),k(t)

)
.(1.4)

When G = 0 the constitutive law (1.1) reduces to the Kelvin–Voigt vis-
coelastic constitutive relation given by

(1.5) σ(t) = Aε(u̇(t)) + Eε(u(t)).

Examples and mechanical interpretation of elastic-viscoplastic materials
of the form (1.3) in which the function G does not depend on the internal
variable k were considered by many authors: see for instance [4, 11] and the
references therein. Contact problems for materials of the form (1.1), (1.3)
without internal variable and (1.5) are the topic of numerous papers, e.g.
[7, 8, 9, 15, 16, 21] and the recent references [1, 10]. Contact problems for
elastic-viscoplastic materials of the form (1.3)–(1.4) were studied in [3, 6, 17].
Dynamic frictionless contact problems for materials of the form (1.1), in
which the internal state variable represents the damage field whose evolution
is described by a differential inclusion, are investigated in [18, 19].

In the present paper we consider a mathematical model for friction-
less contact between an elastic-viscoplastic body and a deformable founda-
tion. The contact is modeled with the normal compliance condition (see,
e.g., [16]). We derive the variational formulation and prove existence and
uniqueness of a weak solution of the model. Finally, we study the depen-
dence of the solution on perturbations of contact conditions and prove a
convergence result.

The paper is organized as follows. In Section 2 we present the notation
and some preliminaries. In Section 3 we present the mechanical problem,
we list the assumptions on the data and give the variational formulation of
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the problem. In Section 4 we state our main existence and uniqueness result
based on first order evolution equations with monotone operators and fixed
point arguments. In Section 5 we study the dependence of the solution on
perturbations of contact conditions and prove a convergence result.

2. Notation and preliminaries. In this section we present the no-
tation we shall use and some preliminary material. For further details, we
refer the reader to [5].

We denote by Sd the space of second order symmetric tensors on Rd (d =
2, 3), while “·” and | · | will represent the inner product and the Euclidean
norm on Sd and Rd.

Let Ω ⊂ Rd be a bounded domain with a Lipschitz boundary Γ and
let ν denote the unit outer normal on Γ . Everywhere, the indices i and j
run from 1 to d, summation over repeated indices is implied and the index
that follows a comma represents the partial derivative with respect to the
corresponding component of the independent spatial variable.

We use the standard notation for Lebesgue and Sobolev spaces associated
to Ω and Γ and introduce the spaces:

H = L2(Ω)d = {u = (ui) | ui ∈ L2(Ω)},
H = {σ = (σij) | σij = σji ∈ L2(Ω)},
H1 = {u = (ui) | ε(u) ∈ H},
H1 = {σ ∈ H | Divσ ∈ H}.

Here ε and Div are the deformation and divergence operators, respectively,
defined by

ε(u) = (εij(u)), εij(u) = 1
2(ui,j + uj,i), Divσ = (σij, j).

The spaces H, H, H1 and H1 are real Hilbert spaces endowed with the
canonical inner products given by

(u,v)H =
�

Ω

uivi dx ∀u,v ∈ H,

(σ, τ )H =
�

Ω

σijτij dx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H ∀u,v ∈ H1,

(σ, τ )H1 = (σ, τ )H + (Divσ,Div τ )H ∀σ, τ ∈ H1.

The associated norms on the spaces H, H, H1 and H1 are denoted by
| · |H , | · |H, | · |H1 and | · |H1 , respectively. For every v ∈ H1 we also use write
v for the trace of v on Γ , and we denote by vν and vτ the normal and the
tangential components of v on Γ given by

(2.1) vν = v · ν, vτ = v − vνν.
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We also denote by σν and στ the normal and the tangential traces of a
function σ ∈ H1, and we recall that when σ is a regular function then

(2.2) σν = (σν) · ν, στ = σν − σνν,
and the following Green’s formula holds:

(2.3) (σ, ε(v))H + (Divσ,v)H =
�

Γ

σν · v da ∀v ∈ H1.

Let T > 0. For every real Banach space X we use the notation C(0, T ;X)
and C1(0, T ;X) for the space of continuous and continuously differentiable
functions from [0, T ] to X, respectively; C(0, T ;X) is a real Banach space
with the norm

|f |C(0,T ;X) = max
t∈[0,T ]

|f(t)|X

while C1(0, T ;X) is a real Banach space with the norm

|f |C1(0,T ;X) = max
t∈[0,T ]

|f(t)|X + max
t∈[0,T ]

|ḟ(t)|X .

Finally, for k ∈ N and p ∈ [1,∞], we use the standard notation for
the Lebesgue spaces Lp(0, T ;X) and for the Sobolev spaces W k,p(0, T ;X).
Moreover, if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the
product Hilbert space endowed with the canonical inner product (·, ·)X1×X2 .

We recall the following standard result for first order evolution equations
(see [2] or [21]). Let V and H be real Hilbert spaces such that V is dense in
H and the injection map is continuous. The space H is identified with its
own dual and with a subspace of the dual V ′ of V . We write

V ⊂ H ⊂ V ′

and we say that the inclusions above define a Gelfand triple. We denote by
| · |V , | · |H and | · |V ′ the norms on the spaces V,H and V ′ respectively, and
we use (·, ·)V ′×V for the duality pairing between V ′ and V.

