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ON DISCRETE FOURIER SPECTRUM OF A HARMONIC

WITH RANDOM FREQUENCY MODULATION

Abstract. Asymptotic properties of the Discrete Fourier Transform spec-
trum of a complex monochromatic oscillation with frequency randomly dis-
torted at the observation times t = 0, 1, . . . , n− 1 by a series of independent
and identically distributed fluctuations is investigated. It is proved that the
second moments of the spectrum at the discrete Fourier frequencies con-
verge uniformly to zero as n → ∞ for certain frequency fluctuation dis-
tributions. The observed effect occurs even for frequency fluctuations with
magnitude arbitrarily small in comparison to the original oscillation fre-
quency.

1. Introduction. The well-known Discrete Fourier Transform (DFT)
is widely used in signal analysis and processing, involving tasks like fil-
tering oscillations with specified frequency-bands from an observed signal
[14], [17]. Also the DFT-based periodogram is applied to detect hidden pe-
riodicities and estimate unknown oscillation parameters (amplitude and fre-
quency) [5], [27].

If the time series of complex-valued signal observations at discrete equi-
distant times xt, t = 0, 1, . . . , n − 1, is available, then its Discrete Fourier
Transform is computed as follows [14]:

(1) x̃ν =
1

n

n−1∑
t=0

xt exp(−i2πνt/n)

for ν = −n/2 + 1,−n/2 + 2, . . . , n/2, and even integer n > 0. As mentioned
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earlier, it can be used to calculate the values of the periodogram [16]

In(λ) =

∣∣∣∣ 1√
n

n−1∑
t=0

xt exp(−iλt)
∣∣∣∣2, λ ∈ [−π, π],

at the discrete frequencies λν = 2πν/n, ν = −n/2 + 1,−n/2 + 2, . . . , n/2.
Algebraic as well as numerical and statistical properties of the DFT are
described in time series analysis textbooks [5], [7], [8], [14], [17]. Frequently,
the appropriate Fast Fourier Transform computer procedures are used to
perform the relevant calculations [9], [21], [24].

A number of works concern finite sample properties [2], [11], [12], [15]
and asymptotic properties [13], [16], [18], [25] of the DFT or periodogram
ordinates at the discrete Fourier frequencies. Other approaches to spec-
trum estimation are also considered [1], [22]. Analysis of the influence of
frequency modulation on time series spectra is the subject of only a few
articles [3], [4], [20], [23], [26]. Electrocardiographic signals are an example
of biological signals whose basic characteristics can be altered by environ-
mental factors. Frequency modulation due to the influence of respiration
and other factors may alter the signals and affect the characteristic power
spectrum.

In this work the asymptotic properties of the DFT spectra of time series
representing complex monochromatic oscillations with frequency randomly
distorted at the observation times by a series of independent and identically
distributed fluctuations are investigated.

A random frequency modulation modelling is described in Section 2.
The results on the asymptotic properties of the DFT spectrum of randomly
frequency modulated harmonics are presented in Section 3.

2. Random frequency modulation modelling. Let us consider
a finite duration complex-valued time series ot = A exp(iωt + iφ), t =
0, 1, . . . , n − 1, that represents the values of a monochromatic oscillation
with constant frequency ω ∈ R, amplitude A > 0, and phase φ ∈ [0, 2π), at
discrete equidistant times.

Suppose the oscillation frequency is distorted at the observation times
by independent and identically distributed random variables (fluctuations)
δt, t = 0, 1, . . . , n− 1, according to the model

(2) vt = A exp(i(ω + δt)t+ iφ) = rtot,

where rt = exp(itδt). We shall investigate the asymptotic properties of the
DFT spectra ṽν computed according to (1). Hence, we will consider discrete
spectra of randomly frequency modulated harmonics.

