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MATHEMATICAL AND PHYSICAL ASPECTS OF THE
INITIAL VALUE PROBLEM FOR A NONLOCAL MODEL OF

HEAT PROPAGATION WITH FINITE SPEED

Abstract. Theories of heat predicting a finite speed of propagation of
thermal signals have come into existence during the last 50 years. It is worth
emphasizing that in contrast to the classical heat theory, these nonclassical
theories involve a hyperbolic type heat equation and are based on experi-
ments exhibiting the actual occurrence of wave-type heat transport (so called
second sound). This paper presents a new system of equations describing a
nonlocal model of heat propagation with finite speed in the three-dimensional
space based on Gurtin and Pipkin’s approach. We are interested in the phys-
ical and mathematical aspects of this new system of equations. First, using
the modified Cagniard–de Hoop method we construct a fundamental solu-
tion to this system of equations. Next basing on this fundamental solution,
we obtain explicit formulae for the solution of the Cauchy problem to this
system. Applying the methods of Sobolev space theory, we get an Lp-Lq
time decay estimate for the solution of the Cauchy problem. For a special
form of the source we perform analytical and numerical calculations of the
distribution of the temperature for the nonlocal model of heat with finite
speed. Some features of the propagation of heat for the nonlocal model are
illustrated in a figure together with the comparison of the solution of this
model with the solution of the classical heat equation.

1. Introduction. Before we start to describe the nonlocal model of heat
propagation at finite speed introduced by Gurtin and Pipkin (cf. [22]), we
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will describe some theories starting from the classical theory which lead to
hyperbolic equations for heat propagation.

The classical theory of heat conduction predicts that if a heat conducting
material is subjected to a thermal disturbance, the effects of the disturbance
will be felt instantaneously at distances infinitely far from its source. This
does not accord with the physical point of view, particularly in problems
concerned with sudden heat inputs.

This shortcoming of the theory stems from the fact that the heat trans-
port equation is a parabolic-type partial differential equation that allows
an infinite speed of thermal signals. During the last 50 years nonclassical
theories free from this drawback have been formulated (cf. [10]).

These new theories make use of a modified version of the classical Fourier
law of heat conduction and consequently involve hyperbolic-type heat trans-
port equations admitting finite speeds of thermal signals. According to these
theories, heat propagation is viewed as a wave phenomenon rather than a
diffusion phenomenon. A wavelike thermal disturbance is referred to as sec-
ond sound—the first sound being the usual sound wave—and nonclassical
theories predicting the occurrence of such disturbances are known as theo-
ries with finite wave speeds or theories with second sound. These theories are
motivated by experiments exhibiting the actual occurrence of second sound
at low temperatures and for small intervals of time.

One of the aims of this paper is to present a review of the equations
related to the generalized heat equation. In order to make the exposition
fairly complete a brief account of the theory of heat conduction with second
sound as well as a nonlocal model of heat propagation with finite speed
introduced by Gurtin and Pipkin are presented (cf. [22]).

The main aim of this paper is the investigation of the mathematical and
physical properties of the solution of the Cauchy problem to the system of
equations describing this nonlocal model. Rouhly speaking, we will prove
an Lp-Lq time decay estimate for the solution of the Cauchy problem for
the nonlocal Gurtin and Pipkin model of heat propagation in a rigid heat
conductor.

Our paper is organized as follows:
In Section 2, we present an account of the literature relating to experi-

mental and theoretical aspects of the theory of heat conduction with second
sound and to the nonlocal Gurtin and Pipkin model, the statement of the
problem and the Main Theorem.

In Section 3 we present basic notation and formulae.
Section 4 is devoted to the construction of a fundamental solution to the

nonlocal system of equations describing heat propagation with finite speed.
The construction is based on the modified Cagniard–de Hoop method.
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In Section 5 we prove an L∞-L1 time decay estimate for the solution of
the Cauchy problem for the system given by Gurtin and Pipkin.

In Section 6 we obtain an L2-L2 time decay estimate for this solution.
In Section 7 we prove an Lp-Lq time decay estimate for the solution of

the Cauchy problem for the nonlocal model of heat transport.
Section 8 is devoted to the mathematical and physical interpretation of

the solution to the nonlocal model of heat propagation with finite speed and
its comparison with the solution of the classical heat equation.

In Section 9 we present numerical calculations of the distribution of the
temperature for the nonlocal model of heat propagation with a special source,
and compare it with the solution of the classical heat equation.

2. Statement of the problem. Main theorem. The classical Fourier
law relates the heat flux vector q to the temperature gradient ∇T through
the equation

(2.1) q = −k∇T

where k > 0 is the thermal conductivity of the material. The conventional
theory of heat conduction is based on this equation.

Equation (2.1) leads to the parabolic-type classical heat transport equa-
tion

(2.2) %c
∂T

∂t
= k∇2T

where % > 0 is the mass density, c > 0 is the specific heat capacity and
t is time. Equations (2.1) and (2.2) hold for a homogeneous and isotropic
material in the context of the linear theory.

A direct consequence of the form of equation (2.2) is that if the material
is subjected to a thermal disturbance, the effects of the disturbance will be
felt instantaneously at infinitely far distances. This amounts to saying that
thermal signals propagate with infinite speed, which is not in accordance
with physical intuition.

Efforts to eliminate the paradox of infinite heat propagation speed have
been made for over 140 years ([1], [2], [6], [11], [13], [14], [16], [23], [27], [28],
[32], [33], [34], [55], [56]). Maxwell was the first to postulate in 1867 (cf.
[39]) the occurrence of wave-type heat flow, now called second sound, while
developing a kinetic theory of gases, and suggested a modification of the
Fourier law.

In 1948 and 1958, 1961 some studies from a theoretical point of view
were conducted (among others) by Cattaneo (cf. [8], [9]) and Vernotte (cf.
[52], [53], [54]), where the existence of second sound was discovered.
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This generalized Fourier law for a homogeneous and isotropic material is
given by the equation

(2.3) τ
∂q

∂t
+ q = −k∇T

where τ ≥ 0 is a constant. The corresponding heat transport equation is

(2.4) %cτ
∂2T

∂t2
+ c

∂T

∂t
= k∇2T.

This equation is of hyperbolic type and predicts a finite speed vT =(k/%cτ)1/2

for heat propagation provided τ > 0. The theory of heat conduction based
on (2.4) is thus free from the unpleasant paradox of infinite heat propagation
speed.

The constant τ appearing in (2.3) and (2.4) has a definite physical in-
terpretation. It represents the time lag needed to establish the steady state
of heat conduction in an element of volume when a temperature gradient is
suddenly imposed on that element. This time lag is referred to as the thermal
relaxation time ([4], [37], [38], [40], [41], [44], [45], [47], [50]).

Equation (2.4) was investigated by Kaliski in 1965 (cf. [29], [30]), Luikov
in 1965, 1966 (cf. [35], [36]), Lambermont and Lebon in 1973 (cf. [31]) and
Nowacki (cf. [42]).

Gawinecki (cf. [17], [18], [19]) constructed a fundamental solution to (2.4)
using a different method from the other ones, based on Hörmander’s theorem.
Next basing on that fundamental solution he proved an Lp-Lq time decay
estimate for the solution of the Cauchy problem for (2.4). Next, he proved
the corresponding global existence theorem for the Cauchy problem in R3

for the nonlinear hyperbolic heat equation (cf. [19]).
We consider a new system of equations describing a nonlocal model of

heat propagation with finite speed in the three-dimensional space based on
Gurtin and Pipkin’s approach. Before describing the main results of the
paper we will describe Gurtin and Pipkin’s theory.