Note that if f ∈ H then

(f ,v)V ′×V = (f ,v)H ∀v ∈ V.
Theorem 2.1. Let V,H be as above, and let A : V → V ′ be a hemicon-

tinuous and monotone operator which satisfies

(Au,u)V ′×V ≥ ω|u|2V + λ ∀u ∈ V,(2.4)

|Au|V ′ ≤ C(|u|V + 1) ∀u ∈ V,(2.5)

for some constants ω > 0, C > 0 and λ ∈ R. Then, given u0 ∈ H and
f ∈ L2(0, T ;V ′), there exists a unique function u which satisfies

u ∈ L2(0, T ;V ) ∩ C(0, T ;H), u̇ ∈ L2(0, T ;V ′),

u̇(t) +Au(t) = f(t), a.e. t ∈ (0, T ),

u(0) = u0.
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3. Mechanical and variational formulations. An elastic-viscoplastic
body occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with a Lipschitz surface
Γ that is divided into three disjoint measurable parts Γ1, Γ2 and Γ3 such
that meas(Γ1) > 0. Let T > 0 and let [0, T ] be the time interval of interest.
The body is clamped on Γ1 × (0, T ), and therefore the displacement field
vanishes there. Surface tractions of density f2 act on Γ2× (0, T ) and a body
force of density f0 is applied in Ω×(0, T ). The body is in frictionless contact
with a deformable foundation over the potential contact surface Γ3× (0, T ).
Moreover, the process is dynamic, and thus the inertial terms are included
in the equation of motion. Then, the classical formulation of the mechanical
contact problem with normal compliance of an elastic-viscoplastic material
with internal state variable is as follows.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress
field σ : Ω × [0, T ] → Sd and an internal state variable field k : Ω × [0, T ]
→ Rm such that

σ(t) = Aε(u̇(t)) + Eε(u(t))

+

t�

0

G
(
σ(s)−Aε(u̇(s)), ε(u(s)),k(s)

)
ds in Ω × (0, T ),

(3.1)

k̇ = φ(σ −Aε(u̇), ε(u),k) in Ω × (0, T ),(3.2)

ρü = Divσ + f0 in Ω × (0, T ),(3.3)

u = 0 on Γ1 × (0, T ),(3.4)

σν = f2 on Γ2 × (0, T ),(3.5)

σν = p(uν − g), στ = 0 on Γ3 × (0, T ),(3.6)

u(0) = u0, u̇(0) = v0, k(0) = k0 in Ω.(3.7)

Here equations (3.1)–(3.2) represent the elastic-viscoplastic constitutive
law with internal state variable introduced in the first section. Equation (3.3)
represents the equation of motion where ρ is the mass density. Equations
(3.4)–(3.5) are the displacement-traction conditions.

Let us give some remarks on the contact conditions (3.6) in which uν ,
σν and στ denote the normal displacement, the normal stress and the tan-
gential stress, respectively. The first equality in (3.6) describes the normal
compliance contact condition, where p is a prescribed function such that
p(r) = 0 for r ≤ 0, and g represents the gap between the potential contact
surface Γ3 and the foundation, measured along the outward normal vector.
When uν − g is positive, it represents the penetration of the body into the
foundation. So penetration is allowed but penalized.

Normal compliance contact conditions were first introduced in [14] in
the study of dynamic problems for linearly elastic materials and have been
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used later in the literature; see for example [3, 7, 13, 16] and the references
therein. An example of a normal compliance function p is

(3.8) p(r) = cνr+,

where cν is a positive constant and r+ = max{0, r}. Formally, Signorini’s
nonpenetration condition is obtained in the limit cν →∞. Another example
of the normal compliance function is

(3.9) p(r) =

{
cνr+ if r ≤ α,

cνα if r > α,

where α is a positive constant related to the wear and hardness of the surface.
In this case the last contact condition means that when the penetration
is large enough, i.e. it exceeds α, the obstacle desintegrates and offers no
additional resistance to the penetration.

The second relation in (3.6) indicates that the friction force on the con-
tact surface vanishes, i.e. the contact is frictionless.

In (3.7), u0 is the initial displacement, v0 is the initial velocity and k0

is the initial internal state variable.

To simplify the notation, we do not indicate explicitly the dependence
of various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ]. To obtain a
variational formulation of the problem (3.1)–(3.7) we need additional nota-
tion.

Let V be the closed subspace of H1 given by

V =
{
v ∈ H1 | v = 0 on Γ1

}
.

Then the following Korn inequality holds:

|ε(v)|H ≥ Ck|v|H1 ∀v ∈ V,

where Ck > 0 is a constant depending only on Ω and Γ1. On the space V
we consider the inner product given by

(3.10) (u,v)V = (ε(u), ε(v))H,

and let | · |V be the associated norm. It follows from Korn’s inequality that
| · |H1 and | · |V are equivalent norms on V. Therefore (V, | · |V ) is a real
Hilbert space. Moreover, by the Sobolev trace theorem there exists a positive
constant C0 which depends only on Ω, Γ1 and Γ3 such that

(3.11) |v|L2(Γ3)d ≤ C0|v|V ∀v ∈ V.