Obviously, the equalities

(3) Ert = E exp(itδt) = χδ(t)
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hold for t = 0, 1, . . . , n − 1, where χδ(s), s ∈ R, denotes the characteristic
function of the frequency distortions, and consequently

(4) Var(rt) = E|exp(itδt)|2 − |χδ(t)|2 = 1− |χδ(t)|2 ≤ 1.

For example, suppose the distribution of δt is uniform on the interval (−∆,∆),
i.e. δt ∼ U(−∆,∆), where 0 < ∆ ≤ π, which gives immediately

(5) χδ∆(t) =
1

2∆

∆�

−∆
exp(itu) du =

1

2t∆

t∆�

−t∆
exp(iv) dv =

sin(t∆)

t∆
.

Clearly, for ∆ = π we have χδπ(0) = 1 and χδπ(t) = 0, t = 1, 2, . . . .

In order to compute the DFT of the modulated signals of the form
vt = rtot, t = 0, 1, . . . , n − 1, we apply the well-known circular convolu-
tion formula [14]

(6) ṽµ =
∑

j+k=µmodn

r̃j õk =
∑
j+k=µ

j+k=n+µ

r̃j õk =

µ∑
j=0

r̃j õµ−j +
n−1∑
j=µ+1

r̃j õn+µ−j

for µ = 0, 1, . . . , n − 1. Of course, since the DFT is periodic (with pe-
riod n), the values r̃µ, õµ, µ = 0, 1, . . . , n − 1, can be obtained from r̃ν , õν ,
ν = −n/2 + 1,−n/2 + 2, . . . , n/2. Hence, if we want to analyze the DFT of
the modulated signal ṽν , it is necessary to characterize the statistical prop-
erties of the DFT r̃ν of the modulating series and estimate the magnitude of
õν , ν = −n/2 + 1,−n/2 + 2, . . . , n/2. For this purpose we need the following
lemmas.

Lemma 2.1. If rt = exp(itδt), where the real-valued random variables
δt, t = 0, 1, . . . , n− 1, are independent and identically distributed with char-
acteristic function χδ(s), s ∈ R, then

|Er̃ν | ≤

√√√√ 1

n

n−1∑
t=0

|χδ(t)|2 and |E(r̃ν − Er̃ν)(r̃µ − Er̃µ)| ≤ 1/n

for ν, µ = −n/2 + 1,−n/2 + 2, . . . , n/2.

Proof. Definition (1) together with (3) and the Schwarz inequality yield
immediately

|Er̃ν | =
∣∣∣∣ 1n

n−1∑
t=0

χδ(t) exp(−i2πνt/n)

∣∣∣∣ ≤
√√√√ 1

n

n−1∑
t=0

|χδ(t)|2

for ν = −n/2 + 1,−n/2 + 2, . . . , n/2. The independence of the random
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variables δt, t = 0, 1, . . . , n− 1, together with (4), implies

|E(r̃ν − Er̃ν)(r̃µ − Er̃µ)|

=
1

n2

∣∣∣E n−1∑
t=0

(rt−Ert) exp(−i2πνt/n)

n−1∑
s=0

(rs−Ers) exp(i2πµs/n)
∣∣∣

=
1

n2

∣∣∣ n−1∑
t=0

n−1∑
s=0

E(rt − Ert)(rs − Ers) exp(−i2π(νt− µs)/n)
∣∣∣

=
1

n2

∣∣∣ n−1∑
t=0

Var(rt) exp(−i2π(ν − µ)t/n)
∣∣∣ ≤ 1

n

for ν, µ = −n/2 + 1,−n/2 + 2, . . . , n/2.

Lemma 2.2. For u ∈ [0, π/2] the inequality sin(u) ≥ 2u/π holds.

Proof. The function g(u) = sin(u) − 2u/π is differentiable and sat-
isfies g(0) = g(π/2) = 0, g′(u) = cos(u) − 2/π. Since 0 < 2/π < 1,
the function g(u) increases for u ∈ [0, arccos(2/π)] and decreases for
u ∈ (arccos(2/π), π/2], which yields g(u) ≥ g(0) = g(π/2) = 0 for u ∈
[0, π/2].