In 1968 Gurtin and Pipkin [22] formulated a general nonlinear theory
of heat conduction that admits second sound, for materials with memory.
Their theory was an application of the mathematical method then in use
in continuum mechanics and thermodynamics. They showed that their the-
ory differs from other theories of heat conduction in that the heat-flux, like
entropy, was determined by the functional of free energy.

Their method required characterizing the domain space of functionals
and they chose a weighted L2

h space (cf. [12]). It is the space of functions of s
whose squares are integrable over [0,∞) against a decaying positive weight
h(s), that is, s2h(s) is integrable.

The Riesz representation theorem then implies that linearized flux laws
may be represented by the integral from 0 to∞ of the temperature gradient
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(cf. [22, formulae (1.9)]), and application of Schwarz’s inequality then shows
that Q(·)/h(·) must be square integrable against h(s). Many other choices
for the allowed domain of the free-energy functional are possible and each
leads to different laws for heat conduction (cf. [43]).

At the end of the analysis carried out by Gurtin and Pipkin [22], after
linearization, they obtained the constitutive equations of the form

∂te+ div q = W (t, x),(2.5)

e(t, x) = cθ(t, x)−
∞�

0

b(η)θ(t− η, x) dη,(2.6)

q(t, x) = −
∞�

0

a(η) grad θ(t− η, x) dη,(2.7)

where e = e(t, x) is the internal energy, x ∈ R3, q = q(t, x) is the heat
flux, θ = θ(t, x) > 0 is the absolute temperature, W = W (t, x) is the heat
supplied to the body by the external world, a(η) is the heat-flux relaxation
function, b(η) is the energy relaxation function, and c is the coefficient of
specific heat.

Equation (2.5) is the equation of energy, while (2.6), (2.7) are the con-
stitutive relations (cf. [22]) with b(∞) = 0 and a(∞) = 0.

In our paper we consider the following Cauchy problem for the system
of equations of the nonlocal theory of heat propagation:

∂te+ qi,i = W (t, x),(2.8)

∂tqk(t, x) = −a(0)∂kθ(t, x)−
∞�

0

a′(η) grad θ(t− η, x) dη,(2.9)

∂te(t, x) = c∂tθ(t, x) + b(0)θ(t, x) +

∞�

0

b′(η)θ(t− η, x) dη,(2.10)

with initial conditions

(2.11) e(0) = e0, q(0) = q0, θ(0) = θ0

and the additional condition

(2.12) ∂kq0 = 0.

Equations (2.8)–(2.10) can be written (cf. [22]) as the following integral-
differential equation:

(2.13) c∂tθ(t, x)+∂t

t�

0

b(η)θ(t−η, x) dη−∆
t�

0

a(η)θ(t−η, x) dη = W (t, x).



36 J. A. Gawinecki et al.

Equation (2.13) describes the propagation of heat with finite speed U equal
to

U =
√
a(0)/c.

Under the assumption that the Cauchy data θ0, q0, e0 are smooth enough the
solution of the Cauchy problem for the temperature θ(t, x) can be written
as follows:

(2.14) θ(t, x) = cE(t, x− ·) ∗3 θ0(·)
and additionally for the heat flux q(t, x) and internal energy e(x, t) as below:

qk(t, x) = −a ∗t ∂k(cE(t, a− x) ∗3 θ0(·)),(2.15)

e(t, x) = e0 + c2E(t, x− ·) ∗3 θ0(·) + b ∗t (cE(t, x− ·) ∗3 θ0(·))(2.16)

where E(t, x) is the fundamental solution of equation (2.13) and ∗t denotes
convolution with respect to t, while ∗3 denotes convolution with respect to
x ∈ R3.

The aim of our paper is to prove an Lp-Lq time decay estimate for the
solution of the Cauchy problem for temperature. Now, we formulate our
main results:

Theorem 2.1 (Main Theorem, Lp-Lq time decay estimate). Let 1 < p ≤
q < ∞, 1/p + 1/q = 1 and let s ∈ N, s ≥ [3(1 − 2/q)] + 1. If (θ0, Dθ0) ∈
W s,p(R3) then there exists a constant C > 0 such that for t > 0 the solution
given by (2.14) satisfies the following estimate:

(2.17) ‖(θ,Dθ)‖Lq(R3) ≤ C(1 + t)−
3
2

(1−2/q)‖(θ0, Dθ0)‖W s,p(R3)

where Dθ = (∂1θ, ∂2θ, ∂3θ)
T , Dθ0 = (∂1θ0, ∂2θ0, ∂3θ0)T .

Lp-Lq time decay estimates for solutions of linear evolution equations
can be written in the general forms

‖V (t)‖Lq(Rn) ≤ c(1 + t)−d‖V 0‖WNp,p(Rn)

where 2 ≤ q < ∞, 1/p + 1/q = 1, c, d > 0, Np > n(1 − 2/q), and n is the
space dimension.

1. For the wave equation in three dimensions (n = 3) we have d = 1−2/q.
2. For the classical heat equation in three dimensions we have d =

3
2(1− 2/q).

In our model, i.e. for the nonlocal model of heat propagation with finite
speed (cf. Main Theorem 2.1, (2.17)) we prove that d = 3

2(1− 2/q).
So, the time decay for the nonlocal model of heat propagation is similar

to the time decay of the parabolic heat equation but strongly depends on
the relaxation functions a(t) and b(t) (cf. formulae (4.9), (4.10)). Hence,
our nonlocal model is more general than the classical one describing the
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propagation of heat and the model describing the propagation of heat by
the hyperbolic partial differential equation (cf. [19]).

Additionally, roughly speaking the nonlocal model of heat propagation
with finite speed is essentially different from the classical description of prop-
agation of heat (cf. Fig. 4) from the following points of view:

1◦ the wave front exists in this description (cf. Fig. 5),
2◦ the distribution of the temperature exists in a neighbourhood of the

wave front (cf. Fig. 5).

Before starting the proof of the main theorem we introduce some notation
and some facts on Sobolev spaces.

3. Basic notation and formulae. Let us assume that 0 < s ≤ ∞,
1 ≤ p <∞. We denote by W s,p(Rn) the usual Sobolev space, i.e.

W s,p(Rn) =
{
u : Dαu ∈ Lp(Rn) for |α| ≤ s,

‖u‖W s,p(Rn) =
(∑
|α|≤s

‖Dαu‖pLp(Rn)

)1/p
<∞

}
.

Write
W s,2(Rn) = Hs(Rn).

Let
S(Rn) =

{
u ∈ C∞(Rn) : ∀α,β sup

x∈Rn
|xβ∂αu(x)| <∞

}
denote the space of infinitely differentiable functions, rapidly decreasing as
|x| → ∞.

By S′(Rn) we will denote the space of tempered distributions. Below, we
recall the definition of the Fourier transformation.

Definition 3.1. The Fourier transform of a function u ∈ S(Rn) is the
function denoted by Fu or û defined by the formula

Fu(ξ) = û(ξ) =
1

(2π)n/2

�

Rn
u(x)e−ixξ dx.