In the study of the mechanical problem (3.1)–(3.7) we make the following
assumptions. The viscosity operator A : Ω × Sd → Sd satisfies
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(3.12)

(a) There exist constants C1
A, C

2
A > 0 such that

|A(x, ε)| ≤ C1
A|ε|+ C2

A ∀ε ∈ Sd, a.e. x ∈ Ω.
(b) There exists a constant mA > 0 such that

(A(x, ε1)−A(x, ε2)) · (ε1 − ε2)
≥ mA|ε1 − ε2|2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) x 7→ A(x, ε) is Lebesgue measurable on Ω for all ε ∈ Sd.
(d) ε 7→ A(x, ε) is continuous on Sd, a.e. x ∈ Ω.

The elasticity operator E : Ω × Sd → Sd satisfies

(3.13)
(a) There exists a constant LE > 0 such that

|E(x, ε1)− E(x, ε2)| ≤ LE |ε1 − ε2| ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(b) For any ε ∈ Sd,x 7→ E(x, ε) is Lebesgue measurable on Ω.

(c) x 7→ E(x,0) is in H.

The visco-plasticity operator G : Ω × Sd × Sd × Rm → Sd satisfies

(3.14)

(a) There exists a constant LG > 0 such that

|G(x,σ1, ε1,k1)− G(x,σ2, ε2,k2)|
≤ LG(|σ1 − σ2|+ |ε1 − ε2|+ |k1 − k2|)

∀σ1,σ2, ε1, ε2 ∈ Sd and k1,k2 ∈ Rm, a.e. x ∈ Ω.
(b) For any σ, ε ∈ Sd and k ∈ Rm,x 7→ G(x,σ, ε,k) is Lebesgue

measurable on Ω.

(c) x 7→ G(x,0,0,0) is in H.

The function φ : Ω × Sd × Sd × Rm → R satisfies

(3.15)

(a) There exists a constant Lφ > 0 such that

|φ(x,σ1, ε1,k1)− φ(x,σ2, ε2,k2)|
≤ Lφ

(
|σ1 − σ2|+ |ε1 − ε2|+ |k1 − k2|

)
∀σ1,σ2, ε1, ε2 ∈ Sd and k1,k2 ∈ Rm, a.e. x ∈ Ω.

(b) For any σ, ε ∈ Sd and k ∈ Rm,x 7→ φ(x,σ, ε,k) is Lebesgue

measurable on Ω.

(c) x 7→ φ(x,0,0,0) is in H.
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The normal compliance function p : Γ3 × R→ R+ satisfies

(3.16)


(a) There exists a constant Lp > 0 such that

|p(x, r1)− p(x, r2)| ≤ Lp|r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.
(b) r 7→ p(·, r) is Lebesgue measurable on Γ3 for all r ∈ R.
(c) p(·, r) = 0 for all r ≤ 0.

We notice that the assumption (3.16) is satisfied by functions defined in
(3.8) and (3.9) and therefore our results apply to the corresponding friction-
less contact. The mass density satisfies

(3.17) ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗, a.e. x ∈ Ω.
The gap function g is such that

(3.18) g ∈ L2(Γ3), g ≥ 0 a.e. on Γ3.

The body forces and surface tractions have the regularity

(3.19) f0 ∈ L2(0, T ;H), f2 ∈ L2(0, T ;L2(Γ2)
d).

Finally we assume that the initial data satisfy

(3.20) u0 ∈ V, v0 ∈ H, k0 ∈ Y.

We will use a modified inner product on the Hilbert space H = L2(Ω)d

given by

((u,v))H = (ρu,v)H ∀u,v ∈ H,
that is, it is weighted with ρ, and we let ‖ · ‖H be the associated norm, i.e.,

‖v‖H = (ρv,v)
1/2
H ∀v ∈ H.

It follows from assumptions (3.17) that ‖ · ‖H and | · |H are equivalent norms
on H, and also the inclusion mapping of (V, |·|V ) into (H, ‖·‖H) is continuous
and dense. We denote by V ′ the dual space of V . Identifying H with its own
dual, we obtain the Gelfand triple

V ⊂ H ⊂ V ′.
We use the notation (·, ·)V ′×V for the duality pairing between V ′ and V and
recall that

(u,v)V ′×V = ((u,v))H ∀u ∈ H, ∀v ∈ V.

Assumptions (3.19) allow us, for a.e. t ∈ (0, T ), to define f(t) ∈ V ′ by

(3.21) (f(t),v)V ′×V =
�

Ω

f0(t) · v dx+
�

Γ2

f2(t) · v da ∀v ∈ V,

and note that

(3.22) f ∈ L2(0, T ;V ′).
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Finally we consider the functional j : V × V → R defined by

(3.23) j(u,v) =
�

Γ3

p(uν − g)vν da ∀u,v ∈ V.