Lemma 2.3. If ot = exp(iωt), t = 0, 1, . . . , n− 1, where ω ∈ R, and n is
even, then

n/2∑
ν=−n/2+1

|õν | ≤ ln(n/2) + 4.

Proof. For ω = 2πµ/n, µ = −n/2 + 1,−n/2 + 2, . . . , n/2, we have õν =
δνµ (Kronecker delta), so the assertion holds. It remains to prove the lemma
for 0 < ω < 2π/n, since for ω′ = ω + k2π/n, k = ±1,±2, . . ., we have
õ′ν = õν−k and periodicity of the DFT ensures that

n/2∑
ν=−n/2+1

|õ′ν | =
n/2−k∑

µ=−n/2+1−k

|õµ| =
n/2∑

ν=−n/2+1

|õν |.

For 0 < ω < 2π/n we have

õν =
1

n

n−1∑
t=0

exp(i(ω − 2πν/n)t) =
1

n

exp(i(nω − 2πν))− 1

exp(i(ω − 2πν/n))− 1

=
1

n

exp(−i(ω/2− πν/n))(exp(inω)− 1)

exp(i(ω/2− πν/n))− exp(−i(ω/2− πν/n))

=
1

n

exp(−i(ω/2− πν/n))(exp(inω)− 1)

2i sin(ω/2− πν/n)
,
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and consequently

(7) |õν | ≤
1

n

1

|sin(ω/2− πν/n)|
for ν = −n/2 + 1,−n/2 + 2, . . . , n/2. Now, for 0 < ω < 2π/n and
ν = 2, 3, . . . , n/2, we have πν/n−ω/2 ∈ (π/n, π/2), so by (7) and Lemma 2.2
we obtain, for even n > 4,

n/2∑
ν=3

|õν | ≤
1

n

n/2∑
ν=3

1

|sin(ω/2− πν/n)|
≤ 2π

2n

n/2∑
ν=3

1

2πν/n− ω
(8)

≤ 1

2

π�

4π/n

1

u− ω
du =

1

2
ln

(
π − ω

4π/n− ω

)
≤ 1

2
ln(n/2).

Since for 0 < ω < 2π/n and ν = −n/2 + 1,−n/2 + 2, . . . ,−1, we also have
ω/2− πν/n ∈ (π/n, π/2), we obtain analogously, for even n > 4,

−2∑
ν=−n/2+1

|õν | ≤
1

n

−2∑
ν=−n/2+1

1

|sin(ω/2− πν/n)|
(9)

≤ 2π

2n

−2∑
ν=−n/2+1

1

ω − 2πν/n
≤ 1

2

−2π/n�

−π+2π/n

1

ω − u
du

=
1

2
ln

(
ω + π − 2π/n

ω + 2π/n

)
≤ 1

2
ln(n/2).

In view of definition (1), |õν | ≤ 1 for any ω ∈ R, so taking into account (8)
and (9) finally gives

n/2∑
ν=−n/2+1

|õν | = |õ−1|+|õ0|+|õ1|+|õ2|+
−2∑

ν=−n/2+1

|õν |+
n/2∑
ν=3

|õν | ≤ ln(n/2)+4,

which completes the proof (including the case of n = 2, 4).

3. Asymptotic properties of randomly frequency modulated
harmonic spectra. Formula (6) together with Lemmas 2.1 and 2.3 al-
lows us to characterize the DFT spectra corresponding to the frequency
modulation model considered. Namely, in the following lemma we derive
upper bounds for the mean values and variances of the random variables ṽν ,
ν = −n/2 + 1,−n/2 + 2, . . . , n/2, representing a randomly frequency modu-
lated harmonic spectrum. The corollary that follows concerns the asymptotic
behaviour of such spectra.