The inverse Fourier transform of a function û ∈ S(Rn) is given by

(3.1) F−1û(x) = u(x) =
1

(2π)n/2

�

Rn
û(ξ)eixξ dξ.

The Fourier transform of a distribution u ∈ S′(Rn) is the distribution û ∈
S′(Rn) defined as follows:

〈û, ϕ〉 = 〈u, ϕ̂〉 for ϕ ∈ S(Rn).

The Fourier transform is an automorphism of S and of S′ (cf. [48]).
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Definition 3.2. The convolution of u, v ∈ S(Rn) is the function u ∗n v
defined by

(u ∗n v)(x) =
�

Rn
u(x− y)v(y) dy.

The convolution of a distribution u ∈ S′(Rn) with a function ϕ ∈ S(Rn) is
the function defined by

(u ∗n ϕ)(x) = 〈u, ϕ(x− ·)〉.
Now, we will introduce some notations and properties concerning Besov

and Bessel spaces (cf. [3], [25], [49], [51]). Let ϕ be an arbitrary nonnegative
function satisfying the conditions

ϕ ∈ C∞0 (Rn), suppϕ ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2},

ϕ(x) > 0 for 1/2 < |x| < 2,
∞∑

k=−∞
ϕ(2−kx) = 1 for x 6= 0.

For the given ϕ we define the functions ϕk, k ∈ Z, and ψ by the formulae

Fϕk(ξ) = ϕ(2−kξ), Fψ(ξ) = 1−
∞∑
k=1

Fϕ(2−kξ).

Definition 3.3. Let 1 ≤ p ≤ q ≤ ∞ and s > 0. The Bessel space is

Hs,p(Rn) = {u ∈ S′(Rn) : ‖u‖Hs,p(Rn) <∞}
where

‖u‖Hs,p(Rn) = ‖F−1(1 + |ξ|2)s/2Fu‖Lp(Rn).

The Besov space is

Bs
p,q(Rn) = {u ∈ S′(Rn) : ‖u‖Bsp,q(Rn) <∞}

where

‖u‖Bsp,q(Rn) =
(
‖ψ ∗n u‖qLp(Rn) +

∞∑
k=1

(2sk‖ϕk ∗n u‖Lp(Rn))
q
)1/q

.

Below, we give some theorems which are necessary in order to get an
Lp-Lq time decay estimate (cf. [51]).

Theorem 3.1. If m ∈ N0, 1 < p <∞, then

Wm,2(Rn) = Hm,2(Rn) = Bm
22(Rn), Wm,p(Rn) = Hm,p(Rn).

Theorem 3.2. If m ∈ N0, 1 ≤ p <∞, then

Bm
p,1(Rn) ↪→Wm,p(Rn).

Theorem 3.3. If s ≥ 0, 1 < p < ∞, 1 ≤ q ≤ ∞, ε > 0, then
Hs+ε,p(Rn) ↪→ Bs

p,q(Rn).
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Theorem 3.4. Let θ ∈ (0, 1), p0, p1 ∈ [1,∞] and

1

pθ
=

1− θ
p0

+
θ

p1
.

Then
[Lp0(Rn), Lp1(Rn)]θ = Lpθ(Rn)

where [Lp0(Rn), Lp1(Rn)]θ is the interpolation space between Lp0(Rn) and
Lp1(Rn).

Theorem 3.5. Let θ ∈ (0, 1), p0, q0, p1, q1 ∈ [1,∞] and

1

pθ
=

1− θ
p0

+
θ

p1
,

1

qθ
=

1− θ
q0

+
θ

q1
, sθ = (1− θ)s0 + θs1.

Then
[Bs0

p0,q0(Rn), Bs1
p1,q1(Rn)]θ = Bsθ

pθ,qθ
(Rn).

Theorem 3.6. Let (XA, XB), (YA, YB) be a pair of interpolation spaces,
and T a linear operator

T : XA +XB → YA + YB.

If T is a continuous operator in the spaces XA, XB and

T |XA : XA → YA with the norm ‖T‖A,
T |XB : XB → YB with the norm ‖T‖B,

then for θ ∈ (0, 1) the operator

T |[XA,XB ]θ : [XA, XB]θ → [YA, YB]θ

is a continuous operator and its norm satisfies

‖T‖θ ≤ ‖T‖1−θA ‖T‖θB.

4. Construction of a fundamental solution for the nonlocal
model of heat propagation. In order to prove the main theorem we start
with the construction of a fundamental solution for the nonlocal model of
heat propagation. We proved (cf. (2.13)) that equations (2.8)–(2.11) may be
written as follows:

(4.1) c∂tE(t, x) + ∂t

t�

0

b(η)E(t− η, x) dη −∆
t�

0

a(η)E(t− η, x) dη

= W0δ(t)δ(x)

where δ(t), δ(x) denote Dirac distributions (cf. [55]) and E(t, x) expresses
that we are looking for the fundamental solution of our problem with source
of the form W (t, x) = W0δ(t)δ(x).



40 J. A. Gawinecki et al.

Applying the Laplace transformation with respect to t and the Fourier
transformation with respect to x1, x2 given by formula (3.1) to the system
(2.8)–(2.12) we get

(s(c+ b̄(s)) + ā(s)(ξ2
1 + ξ2

2))ˆ̄E− ā(s)
d2 ˆ̄E
dx2

3

= ˆ̄W

where ā(s), b̄(s) denote the Laplace transforms of the relaxation functions
a(·), b(·), and

ˆ̄E(s, ξ1, ξ2, x3) ≡
�

R2

e−i(ξ1x1+ξ2x2)
[∞�

0

E(t, x)e−st dt
]
dx1 dx2.

Moreover ˆ̄W denotes the Laplace–Fourier transform of the unit sourceW (t, x)
= W0δ(t)δ(x) which is given by

ˆ̄W = W0δ(x3)

where
a(η) = 0, b(η) = 0 for η < 0.

Solving equation (4.1) we get

(4.2) ˆ̄E(s, ξ1, ξ2, x3) =
W0

2a(s)γ
e−γ|x3|

where

γ =
√
ξ2

1 + ξ2
2 + r̄2, Re γ > 0,

r̄(s) =

√
s(c+ b̄)

ā
.

In order to get the fundamental solution E(t, x) in space-time we could use
the formula for the inverse Fourier and Laplace transformation. It leads to a
singular integral, from which it is difficult to obtain the solution in explicit
form. We can see this from the following formula for E(t, x) which is given
by a triple integral:

E(t, x) = L−1F−1
ξ1,ξ2

ˆ̄E(s, ξ1, ξ2, x3)

=
1

2πi

c+i∞�

c−i∞

(
1

4π2

�

R2

W0e
−
√
ξ21+ξ22+r̄2|x3|

2â(s)
√
ξ2

1 + ξ2
2 + r̄2

ei(x1ξ1+x2ξ2) dξ1 dξ2

)
est ds.

In order to circumvent these dificulties we will apply the Cagniard
method (cf. [7]) and its modification made by de Hoop (cf. [24]). The
Cagniard–de Hoop method is based on integration along a specially chosen
contour Γ on the complex plane of ω. The integration contour Γ is described
parametrically by formula (4.4) and presented in Fig. 1.
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Fig. 1

Using the modified de Hoop transformation (cf. [24]) in the form

ξ1 =

(
ω
x1

ρ
+ q

x2

ρ

)
r̄, ξ2 =

(
ω
x2

ρ
− qx1

ρ

)
r̄ where ρ =

√
x2

1 + x2
2,

we get

(4.3) Ē(s, ρ, x3) =
W0

4π2

∞�

−∞
dq

∞�

−∞

r̄

2ā

e(iωρ−|x3|
√
ω2+q2+1)r̄√

ω2 + q2 + 1
dω.