Using standard arguments we obtain the following variational formula-
tion of the mechanical problem (3.1)–(3.7).

Problem PV. Find a displacement field u : [0, T ] → V , a stress field
σ : [0, T ] → H and an internal state variable field k : [0, T ] → Y such that
for a.e. t ∈ (0, T ),

σ(t) = Aε(u̇(t)) + Eε(u(t))

+

t�

0

G
(
σ(s)−Aε(u̇(s)), ε(u(s)),k(s)

)
ds,

(3.24)

(ü(t),v)V ′×V +(σ(t), ε(v))H+j(u(t),v)=(f(t),v)V ′×V ∀v ∈ V,(3.25)

k̇(t) = φ
(
σ(t)−Aε(u̇(t)), ε(u(t)),k(t)

)
,(3.26)

u(0) = u0, u̇(0) = v0, k(0) = k0.(3.27)

4. An existence and uniqueness result. Our main existence and
uniqueness result is the following.

Theorem 4.1. Let the assumptions (3.12)–(3.20) hold. Then Problem
PV has a unique solution {u,σ,k} satisfying

u ∈ H1(0, T ;V )) ∩ C1(0, T ;H), ü ∈ L2(0, T ;V ′),(4.1)

σ ∈ L2(0, T ;H), Divσ ∈ L2(0, T ;V ′),(4.2)

k ∈W 1,2(0, T ;Y ).(4.3)

We conclude that under the assumptions (3.12)–(3.20) the mechanical
problem (3.1)–(3.7) has a unique weak solution with regularity (4.1)–(4.3).
The proof of this theorem will be carried out in several steps. It is based on
arguments of nonlinear evolution equations with monotone operators (see
[2] or [21]) and fixed point arguments.

In the first step we let η = (η1,η2) ∈ L2(0, T ;V ′ × Y ) be given, and
prove that there exists a unique solution uη of the following intermediate
problem.

Problem PVη. Find a displacement field uη : [0, T ]→ V such that for
a.e. t ∈ (0, T ),

(4.4) (üη(t),v)V ′×V + (Aε(u̇η(t)), ε(v))H + (η1(t),v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V,
(4.5) uη(0) = u0, u̇η(0) = v0.

Concerning Problem PVη, we have the following result.
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Lemma 4.2. There exists a unique solution to Problem PVη with regu-
larity (4.1).

Proof. We use the abstract existence and uniqueness result given by
Theorem 2.1. We define A : V → V ′ by

(4.6) (Au,v)V ′×V = (Aε(u), ε(v))H ∀u,v ∈ V.

It follows from (4.6), (3.12)(a) and (3.10) that

(4.7) |Au−Av|V ′ ≤ C|Aε(u)−Aε(v)|H ∀u,v ∈ V.

Keeping in mind (3.12) and the Krasnosel’skĭı theorem (see for example [12,
p. 60]) we deduce that A : V → V ′ is continuous, and so hemicontinuous.
Now, by (3.12)(b) and (3.10), we find

(4.8) (Au−Av,u− v)V ′×V ≥ mA|u− v|2V ∀u,v ∈ V,

i.e., A : V → V ′ is monotone. Choosing v = 0V in (4.8) we obtain

(Au,u)V ′×V ≥ mA|u|
2
V − |A0V |V ′ |u|V

≥ 1
2mA|u|

2
V −

1

2mA
|A0V |2V ′ ∀u ∈ V.

Thus, A satisfies condition (2.4) with ω = mA/2 and λ = −|A0V |2V ′/(2mA).
Next, by (4.6), (3.12)(a) and (3.10) we deduce that

|Au|V ′ ≤ C(|u|V + 1) ∀u ∈ V,

where C is a positive constant. This implies that A satisfies condition (2.5).
Finally, we recall that by (3.20) and (3.22) we have f − η1 ∈ L2(0, T ;V ′)
and v0 ∈ H.

Now Theorem 2.1 implies that there exists a unique function vη which
satisfies

vη ∈ L2(0, T ;V ) ∩ C(0, T ;H), v̇η ∈ L2(0, T ;V ′),(4.9)

v̇η(t) +Avη(t) + η1(t) = f(t), a.e. t ∈ (0, T ),(4.10)

vη(0) = v0.(4.11)

Let uη : [0, T ]→ V be defined by

(4.12) uη(t) =

t�

0

vη(s) ds+ u0 ∀t ∈ [0, T ].

It follows from (4.6) and (4.9)–(4.12) that uη is a solution of Problem PVη

with regularity (4.1). This concludes the existence part of Lemma 4.2. The
uniqueness of the solution follows from the uniqueness of the solution to
problem (4.10)–(4.11), guaranteed by Theorem 2.1.
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Define kη ∈W 1,2(0, T ;Y ) by

(4.13) kη(t) = k0 +

t�

0

η2(s) ds.

In the second step we use the displacement field uη obtained in Lemma
4.2 and kη defined in (4.13) to pose the following Cauchy problem for the
stress field.