Lemma 3.1. If ot = exp(iωt), where ω ∈ R, and rt = exp(itδt), where
the real-valued random variables δt, t = 0, 1, . . . , n− 1, are independent and
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identically distributed with characteristic function χδ(s), s ∈ R, then the
DFT of the series vt = rtot, t = 0, 1, . . . , n− 1, satisfies

|Eṽν | ≤
ln(n/2) + 4

n1/2

√√√√n−1∑
t=0

|χδ(t)|2 and E|ṽν − Eṽν |2 ≤
(ln(n/2) + 4)2

n

for ν = −n/2 + 1,−n/2 + 2, . . . , n/2.

Proof. Formula (6) yields immediately, for µ = 0, 1, . . . , n− 1,

|Eṽµ| ≤
µ∑
j=0

|Er̃j | |õµ−j |+
n−1∑
j=µ+1

|Er̃j | |õn+µ−j |,

which together with Lemma 2.1 and periodicity of the DFT shows that

|Eṽµ| ≤
1

n1/2

√√√√n−1∑
t=0

|χδ(t)|2
n−1∑
j=0

|õj |,

so Lemma 2.3 and periodicity of the DFT imply the first inequality of the
assertion. Using (6) again we obtain

ṽµ−Eṽµ =

µ∑
j=0

(r̃j−Er̃j)õµ−j+

n−1∑
j=µ+1

(r̃j−Er̃j)õn+µ−j =

n−1∑
j=0

(r̃j−Er̃j)õm(j),

where m(j) = µ−j for 0 ≤ j ≤ µ and m(j) = n+µ−j for µ+1 ≤ j ≤ n−1,
and consequently by Lemmas 2.1 and 2.3,

E|ṽµ − Eṽµ|2 = E

n−1∑
j=0

(r̃j − Er̃j)õm(j)

n−1∑
k=0

(r̃k − Er̃k)õm(k)

=

n−1∑
j=0

n−1∑
k=0

E(r̃j − Er̃j)(r̃k − Er̃k)õm(j)õm(k) ≤
1

n

n−1∑
j=0

n−1∑
k=0

|õm(j)| |õm(k)|

=
1

n

n−1∑
j=0

|õm(j)|
n−1∑
k=0

|õm(k)| =
1

n

n−1∑
j=0

|õj |
n−1∑
k=0

|õk| ≤
(ln(n/2) + 4)2

n

for µ = 0, 1, . . . , n − 1, and the proof is complete in view of the DFT peri-
odicity.

Corollary 3.1. Under the assumptions of Lemma 3.1 the DFT of the
series vt = rtot, t = 0, 1, . . . , n− 1, satisfies

E|ṽν |2 ≤
(ln(n/2) + 4)2

n

[
1 +

n−1∑
t=0

|χδ(t)|2
]
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for ν = −n/2 + 1,−n/2 + 2, . . . , n/2. If moreover
∑∞

t=0 |χδ(t)|2 <∞, then

lim
n→∞

E|ṽν |2 = 0

uniformly for ν = −n/2 + 1,−n/2 + 2, . . . , n/2.

The condition
∑∞

t=0 |χδ(t)|2 < ∞ is satisfied for the class of fluctuation
distributions considered in the introduction. Namely, if δt ∼ U(−∆,∆),
where 0 < ∆ ≤ π, then according to (5) we have

∞∑
t=0

|χδ∆(t)|2 = 1 +
∞∑
t=1

|sin(t∆)|2

t2∆2
≤ 1 +

1

∆2

∞∑
t=1

1

t2
= 1 +

π2

6∆2
.

Another example of frequency fluctuation distribution which satisfies an
even stronger condition χ(t) = 0 for |t| ≥ 1 is the distribution on R with
density p(t) = (1− cos(t))/πt2 and characteristic function χ(t) = (1− |t|)+,
t ∈ R (the formulae are easily derived from the characteristic function and
density of the well-known triangular distribution).