Using the modified Cagniard method (cf. [7], [24]) we replace the integral
with respect to ω (after a suitable transformation) by the integral over a
suitably chosen contour Γ (cf. Fig. 1):

(4.4) Γ : |x3|
√
ω2 + q2 + 1− iωρ = T, T ≥ 0.

From (4.4), we get

ω± = i
Tρ

|x|2
± |x3|
|x|2

√
T 2 − |x|2(q2 + 1)

where |x| =
√
x2

1 + x2
2 + x2

3 =
√
ρ2 + x2

3, T > |x|
√
q2 + 1.

We find that
+R�

−R
f(ω) dω +

�

CR+

f(ω) dω +
�

CR−

f(ω) dω +
�

∆Γ

f(ω) dω

+
�

Γ+

f(ω+(T )) dω+(T ) +
�

Γ−

f(ω−(T )) dω−(T ) = 2πi
∑

resωj

f(ωj).

The integrals over the contours CR+ and CR− vanish, so in view of the
Jordan Lemma, after some calculations we get

(4.5) Ē(s, x) =
W0

4π2

∞�

−∞
dq

∞�

|x|
√
q2+1

r̄

2ā

e(iωρ−|x3|
√
ω2+q2+1)r̄√

ω2 + q2 + 1

∂ω

∂T

∣∣∣∣ω=ω+

ω=ω−
dT
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and next

(4.6) Ē(s, x) =
W0

4π2

∞�

−∞
r̄ dq

∞�

|x|
√
q2+1

e−r̄T

ā
√
T 2 − |x|2(q2 + 1)

dT.

Since the integrand has no singularities inside the integral contour, we get

Ē(s, x) =
W0

4π

∞�

|x|

r̄

ā|x|
e−r̄T dT =

e−r̄|x|

4πā|x|
.

So, we have

(4.7) Ē(t, x) =
W0

4π
L−1

[
e−r̄|x|

ā|x|

]
where L−1 denotes the inverse Laplace transformation.

Putting in (4.5) ā(s) = a0 = const, b̄(s) = 0 (a(t) = a0δ(t), b(t) = 0 and
W0 = 1) we get

E(t, x) =
1

4πa0|x|
L−1[e−

√
|x|2sc/a0 ].

From this transformation we deduce (cf. [15])

(4.8) E(t, x) =
e−

|x|2

4D2t

Da0(
√

4πt)3

whereD =
√
a0/c, a0 denotes the heat coefficient, andD is the heat diffusion

coefficient. Formula (4.8) gives the fundamental solution of the classical heat
equation.

In order to obtain the explicit representation for the temperature given by
formula (4.6) we assume that the relaxation functions are given in Maxwell
form (cf. [22]):

a(t) = a0
1

τ
e−t/τ ,(4.9)

b(t) = b0e
−t/τ ,(4.10)

where a0, b0, τ denote the amplitudes and the relaxation time, respectively.
From (4.9) and (4.10) we obtain

ā(s) = a0
1

τ

1

s+ 1/τ
, b̄(s) = b0

1

s+ 1/τ
,

Hence

E(t, x) =
W0

4πa0
L−1

[
(τs+ 1)

e−
|x|
U

√
s(s+1/τ+b0/c)

|x|

]
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where U =
√
a0/cτ . Finally, after some calculations, we have

(4.11) E(t, x) =
W0

4πa0

[(
1 + τ

d

dt

)
E3(t, x)

]
where

(4.12) E3(t, x) = e−
1
2

(1/τ+b0/c)t 1

|x|

(
δ

(
t− |x|

U

)
+

1
2

(
1
τ + b0

c

) |x|
U√

t2 − |x|2/U2

· I1

(
1

2

(
1

τ
+
b0
c

)√
t2 − |x|

2

U2

)
H

(
t− |x|

U

))
.

In (4.12), I1(·) denotes the modified Bessel function of the first order (cf.
[15]),

(4.13) Iν(z) =

(
z

2

)ν ∞∑
k=0

(z/2)2k

k!Γ (ν + k + 1)
,

H(·) denotes the Heaviside function, δ(t − |x|/U) is the Dirac distribution
concentrated on the sphere with radius |x| = Ut (cf. [5], [54]) and describing
the wave front moving with velocity U .

5. L∞-L1 time decay estimates for the solution of the Cauchy
problem in nonlocal theory. We showed (cf. (2.14)–(2.16)) that the so-
lution of the Cauchy problem for the system of equations of the nonlocal
theory of heat propagation,

∂te+ qi,i = 0,(5.1)

∂tqk(t, x) = −a(0)∂kθ(t, x)−
∞�

0

a′(η) grad θ(t− η, x) dη,(5.2)

∂te(t, x) = c∂tθ(t, x) + b(0)θ(t, x) +

∞�

0

b′(η)θ(t− η, x) dη,(5.3)

with initial conditions

(5.4) e(0) = e0, q(0) = q0, θ(0) = θ0

and with the additional condition

(5.5) ∂kq0 = 0,

can be represented in the form

(5.6) θ(t, x) = cE(t, x− ·) ∗3 θ0(·)
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and

qk(t, x) = −a ∗t ∂k(cE(t, x− ·) ∗3 θ0(·)),
e(t, x) = e0 + c2E(t, x− ·) ∗3 θ0(·) + b ∗t (cE(t, x− ·) ∗3 θ0(·)),

where E(t, x) is the fundamental solution given by (4.11) and ∗t denotes
convolution with respect to t.

Now, we shall prove the following theorem.

Theorem 5.1 (L∞-L1 time decay estimate). If

(θ0, Dθ0) ∈W 3,1(R3)

then the solution θ given by formula (5.6) satisfies

‖(θ(t, ·), Dθ(t, ·))‖L∞(R3) ≤ C(1 + t)−3/2‖(θ0, Dθ0)‖W 3,1(R3)

for t > 0, where C is a constant independent of θ0 and t.

Sketch of proof. Basing on formula (4.11) we can write the expression
(5.6) as follows (without loss of generality we assume that c = 1):

(5.7) θ(t, x) = E3(t, x− ·) ∗3 θ0(·) + τ∂tE3(t, x− ·) ∗3 θ0(·)

where

E3(t, x) =
U

4πa0|x|
e−mtδ(Ut− |x|)

+
me−mt

4πa0

I1

(
m
U

√
U2t2 − |x|

)√
U2t2 − |x|2

·H(Ut− |x|)

where m = 1
2(1/τ + b0/c), that is, m = U2(c+ b0τ)/2a0.

Differentiating (5.7) with respect to xl (l = 1, 2, 3) we get

(5.8) ∂lθ(t, x) = E3(t, x− ·) ∗3 ∂lθ0(·) + τ∂tE3(t, x− ·) ∗3 ∂lθ0(·).