Problem QVη. Find a stress field ση : [0, T ]→ H such that

(4.14) ση(t) = Eε(uη(t)) +

t�

0

G(ση(s), ε(uη(s)),kη(s)) ds ∀t ∈ [0, T ].

For Problem QVη we have the following result.

Lemma 4.3. There exists a unique solution of Problem QVη and it

satisfies ση ∈ W 1,2(0, T,H). Moreover, if σi and ui represent the solu-
tions of Problem QVηi , PVηi, respectively, and ki is defined in (4.13) for

ηi ∈ L2(0, T ;V ′ × Y ), i = 1, 2, then there exists C > 0 such that

(4.15) |σ1(t)− σ2(t)|2H ≤ C
(
|u1(t)− u2(t)|2V

+

t�

0

|u1(s)− u2(s)|2V ds+

t�

0

|k1(s)− k2(s)|2Y ds
)
∀t ∈ [0, T ].

Proof. Let Λη : L2(0, T,H)→ L2(0, T,H) be given by

(4.16) Λησ(t) = Eε(uη(t)) +

t�

0

G
(
σ(s), ε(uη(s)),kη(s)

)
ds

for σ ∈ L2(0, T,H) and t ∈ [0, T ]. For σ1,σ2 ∈ L2(0, T,H) we use (4.16)
and (3.14) to obtain, for all t ∈ [0, T ],

|Λησ1(t)− Λησ2(t)|H ≤ LG
t�

0

|σ1(s)− σ2(s)|H ds.

It follows that for p large enough, the power Λpη is a contraction on the Ba-
nach space L2(0, T ;H), and therefore there exists a unique ση ∈ L2(0, T ;H)
such that Ληση = ση. Moreover, ση is the unique solution of Problem QVη

and, using (4.14), the regularity of uη, the regularity of kη and the properties
of the operators E and G, it follows that ση ∈W 1,2(0, T ;H).

Consider now η1,η2 ∈ L2(0, T ;V ′×Y ) and, for i = 1, 2, denote uηi = ui,
σηi = σi and kηi = ki. We have

σi(t) = Eε(ui(t)) +

t�

0

G
(
σi(s), ε(ui(s)),ki(s)

)
ds ∀t ∈ [0, T ],
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and, using the properties (3.13) and (3.14) of E and G, we find

(4.17) |σ1(t)− σ2(t)|2H ≤ C
(
|u1(t)− u2(t)|2V +

t�

0

|u1(s)− u2(s)|2V ds

+

t�

0

|σ1(s)− σ2(s)|2H ds+

t�

0

|k1(s)− k2(s)|2Y ds
)
∀t ∈ [0, T ].

Using now a Gronwall argument we deduce (4.15).

Finally, as a consequence of these results and using the properties of G,
E , φ and j, for t ∈ [0, T ], we consider the element

(4.18) Λη(t) = (Λ1η(t), Λ2η(t)) ∈ V ′ × Y,

defined by

(4.19) (Λ1η(t),v)V ′×V = (Eε(uη(t)), ε(v))H

+
( t�

0

G(σ η(s), ε(uη(s)),kη(s)) ds, ε(v)
)
H

+ j(uη(t),v) ∀v ∈ V,

(4.20) Λ2η(t) = φ
(
ση(t), ε(uη(t)),kη(t)

)
.

Here, for every η ∈ L2(0, T ;V ′×Y ), uη, ση represent the displacement field
and the stress field obtained in Lemmas 4.2, 4.3 respectively, and kη is the
internal state variable given by (4.13). We have the following result.

Lemma 4.4. The operator Λ has a unique fixed point η∗ ∈ L2(0, T ;
V ′ × Y ).

Proof. Let η1,η2 ∈ L2(0, T ;V
′ × Y ). Write

uηi = ui, u̇ηi = vηi = vi, σηi = σi, kηi = ki

for i = 1, 2. Using (3.10), (3.13), (3.14) and (3.16) we have

(4.21) |Λ1η1(t)− Λ1η2(t)|2V ′

≤ C
(
|u1(t)− u2(t)|2V +

t�

0

|σ1(s)− σ2(s)|2H ds

+

t�

0

|u1(s)− u2(s)|2V ds+

t�

0

|k1(s)− k2(s)|2Y ds
)
.
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We use estimate (4.15) to obtain

(4.22) |Λ1η1(t)− Λ1η2(t)|2V ′

≤ C
(
|u1(t)− u2(t)|2V +

t�

0

|u1(s)− u2(s)|2V ds

+

t�

0

|k1(s)− k2(s)|2Y ds
)
.

By similar arguments, from (4.20), (4.15) and (3.15) it follows that

(4.23) |Λ2η1(t)− Λ2η2(t)|2Y
≤ C(|σ1(t)− σ2(t)|2H + |u1(t)− u2(t)|2V + |k1(t)− k2(t)|2Y )

≤ C
(
|u1(t)− u2(t)|2V +

t�

0

|u1(s)− u2(s)|2V ds

+ |k1(t)− k2(t)|2Y +

t�

0

|k1(s)− k2(s)|2Y ds
)
.