Now, since vt = rt exp(iωt), where rt = exp(itδt), t = 0, 1, . . . , n− 1, the
well-known equality [14]

n−1∑
ν=0

|ṽν |2 =
1

n

n−1∑
t=0

|vt|2

yields immediately

E
n−1∑
ν=0

|ṽν |2 =
1

n

n−1∑
t=0

E|rt|2|exp(iωt)|2 = 1.

Consequently, the average mean square value of the random variables ṽν ,
ν = 0, 1, . . . , n − 1, representing the spectrum of the frequency modulated
harmonic ot = exp(iωt), t = 0, 1, . . . , n− 1, equals

1

n
E

n−1∑
ν=0

|ṽν |2 =
1

n

and converges to zero (with convergence rate n−1) as n→∞ for any distri-
bution of the frequency fluctuations.

Let us now assume that the measurements of the frequency modulated
monochromatic oscillation from model (2) are corrupted by random obser-
vation errors, i.e. we observe the time series

yt = vt + ηt, t = 0, 1, . . . , n− 1,

where ηt are uncorrelated complex-valued random variables having zero
mean Eηηt = 0 and finite second moment σ2η = Eη|ηt|2 < ∞. We further
assume that the observation errors are independent of the frequency fluc-
tuations. Then, inspection of the proof of Lemma 2.1 shows that Eηη̃ν = 0
and Eη|η̃ν |2 = σ2η/n, ν = −n/2+1,−n/2+2, . . . , n/2. Consequently, in view

of linearity of the DFT, EδEηỹν = Eδ ṽν + Eηη̃ν = Eδ ṽν and EδEη|ỹν |2 =
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EδEη|ṽν + η̃ν |2 = Eδ|ṽν |2 + σ2η/n, ν = −n/2 + 1,−n/2 + 2, . . . , n/2. So it

is easy to see that the relevant bound for EδEη|ỹν |2 differs from the one in
Corollary 3.1 by the additive term σ2η/n, which occurs because the observa-
tion errors have non-zero second moment. Hence, the uniform convergence
rate of EδEη|ỹν |2, ν = 0, 1, . . . , n−1, as well as of their average value remains
the same.

4. Conclusions. The asymptotic properties of the DFT spectrum of
a complex monochromatic oscillation, investigated in this work, take into
account the effects of random frequency modulation at the observation
times by a series of independent and identically distributed fluctuations.
It is proved that for certain fluctuation distributions the second moments
of the DFT spectrum at the discrete Fourier frequencies converge uniformly
to zero as the number of observations grows. So for such distributions the
randomly frequency modulated harmonic spectrum asymptotically does not
distinguish any frequency, whereas the DFT amplitude spectrum of the orig-
inal monochromatic oscillation resembles the Dirac delta function δ(s− ω),
s ∈ [−π, π], where −π ≤ ω ≤ π denotes the oscillation frequency [8]. The
observed effect can occur both for frequency fluctuations with large and ar-
bitrarily small magnitudes compared with the original oscillation frequency
ω. Thus, it is shown that occurrence of random frequency modulation of
monochromatic oscillations can completely change the character of the corre-
sponding DFT spectra. However, it should be noted that certain linear com-
binations of frequency modulated monochromatic signals may produce a sig-
nal with amplitude modulation only, as can be seen from the simple example

1

4
exp(i(ω+δt)t)+

1

4
exp(i(ω−δt)t)+

5

2
exp(iωt) = [2+cos2(tδt/2)] exp(iωt),

where δt, t = 0, 1, . . . , n−1, denote modulating random variables character-
ized in the introduction.

Similar conclusions are deduced also in the case of a randomly frequency
modulated monochromatic oscillation which is corrupted at the observa-
tion times by uncorrelated random errors with zero mean and finite second
moment.

Since the DFT is linear, the results obtained also help to understand
the influence a particular signal component frequency modulation can have
on the DFT spectrum of a signal which is a sum of several monochromatic
oscillations.

The same model of random distortions as the one considered here for
frequency modulation is applied in the Fourier Bootstrap Method for ran-
dom phase modulation [6] and in surrogate data sets generation with phase
randomization [19].
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