The relations (5.7) and (5.8) can be written in vector form as follows:

(5.9)
(
θ

Dθ

)
= B(t, ·) ∗3

(
θ0

Dθ0

)
where

Dθ = (∂1θ, ∂2θ, ∂3θ)
T , Dθ0 = (∂1θ0, ∂2θ0, ∂3θ0)T

and B(t, x) is the 4× 4 matrix

B(t, x) = (E3(t, x) + τ∂tE3(t, x))I4

where I4 is the 4× 4 identity matrix.
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Using the representation of the modified Bessel function (cf. formula
(4.13)) we can write the fundamental solution E as follows (1):

(5.10) E3(t, x) =
1

4πa0|x|
e−mtδδ(Ut− |x|)

+
1

2a0π
e−mt

∞∑
k=0

mk+2(U2t2 − |x|2)k

k!(k + 1)!(2U)2k+2
H(Ut− |x|).

Taking into account (5.10) we get

E3(t, ·) ∗3 f(x− ·) =
1

4πa0U
te−mt

�

|y|=U

f(x+ ty) dSy

+
1

2a0π

∞∑
k=0

m2k+2t2k+3e−mt

k!(k + 1)!(2U)2k+2

�

|y|≤U

(U2 − |y|2)kf(x+ ty) dy.

Estimating the terms E3(t, ·) ∗3 f(x− ·) given ∂tE3(t, ·) ∗3 f(x− ·) as in [20]
and putting all the estimates together, we get

‖B(t, ·) ∗3 f‖L∞(R3) ≤ C(1 + t)−3/2‖f‖W 3,1(R3).

This finishes the proof of Theorem 5.1.

6. L2-L2 time decay estimate for the solution of the Cauchy
problem. In order to prove an L2-L2 time decay estimate for the solution
of the Cauchy problem (5.9) we can write the fundamental solution E3(t, x)
in the form

(6.1) E3(t, x) =
e−mt

a0
R1(t, x) +

me−mt

4πa0
R2(t, x)

where

(6.2) R1(t, x) =
1

4πU2|x|
δ

(
t− |x|

U

)
,

which is the fundamental solution of the wave operator P (∂) = ∂2
t − U2∆,

and

(6.3) R2(t, x) =
I1

(
m
U

√
U2t2 − |x|2

)√
U2t2 − |x|2

H(Ut− |x|).

We can prove the following theorem:

Theorem 6.1. If (θ0, Dθ0) ∈ L2(R3), then there exists a constant C > 0
such that for t > 0 the solution given by (2.14) satisfies

‖(θ(t, ·), Dθ(t, ·))‖L2(R3) ≤ C‖(θ0, Dθ0)‖L2(R3).

(1) We change the variables in the convolutions as follows: z − x = ty, dSz = t2dSy.
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Proof. In view of (5.6) and (6.1)–(6.3) we can write

θ(t, x) =
e−mt

a0
R1(t, x− ·) ∗3 θ0 +

τ

a0

∂

∂t
(e−mtR1(t, x− ·) ∗3 θ0)

+
me−mt

4πa0
R2(t, x− ·) ∗3 θ0 +

τm

4πa0

∂

∂t
(e−mtR2(t, x− ·) ∗3 θ0),

so we get

(6.4) θ(t, x) =

(
1

a0
− τm

a0

)
e−mtW1(t, x) +

τe−mt

a0

∂W1

∂t
(t, x)

+

(
m

4πa0
− m2τ

4πa0

)
e−mtW2(t, x) +

τm

4πa0
e−mt

∂W2(t, x)

∂t

where W1(t, x) = R1(t, x− ·) ∗3 θ0(·), W2(t, x) = R2(t, x− ·) ∗3 θ0(·).
The function W1 is the solution to the Cauchy problem

(6.5)
∂2W1

∂t2
− U2∆W1 = 0, W1(0, x) = 0,

∂W1

∂t
(0, x) = θ0.

In order to get estimates for ‖W1‖L2(R3) and ‖∂tW1‖L2(R3) we use the
following lemma (cf. [26]).

Lemma 6.1. If a ∈ L∞(R3) and v ∈ S(R3) and ‖a‖L∞(R3) < C, then

‖F−1(av̂)‖L2(R3) ≤ ‖a‖L∞(R3)‖v‖L2(R3).

In view of this fact, we get the following lemma.

Lemma 6.2. Let W1 be the solution to the Cauchy problem (6.5). Then
for t ≥ 0,

‖∂tW1‖L2(R3) ≤ C‖θ0‖L2(R3), ‖W1‖L2(R3) ≤ Ct‖θ0‖L2(R3).

Proof. The Fourier transform of W1 is

Ŵ1 = θ̂0
sin(U |ξ|t)
|ξ|

, ∂tŴ1 = θ̂0U cos(U |ξ|t).

Putting a = U cos(U |ξ|t) resp. a = sin(tU |ξ|)
tU |ξ| we obtain, from Lemma 6.1,

(6.6) ‖∂tW1‖L2(R3) = ‖F−1(U cos(U |ξ|t)θ̂0)‖L2(R3) ≤ C‖θ0‖L2(R3)

and

(6.7) ‖W1‖L2(R3) =

∥∥∥∥F−1

(
sin(tU |ξ|)
|ξ|

θ̂0

)∥∥∥∥
L2(R3)

=

∥∥∥∥F−1

(
sin(tU |ξ|)
tU |ξ|

tUθ̂0

)∥∥∥∥
L2(R3)

≤ Ct‖θ0‖L2(R3).

Now, we estimate the term W2(t, x) = R2(t, x−·)∗3 θ0 and its derivative
∂W2/∂t. In order to get an L2-L2 time decay estimate for W2 we use the
Fourier transformation basing on Bochner’s formula.
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The Fourier transform of an integrable, rotation-invaviant function G(x)
= g(|x|) can be expressed by the following integral:

Ĝ(|ξ|) = FG(|ξ|) = 2π|ξ|1−n/2
∞�

0

g(r)rn/2Jn/2−1(2π|ξ|r) dr

(Bochner’s formula; cf. [48]). Applying it to R2 we obtain

Ŵ2(t, ξ) = R̂2(t, ξ)θ̂0(ξ)

where

R̂2(t, ξ) = 2π|ξ|1−3/2
∞�

0

I1

(
m
U

√
U2t2 − r2

)
√
U2t2 − r2

H(Ut− r)r3/2J1/2(2π|ξ|r) dr.

Taking into account the formula

J1/2(z) =

(
2

πz

)1/2

sin z

we get

R̂2(t, ξ) =
2

|ξ|

Ut�

0

I1

(
m
U

√
U2t2 − r2

)
√
U2t2 − r2

sin(2π|ξ|r)r dr.

Changing variables according to
√
U2t2 − r2 = z we obtain

(6.8) R̂2(t, ξ) =
2

|ξ|

Ut�

0

I1

(
mz

U

)
sin(2π|ξ|

√
U2t2 − z2) dz.

Now, we prove the following useful lemma:

Lemma 6.3. There exists a constant c > 0 such that for t > 0,

‖e−mtR̂2(t, ξ)‖L∞(R3) ≤ C,
∥∥∥∥e−mt∂R̂2

∂t

∥∥∥∥
L∞(R3)

≤ C.

Proof. For given |ξ| > 0 define

f(t) =
2

|ξ|

Ut�

0

I1

(
mz

U

)
sin(2π|ξ|

√
U2t2 − z2) dz.

Then

(6.9) f ′(t) = 4πtU2
Ut�

0

I1

(
mz

U

)
cos(2π|ξ|

√
U2t2 − z2)√

U2t2 − z2
dz.