Therefore,

(4.24) |Λη1(t)− Λη2(t)|2V ′×Y ≤ C
(
|u1(t)− u2(t)|2V

+

t�

0

|u1(s)− u2(s)|2V ds+ |k1(t)− k2(t)|2Y +

t�

0

|k1(s)− k2(s)|2Y ds
)
.

Moreover, from (4.4) we obtain

(v̇1 − v̇2,v1 − v2)V ′×V + (Aε(v1)−Aε(v2), ε(v1 − v2))H

+ (η11 − η12,v1 − v2)V ′×V = 0, a.e. t ∈ (0, T ).

We integrate this equality with respect to time, and use the initial conditions
v1(0) = v2(0) = v0, condition (3.10) and (3.12) to find

mA

t�

0

|v1(s)− v2(s)|2V ds ≤ −
t�

0

(η11(s)− η12(s),v1(s)− v2(s))V ′×V ds

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2/γ + γb2 we obtain

(4.25)

t�

0

|v1(s)− v2(s)|2V ds ≤ C
t�

0

|η11(s)− η12(s)|2V ′ ds ∀t ∈ [0, T ].

On the other hand, from (4.13) we have

(4.26) |k1(t)− k2(t))|2Y ≤ C
t�

0

|η21(s)− η22(s)|2Y ds.
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Since u1(0) = u2(0) = u0, we get

|u1(t)− u2(t)|2V ≤ C
t�

0

|v1(s)− v2(s)|2V ds.

From this inequality and (4.24) we obtain

|Λη1(t)− Λη2(t)|2V ′×Y ≤ C
( t�

0

|v1(s)− v2(s)|2V ds

+ |k1(t)− k2(t)|2Y +

t�

0

|k1(s)− k2(s)|2Y ds
)
.

It follows now from (4.25) and (4.26) that

|Λη1(t)− Λη2(t)|2V ′×Y ≤ C
t�

0

|η1(s)− η2(s)|2V ′×Y ds.

Reiterating this inequality m times leads to

|Λmη1 − Λmη2|2L2(0,T ;V ′×Y ) ≤
CmTm

m!
|η1 − η2|2L2(0,T ;V ′×Y ).

Thus, for m sufficiently large, Λm is a contraction on the Banach space
L2(0, T ;V ′ × L2(Ω)), and so Λ has a unique fixed point.

Now, we have all the ingredients to prove Theorem 4.1.

Proof of Theorem 4.1. Let η∗ = (η1,η2) ∈ L2(0, T ;V ′×Y ) be the fixed
point of Λ defined by (4.18)–(4.20) and denote

u = uη∗ , k = kη∗ ,(4.27)

σ = Aε(u̇) + ση∗ .(4.28)

We prove that (u,σ,k) satisfies (3.24)–(3.27) and (4.1)–(4.3). Indeed, we
write (4.14) for η = η∗ and use (4.27)–(4.28) to deduce that (3.24) is satis-
fied. We use (4.4) for η = η∗ and the first equality in (4.27) to find

(4.29) (ü(t),v)V ′×V + (Aε(u̇(t)), ε(v))H + (η1(t),v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V, a.e. t ∈ (0, T ).

The equalities Λ1(η∗) = η1 and Λ2(η∗) = η2 combined with (4.19), (4.20),
(4.27) and (4.28) show that

(4.30) (η1(t),v)V ′×V = (Eε(u(t)), ε(v))H + j(u(t),v)

+
( t�

0

G(σ (s)−Aε(u̇(s)), ε(u(s)),k(s)) ds, ε(v)
)
H

∀v ∈ V,

(4.31) η2(t) = φ
(
σ (t)−Aε(u̇(t)), ε(u(t)),k(t)

)
.

From (4.31) and (4.27) we infer that (3.26) is satisfied. We now substitute
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(4.30) in (4.29) and use (3.24) to see that (u,σ,k) satisfies (3.25). Next,
(3.27), the regularity (4.1) and (4.3) follow from Lemma 4.2 and (4.13). The
regularity σ ∈ L2(0, T ;H) follows from Lemmas 4.2, 4.3, assumption (3.12)
and (4.28). Finally (3.25) implies that

ρü(t) = Divσ(t) + f0(t) in V ′, a.e. t ∈ (0, T ),

and so Divσ ∈ L2(0, T ;V ′) by (3.17) and (3.19). We deduce that the regu-
larity (4.2) holds, which proves the existence part of Theorem 4.1.

The uniqueness is a consequence of the uniqueness of the fixed point
of the operator Λ defined by (4.18)–(4.20) and the unique solvability of
Problems PVη and QVη.

5. Continuous dependence. In this section we study the dependence
of the solution of Problem PV on perturbations of contact conditions.

We suppose that (3.12)–(3.20) hold and denote by (u,σ,k) the solution
of Problem PV obtained in Theorem 4.1. Also, for all α > 0 we denote by
pα a perturbation of p which satisfies (3.16) with Lp replaced by Lαp .

We introduce the functional jα defined by (3.23), replacing p with pα

and we consider the following variational problem.

Problem PVα. Find a displacement field uα : [0, T ]→ V, a stress field
σα : [0, T ]→ H and an internal state variable kα : [0, T ]→ Y such that for
a.e. t ∈ (0, T ),

(5.1) σα(t) = Aε(u̇α(t)) + Eε(uα(t))

+

t�

0

G(σα(s)−Aε(u̇α(s)), ε(uα(s)),kα(s)) ds,

(5.2) (üα(t),v)V ′×V + (σα(t), ε(v))H + jα(uα(t),v)

= (f(t),v)V ′×V ∀v ∈ V,
(5.3) k̇α(t) = φ(σα(t)−Aε(u̇α(t)), ε(uα(t)),kα(t)),

(5.4) uα(0) = u0, u̇α(0) = v0, kα(0) = k0.

We deduce from Theorem 4.1 that for every α > 0, Problem PVα has
a unique solution (uα,σα,kα) which satisfies (4.1)–(4.3). Assume that the
contact function satisfies the following assumptions:

(5.5)
There exist β ∈ R+ and θ : ]0,∞[→ [0,∞[ such that

(a) |pα(x, r)− p(x, r)| ≤ θ(α)(|r|+ β) for all α > 0, r ∈ R, a.e. x ∈ Γ3.
(b) limα→0 θ(α) = 0.

(c) There exists L0 > 0 such that Lαp ≤ L0 for all α > 0.

Under these assumptions, we have the following convergence result.
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Theorem 5.1. The solution (uα,σα,kα) of Problem PVα converges to
the solution (u,σ,k) of Problem PV, i.e.

uα → u in W 1,2(0, T ;V ) as α→ 0,(5.6)

σα → σ in L2(0, T ;H) as α→ 0,(5.7)

kα → k in W 1,2(0, T ;Y ) as α→ 0.(5.8)

In addition to the interest of this convergence result from the asymptotic
analysis point of view, it is important from the mechanical point of view
since it shows that small perturbations of contact conditions lead to small
perturbations of the weak solution of the dynamic contact Problem P.

Proof. Let α > 0. Below, C always denotes a positive constant which
may depend on the data and on the solution (u,σ,k) but does not depend
on α, nor on the time variable, and whose value may change from place to
place. Using (3.25) and (5.2) we obtain

(5.9) (üα(t)− ü(t), u̇α(t)− u̇(t))V ′×V + (σα(t)− σ(t), ε(u̇α(t)− u̇(t)))H

+ jα(uα(t), u̇α(t)− u̇(t))− j(u(t), u̇α(t)− u̇(t)) = 0, a.e. t ∈ (0, T ).

We define

(5.10) σαR(t) = σα(t)−Aε(u̇α(t)),σR(t) = σ(t)−Aε(u̇(t))

and note that (3.24) and (5.1) yield

σαR(t) = Eε(uα(t)) +

t�

0

G(σαR(s), ε(uα(s)),kα(s)) ds,(5.11)

σR(t) = Eε(u(t)) +

t�

0

G(σR(s), ε(u(s)),k(s)) ds.(5.12)

We use (3.26), (5.3) and since kα(0) = k(0) = k0 we have

(5.13) kα(t)− k(t)

=

t�

0

(φ(σαR(s), ε(uα(s)),kα(s))− φ(σR(s), ε(u(s)),k(s))) ds.

We combine (5.9) and (5.10) to obtain

(5.14)
(üα(t)−ü(t), u̇α(t)−u̇(t))V ′×V +(Aε(u̇α(t))−Aε(u̇(t)), ε(u̇α(t)−u̇(t)))H

= −(σαR(t)− σR(t), ε(u̇α(t)− u̇(t)))H

+ j(u(t), u̇α(t)− u̇(t))− jα(uα(t), u̇α(t)− u̇(t)), a.e. t ∈ (0, T ).

It follows from (3.12) that for a.e. t ∈ (0, T ),

(5.15)
(
Aε(u̇α(t))−Aε(u̇(t)), ε(u̇α(t)− u̇(t))

)
H ≥ mA|u̇

α(t)− u̇(t)|2V .
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Using (5.11) and (5.12) we deduce that

σαR(t)− σR(t) = Eε(uα(t))− Eε(u(t))(5.16)

+

t�

0

G
(
σαR(s), ε(uα(s)),kα(s)

)
ds

−
t�

0

G
(
σR(s), ε(u(s)),k(s)

)
ds ∀t ∈ [0, T ].

Combining (3.13), (3.14) and (3.10) we obtain

|σαR(t)− σR(t)|H ≤ C
(
|uα(t)− u(t)|V +

t�

0

|uα(s)− u(s)|V ds

+

t�

0

|σαR(s)− σR(s)|H ds+

t�

0

|kα(s)− k(s)|Y ds
)
∀t ∈ [0, T ].

From (5.13), (3.15) and (3.10) we get

|kα(t)− k(t)|Y ≤ C
( t�

0

|uα(s)− u(s)|V ds

+

t�

0

|σαR(s)− σR(s)|H ds+

t�

0

|kα(s)− k(s)|Y ds
)
∀t ∈ [0, T ].