Now, we use the following formula (cf. [46, p. 311, formula 6]):
a�

0

I1(cx)
cos(b

√
a2 − x2)√

a2 − x2
dx =

1

ca
[cos(a

√
b2 − c2)− cos(ab)].
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By (6.9) we obtain

f ′(t) =
4Uπ

m

[
cos
(
Ut
√

4π2|ξ|2 −m2/U2
)
− cos(Ut · 2π|ξ|)

]
.

Since f(0) = 0, we have

f(t) =

t�

0

f ′(τ) dτ.

Now, we consider two cases:

1◦ |ξ| ≥ m(2πU). In this case

|f ′(t)| ≤ 4Uπ

m
· 2 ≤ C

so we get

(6.10) |f(t)| =
∣∣∣ t�

0

f ′(τ) dτ
∣∣∣ ≤ Ct.

2◦ |ξ| < m/(2πU). Now, we obtain

(6.11) |f ′(t)| = 4Uπ

m

∣∣∣∣ cos

(
itm

√
1− 4π2U2|ξ|2

m2

)
− cos(Ut · 2π|ξ|)

∣∣∣∣
=

4Uπ

m

∣∣∣∣12etm√1−4π2U2|ξ|2/m2
+

1

2
e−tm

√
1−4π2U2|ξ|2/m2 − cos(Ut · 2π|ξ|)

∣∣∣∣.
Finally, from (6.11) we obtain |f ′(t)| ≤ C1e

mt. So we get

(6.12) |f(t)| ≤
t�

0

|f ′(τ)| dτ ≤ C2

t�

0

emτ dτ =
C2

m
(emt − 1) ≤ C3e

mt.

In view of (6.8), (6.10), (6.15) and the definition of f(t) we conclude that
there exists a constant C > 0 such that for t > 0 and |ξ| > 0,

(6.13) |R̂2(t, ξ)| =
∣∣∣∣ 2

|ξ|

Ut�

0

I1

(
mz

U

)
sin(2π|ξ|

√
U2t2 − z2) dz

∣∣∣∣ ≤ Cemt
and

(6.14)
∣∣∣∣∂R̂2(t, ξ)

∂t

∣∣∣∣ ≤ Cemt.
The inequalities (6.12), (6.13) complete the proof of Lemma 6.3.



Heat propagation with finite speed 49

Now, we will prove Theorem 6.1. Basing on Lemma 6.1 and (6.12), (6.13)
we get

‖W2‖L2(R3) = ‖F−1(R̂2θ̂0)‖L2(R3) ≤ ‖R̂2‖L∞(R3)‖θ0‖L2(R3)(6.15)

≤ Cemt‖θ0‖L2(R3),∥∥∥∥∂W2

∂t

∥∥∥∥
L2(R3)

=

∥∥∥∥F−1

(
∂R̂2

∂t
θ̂0

)∥∥∥∥
L2(R3)

≤
∥∥∥∥∂R̂2

∂t

∥∥∥∥
L∞(R3)

‖θ0‖2(6.16)

≤ Cemt‖θ0‖L2(R3).

In view of (6.4)–(6.7) and (6.14)–(6.16) we have

‖θ‖L2(R3) ≤
(

1

a0
− τm

a0

)
e−mt‖W1‖L2(R3) +

τe−mt

a0

∥∥∥∥∂W1

∂t

∥∥∥∥
L2(R3)

+

(
m

4πa0
− m2τ

4πa0

)
e−mt‖W2‖L2(R3) +

τm

4πa0
e−mt

∥∥∥∥∂W2

∂t

∥∥∥∥
L2(R3)

≤ C‖θ0‖L2(R3).

In a similar way, we obtain

‖Dθ‖L2(R3) ≤ C‖Dθ0‖L2(R3).

7. Lp-Lq time decay estimate for the solution of the Cauchy
problem. Basing on Theorems 5.1, 6.1 and using interpolation methods we
can now prove Main Theorem 2.1.

Proof of Main Theorem 2.1. Let Θ = (θ,Dθ) denote the solution of the
initial value problem (5.1)–(5.5) for fixed Θ0 = (θ0, Dθ0) ∈ S′(R3).

Now, we introduce the linear operator

R : S′ → S′, R(Θ0) = Θ,

where Θ0 = (θ0, Dθ0), Θ = (θ,Dθ).
In view of the already proved Theorems 5.1, 6.1 we conclude that the

operator R is bounded in the spaces W 3,1(R3), L2(R3) and has the norms
‖R‖0, ‖R‖1 in these spaces. This means that

∃C0 > 0 ∀t > 0, R : W 3,1(R3)→ L∞(R3), ‖R‖0 = C0(1 + t)−3/2

and
∃C1 > 0 ∀t > 0, R : L2(R3)→ L2(R3), ‖R‖1 = C1.

Taking into account the properties of Sobolev, Besov and Bessel spaces (cf.
[51]), we get

L2(R3) = B0
2,2(R3), B3

1,1(R3) ↪→W 3,1(R3).

Using interpolation between L2(R3) and L∞(R3) we obtain

(7.1) [L∞(R3), L2(R3)]2/q = Lq(R3).
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In view of Theorem 3.4 we have

(7.2) [B3
1,1(R3), B0

2,2(R3)]2/q = B3(1−2/q)
p,p (R3).

So, basing on the interpolation theorem we conclude from (7.1), (7.2) that

(7.3) R : B3(1−2/q)
p,p (R3)→ Lq(R3).

Furthermore the norm of R in these spaces is estimated as follows:

(7.4) ‖R‖ ≤ C(1 + t)−
3
2

(1−2/q).

Now, let s ∈ N, s ≥ s0, where

s0 = [3(1− 2/q)] + 1, ε := s0 − 3(1− 2/q).

Applying imbedding theorems and the properties of Sobolev spaces we get

(7.5) W s,p(R3) ↪→W s0,p(R3) = Hs0,p(R3)

= H3(1−2/q)+ε,p(R3) ↪→ B3(1−2/q)
p,p (R3).

Using (7.3)–(7.5) we have

R : W s,p(R3)→ Lq(R3), ‖R‖ ≤ C(1 + t)−
3
2

(1−2/q).

This ends the proof of Main Theorem 2.1.

Remark 7.1. Basing on Theorem 2.1 we can find an Lp-Lq time decay
estimate for the internal energy e and heat flux q (cf. formulae (2.15) and
(2.16); see [20]).

8. Mathematical and physical interpretation of the solution to
the nonlocal model of heat propagation with finite speed. In this
section we would like to answer the question where and when the solution of
the nonlocal model of heat propagation with finite speed given by formula
(5.6) tends to or is equivalent to the solution of the classical heat equation.

We consider the following cases:

I: the relaxation time tends to zero,
II: we are far from the wave front of the propagation of the wave.

I. Let us assume that τ → 0. Since m = 1
2(1/τ + b0/c) and U =

√
a0/cτ ,

if τ → 0 we have m→∞, U →∞ and

(8.1) D =
U√
2m

=

√
a0

c
.

Taking this into account and using (5.7) we get

θ(t, x) = E3(t, x− ·) ∗3 θ0(·) + τ(∂tE3(t, x− ·) ∗3 θ0(·))
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where

E3(t, x) =
1

4πa0U2|x|
e−mtδ(Ut− |x|)

+
me−mt

4πa0

I1(mU
√
U2t2 − |x|2)√

U2t2 − |x|2
·H
(
t− |x|

U

)
= E1 + E2.