Adding the last two inequalities we find

|σαR(t)− σR(t)|H + |kα(t)− k(t)|Y ≤ C
(
|uα(t)− u(t)|V

+

t�

0

|uα(s)− u(s)|V ds+

t�

0

|σαR(s)− σR(s)|H ds+

t�

0

|kα(s)− k(s)|Y ds
)
.

Using Gronwall arguments we see that

|σαR(t)− σR(t)|H + |kα(t)− k(t)|Y

≤ C
(
|uα(t)− u(t)|V +

t�

0

|uα(s)− u(s)|V ds
)

and

|σαR(t)− σR(t)|H ≤ C
(
|uα(t)− u(t)|V +

t�

0

|uα(s)− u(s)|V ds
)
,(5.17)

|kα(t)− k(t)|Y ≤ C
(
|uα(t)− u(t)|V +

t�

0

|uα(s)− u(s)|V ds
)
.(5.18)
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The inequality (5.17) shows that

(5.19) − (σαR(t)− σR(t), ε(u̇α(t)− u̇(t)))H

≤ C
(
|uα(t)−u(t)|V +

t�

0

|uα(s)−u(s)|V ds
)
|u̇α(t)−u̇(t)|V , a.e. t ∈ (0, T ).

From the definition of the functionals j and jα it follows that

j(u(t), u̇α(t)− u̇(t))− jα(uα(t), u̇α(t)− u̇(t))

=
�

Γ3

(p(uν(t)− g)− pα(uν(t)− g))(u̇αν (t))− u̇ν(t)) da

+
�

Γ3

(pα(uν(t)− g)− pα(uαν (t)− g))(u̇αν (t))− u̇ν(t)) da, a.e. t ∈ (0, T ).

Using (5.5), (3.11) and the fact that pα satisfies (3.16) with Lαp in place of
Lp we deduce that

(5.20) j(u(t), u̇α(t)− u̇(t))− jα(uα(t), u̇α(t)− u̇(t))

≤ C
(
θ(α) + |uα(t)− u(t)|V

)
|u̇α(t)− u̇(t)|V , a.e. t ∈ (0, T ).

We substitute (5.15), (5.19) and (5.20) in (5.14) to obtain, for a.e. t ∈ (0, T ),

(5.21) (üα(t)− ü(t), u̇α(t)− u̇(t))V ′×V +mA|u̇α(t)− u̇(t)|2V

≤ C
(
θ(α) + |uα(t)− u(t)|V +

t�

0

|uα(s)− u(s)|V ds
)
|u̇α(t)− u̇(t)|V ,

and, using the inequality

ab ≤ 1

2mA
a2 +

mA
2
b2,

after some algebra we find

(üα(t)− ü(t), u̇α(t)− u̇(t))V ′×V +
mA
2
|u̇α(t)− u̇(t)|2V

≤ C
(
θ2(α) + |uα(t)− u(t)|2V +

t�

0

|uα(s)− u(s)|2V ds
)
, a.e. t ∈ (0, T ).

We integrate this inequality on [0, s] and use the initial condition u̇α(0) =
u̇(0) = v0 to find

(5.22)

mA
2

s�

0

‖u̇α(t)− u̇(t)|2V dt ≤ C
(
θ2(α) +

s�

0

|uα(t)− u(t)|2V dt
)
∀s ∈ [0, T ].



A frictionless contact problem 19

Since u̇α(0) = u̇(0) = v0 we see that

(5.23) |uα(s)− u(s)|2V ≤ C
s�

0

|u̇α(t)− u̇(t)|2V dt ∀s ∈ [0, T ].

We substitute now (5.22) into (5.23) and use again the Gronwall inequality
to find that

(5.24) |uα(s)− u(s)|2V ≤ Cθ2(α) ∀s ∈ [0, T ].

From (5.22) and (5.23) we infer that

(5.25)

s�

0

|u̇α(t)− u̇(t)|2V dt ≤ Cθ2(α) ∀s ∈ [0, T ].

We combine now (5.24), (5.25) and assumption (5.5)(b) to see that (5.6) is
satisfied. It follows from (5.10) that

σα(t)− σ(t) = σαR(t)− σR(t) +Aε(u̇α(t))−Aε(u̇(t)), a.e. t ∈ (0, T ).

Using this inequality, (5.17), the properties (3.12) of the operator A and
(5.6) we see that (5.7) is satisfied. From (3.26), (5.3), the assumption (3.15)
on φ, (5.17) and (5.18) we deduce that

(5.26) |k̇α(t)− k̇(t)|2Y ≤ C
(t�
0

|u̇α(s)− u̇(s)|2V ds
)
.

Since kα(0) = k(0) = k0 we find

(5.27) |kα(t)− k(t)|2Y ≤ C
(t�
0

|k̇α(s)− k̇(s)|2Y ds
)
.

We conclude now from (5.25)–(5.27) and (5.5)(b) that (5.8) is also satis-
fied.
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