Now, we analyse the function E2 under the assumption (8.1).
We use the asymptotic behaviour of the Bessel function

I1(z) =
ez√
2πz

as z →∞. Taking it into account we have the following estimate as τ → 0:

(8.2) E2(t, x) =
me−mt

4πa0

I1

(
m
U

√
U2t2 − |x|2

)√
U2t2 − |x|2

H(Ut− |x|)

≈ me−mt

4πa0Ut

emt
√

1−|x|2/U2t2√
2πtm

√
1− |x|2/U2t2

H
(
t− |x|/U

)√
1− |x|2/U2t2

.

In view of the fact that |x|2/U2t2 � 1, from (8.2) we obtain

E2(t, x) =
me−mt

4πa0

emt−
m|x|2

2U2t

√
2π t3/2

√
mU

H(t) =

√
2me−

|x|2

4D2t

(
√

4πt)3a0U
H(t)

−−−→
τ→0

e−
|x|2

4D2t

D(
√

4πt)3a0

.

Now, we prove that E1(t, x − ·) ∗3 θ0(·) → 0 as τ → 0. Using the definition
of δ(Ut− |x|) and changing variables according to y = zUt, we get

E1(t, x− ·) ∗3 θ0(·) =
e−mt

4πa0

1

U3t

�

|y|=Ut

θ0(x− y) dSy

=
e−mtt

4πa0U

�

|z|=1

θ0(x− Utz) dSz −−−→
τ→0

0.

The derivative ∂t(E1(t, x− ·) ∗3 θ0(·)) can be expressed as follows:

∂t(E1(t, x− ·) ∗3 θ0(·)) =
e−mtmt

4πa0U

�

|z|=1

θ0(x− Utz) dSz

+
e−mt

4πa0U

�

|z|=1

θ0(x− Utz) dSz +
e−mtt

4πa0

�

|z|=1

∇θ0(x− Utz)z dSz

= P1(t, x) + P2(t, x) + P3(t, x).
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Then, for every fixed t > 0 we have

|P1| ≤ ‖θ0‖L∞(R3)
e−mtmt

4πa0U
−−−→
τ→0

0,

|P2| ≤
e−mt

4πa0U
‖θ0‖L∞(R3) −−−→

τ→0
0,

|P3| ≤
e−mtt

a04π
‖θ0‖W 1,∞(R3) −−−→

τ→0
0.

The derivative ∂tE2(t, x) can be expressed in the following form:

∂tE2(t, x) = −τ m2

4πa0
e−mt

I1

(
m
U

√
U2t2 − |x|2

)√
U2t2 − |x|2

H

(
t− |x|

U

)
+me−mtτ

(
I ′1
(
m
U

√
U2t2 − |x|2

)
mUt

4πa0(U2t2 − |x|2)

−
I1

(
m
U

√
U2t2 − |x|2

)
U2t/

√
U2t2 − |x|2

4πa0(U2t2 − |x|2)

)
H

(
t− |x|

U

)
+ τ

me−mt

4πa0

I1

(
m
U

√
U2t2 − |x|2

)√
U2t2 − |x|2

δ

(
t− |x|

U

)
= R1(t, x) +R2(t, x) +R3(t, x).

For τ → 0, we have

R1(t, x) =
τm2e−mt

4πa0

I1

(
m
U

√
U2t2−|x|2

)√
U2t2−|x|2

H

(
t− |x|

U

)

≈ τ m
2e−mt

4πa0Ut

emt
√

1−|x|2/U2t2√
1−|x|2/U2t2

H(t−|x|/U)√
2πmt

√
1−|x|2/U2t2

≈ τm
√

2m

a0U

e−
|x|2

4D2t

(4πt)3/2
H(t) ≈ 1

2a0D

e−
|x|2

4D2t

(4πt)3/2
H(t),

R2(t, x) =
I ′1
(
m
U

√
U2t2−|x|2

)√
U2t2−|x|2mUt−I1

(
m
U

√
U2t2−|x|2

)
U2t

(U2t2−|x|2)3/2

·me
−mt

4πa0
τH(t) =

1
2I0

(
m
U

√
U2t2−|x|2

)
+ 1

2I1

(
m
U

√
U2t2−|x|2

)
U2t2

(
1−|x|2/U2t2

)
·m

2Ut ·me−mt

4πa0
τH(t)−

I1

(
m
U

√
U2t2−|x|2

)
U2t

U3t3
(
1−|x|2/U2t2

)3/2 me−mt

4πa0
τH(t)

= R21(t, x)+R22(t, x)+R23(t, x)
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where

R21(t, x) =
1

8πa0
m2Ute−mtτ

I0

(
m
U

√
U2t2 − |x|2

)
U2t2 − |x|2

H(t)

≈ 1

8πa0t3/2
1√
2π

m3/2τ

U
e−
|x|2m
U2t2 ≈ 1

2a0D(4πt)3/2
e−

|x|2

4D2tH(t),

R22(t, x) =
t

8πa0
m2Ue−mtτ

I1

(
m
U

√
U2t2 − |x|2

)
U2t2 − |x|2

≈ 1

2a0D(4πt)3/2
e−

|x|2

4D2tH(t),

R23(t, x) =
−1

4πa0
τme−mt

U2t

U3t3
(
1− |x|2/U2t2

)3/2 I1

(
m

U

√
U2t2 − |x|2

)

≈ −1

4πa

1

t2
e−mt

mτ

U

emt
√

1−|x|2/U2t2√
2πmt

√
1− |x|2/U2t2

≈ 0.

Now, we consider the term R3(t, x):

(8.3) R3(t, x) =
τme−mt

4πa0

m

U

I1

(
m
U

√
U2t2 − |x|2

)
m
U

√
U2t2 − |x|2

δ

(
t− |x|

U

)
=
τme−mt

4πa0

m

U

1

2
δ

(
t− |x|

U

)
.

Here we use the fact that I1(z)
z

∣∣
z=0

= 1
2 . From (8.3) and the definition of

Dirac distribution we get

R3(t, x) ∗ θ0 −−−→
τ→0

0.

Taking into account all the above considerations we have

θ(t, x) = E1(t, x− ·) ∗3 θ0(·) + E2(t, x− ·) ∗3 θ0(·)
+ τ(∂tE1(t, x− ·) ∗3 θ0(·)) + τ(∂tE2(t, x− ·) ∗3 θ0(·))

≈ 3e−
|x|2

4D2t

2a0D(4πt)3/2
∗3 θ0(·).

The last formula proves that if τ → 0, then the solution θ of the Cauchy
problem for the nonlocal model of heat propagation is equivalent to the
solution of the Cauchy problem for the classical parabolic heat equation.

Now, we consider the second case:

II. If
|x|
Ut
� 1
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(while τ is fixed), it means that we are very far from the wave front of
propagation for a very long time. For the finite value U of wave speed,
putting m = U2(c+ b0τ)/a0 in (5.6), after some calculation we get

E(t, x) = E2(t, x) =
e
−|x|2

4D2
0t

D0(
√

4πt)3a0

(E1 = 0)

where now D2
0 = a0

c+b0τ
= D2 1

1+b0τ/c
≈ D2 (in view of the small value of the

relaxation time τ).
We can give the following interpretation of these facts:
The solution under the nonlocal model is equivalent to the classical so-

lution if:

I. U =
√
a0/τc� 1 (which means that τ → 0) (cf. Fig. 4);

II. |x|/Ut � 1 for τ > 0 (which means that we are very far from the
front of the thermal wave) (cf. Fig. 5).

Conclusion. The nonlocal model of heat propagation with finite speed
is essentially different from the classical description of heat propagation for
the following reasons:

• the wave front exists in this description (cf. Fig. 5);
• the distribution of the temperature exists in a neighbourhood of the

wave front (cf. Fig. 5).

9. Numerical calculations. In this section we will calculate the distri-
bution of the temperature assuming that the source is given by the formula

(9.1) W (t, x) = W0f(t)δ(x1)δ(x2)H(l − |x3|).

Applying the Laplace transformation with respect to t and Fourier transfor-
mation with respect to x1, x2 to equation (4.1) (putting E(t, x) ≡ θ(t, x))
with W (t, x) given by (9.1) we get

(9.2) − d2 ˆ̄θ

dx2
3

+ γ2 ˆ̄θ =
1

ā
W0F (s)H(l − |x3|).

In view of (4.2) the solution of (9.2) is given as follows:

ˆ̄θ(s, ξ1, ξ2, x3) =
W0

2āγ
F (s)(e−γx3 ∗H(l − |x3|)),

that is,

ˆ̄θ(s, ξ1, ξ2, x3) =
W0

2āγ
F (s)

l�

−l
e−γ|x3−ξ| dξ,
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so we get

ˆ̄θ(s, ξ1, ξ2, x3) =
W0

2ā
F (s)

(
1

γ2
(2H(l − |x3|)− sgn(x3 + l) · e−γ|x3+l|

+ sgn(x3 − l)e−γ|x3−l|)
)
.

The last formula can be written in the form

(9.3) ˆ̄θ(s, ξ1, ξ2, x3) =
W0F (s)

2ā(s)

(
1

γ2

(
lim
ε→0

2H(l − |x3|)e−γε

− sgn(x3 + l)e−γ|x3+l| + sgn(x3 − l)e−γ|x3−l|
))
.

Using (4.3)–(4.7) from (9.3) we get

(9.4) θ̄(s, %, x3)

=
W0F (s)

8π2ā

∞�

−∞
dq

2∑
k=0

ck

∞�

Rk
√
q2+1

r̄e−r̄T

(
√
ω2
k + q2 + 1)2

∂ωk
∂T

∣∣∣∣ωk=ω+
k

ωk=ω−k

dT

where

c0 = lim
ε→0

2H(l − |x3|)e−γε, c1 = − sgn(x3 + l), c2 = sgn(x3 − l),

R0 =
√
%2 + ε2, R1 =

√
%2 + (x3 + l)2, R2 =

√
%2 + (x3 − l)2,

and

(9.5)

ω±k = i
T%

R2
k

± |x3|k
R2
k

√
T 2 −R2

k(q
2 + 1), %2 = x2

1 + x2
2,

γ±k = T
|x3|k
R2
k

± i %
R2
k

√
T 2 −R2

k(q
2 + 1),

∂ω±k
∂T

= ±
γ±k√

T 2 −R2
k(q

2 + 1),

and |x3|0 = |ε|, |x3|1 = |x3 + l|, |x3|2 = |x3 − l|.
Taking into account (9.3), (9.5) we can write (9.4) as follows:

θ̄(s, %, x3) =
W0F (s)

4π2ā(s)

∞�

−∞
dq

2∑
k=0

ck

∞�

Rk
√
q2+1

r̄|x3|kTe−r̄T dT√
T 2−R2

k(q
2+1)(T 2−%2(q2+1))

,
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and after some calculations

θ̄(s, %, x3) =
W0F (s)

4π2ā(s)

2∑
k=0

ck

∞�

Rk

r̄|x3|kTe−r̄T dT

·

√
(T/Rk)2−1�

−
√

(T/Rk)2−1

dq√
τ2 −R2

k(q
2 + 1)(T 2 − %2(q2 + 1))

where (T/Rk)
2 − 1 > 0. The last formula can be written as follows:

θ̄(s, %, x3) =
W0F (s)

4π2ā(s)

2∑
k=0

ck

∞�

Rk

(
r̄|x3|kTe−r̄T

Rk · %2

1�

−1

du√
1− u2(a2 − b2u2)

)
dT

where a2 = (T/%)2 − 1, b2 = (T/Rk)
2 − 1. After some calculations we get

θ̄(s, %, x3) =
W0F (s)

4π2ā(s)

2∑
k=0

ck

∞�

Rk

r̄|x3|kTe−r̄T

Rk%2
· Rk%(−π)

T |x3|k
√
T 2/%2 − 1

dT

and finally

(9.6) θ̄(s, %, x3) =
W0F (s)

4πā(s)

2∑
k=0

(−ck)
∞�

Rk

r̄e−r̄T√
T 2 − %2

dT.

Applying to (9.6) the inverse Laplace transform, we get

(9.7) θ(t, x)

= θ0

2∑
k=0

(−ck)H
(
t

t0
− Rk
Ut0

)
e
− t
t0 ·

Ut�

Rk

I0

√(
t
t0

)2 − ( T
Ut0

)2√
T 2 − %2

dT

where

R0 = % =
√
x2

1 + x2
2, R1 =

√
%2 + (x3 + l)2, R2 =

√
%2 + (x3 − l)2.

Taking into account (9.7) we performed the numerical calculations which are
presented in Figures 2–4.

The numerical analysis of the solutions leads to the conclusion that there
are three waves propagating in space-time. The first of them is the cylindrical
wave described by the equations

%− vt = 0, % =
√
x2

1 + x2
2 for x3 ∈ [−1, 1].
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Fig. 2. Space distribution of the wave surface for T1 = 1, T2 = 2 (T is nondimensional
time)

Fig. 3. Distribution of the temperature for the nonlocal model of heat propagation (x = 0,
T = 1, 10, 50)

Fig. 4. Distribution of the nondimensional temperature as a function of distance from the
source (x3 = 0, T = 10, T = 50)
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Next, there are two spherical waves tangent to the surface of the cylinder
given by the equations

Rk − Ut = 0, R1 =
√
%2 + (x3 + 1)2, R2 =

√
%2 + (x3 − 1)2.

This means that there are two spheres with centres at S1(0, 0,−1) and
S2(0, 0, 1) and of radius Ut.

We can see the propagation of the two waves in Figure 2 for T1 = Ut1 = 1
and T2 = Ut2 = 2.

The distribution of the temperature is presented in Figure 3 for T =
1, 10, 50.

In order to compare the solution of the Gurtin–Pipkin model of heat
propagation with finite speed with the classical Fourier model with infinite
heat propagation speed we performed the numerical calculations basing on
formula (9.7). The results are presented in Figures 4 and 5, respectively.

Fig. 5. Distribution of the temperature as a function of time (for x3 = 0, % = 1). In
the graph we see that in the solution of the nonlocal model the front of the initial wave
appears (T = 1). The temperature before the wave front is zero (θ = 0) for 0 ≤ T ≤ 1. In
the case of the classical solution the temperature is greater than zero for all T > 0.

These results confirm the theoretical considerations of Section 8.

Remark 9.1. It is worth mentioning that the Lp-Lq time decay estimate
for the solution of the Cauchy problem plays the main role in the proof of
the global existence for the Cauchy problem for the nonlinear nonlocal model
associated with the linear one considered in this paper.
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